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Optimal plane-wave Hartree-Fock states for many-fermion systems
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The possibility of taking plane-wave orbitals of a Hartree-Fock determinant to fill k space differently from
the "normal" Fermi sphere is investigated for several two-body potentials including the "homework" vo, v„
and v2—taken from the Reid nucleon-nucleon force—as well as a sum-of-Gaussians potential chosen to fit
the 'deuteron binding and size. A random-search and random-walk numerical algorithm shows that,
provided the potential strengths are made large enough, a single-shell "abnormal" occupation is always

found to be lower in energy than the normal one if sufficient attraction is present in the two-body
interaction. No abnormal occupation is possible for, among other pair interactions, the. electron or charged-
boson Quid, the repulsive square barrier, and a common form of the He-He interaction.

NUCLEAR STRUCTURE plane-wave Hartree-Fock; nuclear matter.

I. INTRODUCTION

Recent microscropic treatments of ground state
energies of many-body systems have been based
on either (a) diagrammatic perturbation theory, '

(b). variational schemes, ' and (c) the "coupled-
cluster" or expS method. ' All begin from an "un-
perturbed vacuum state" consisting of plane-wave
single-particle orbitals, satisfying periodic
boundary conditions, but norma/ly occuPied in the
determinant (fermions) or permanent (bosons),
i.e. , all 0=0 states occupied by the N particles
for the boson case or all k states filling the Fermi
sphere for the fermion problem.

Such "normal" occupation, however, has strictly
speaking been used only out of convenience since
it clearly minimizes the energy for the noninter-
acting problem but not necessarily for the fully
interacting, physical case. 'The question naturally
arises of the possibility of "abnormally occupied"
plane-wave, determinants or permanents, and of
their usefulness in correlation energy calculations
using either of the three methods mentioned above.

The question has been investigated4 before for
fermions but only for one-dimensional. spinless
ones interacting with very schematic two-body
potentials. Also, the boson case has been con-
sidered in three dimensions with realistic (alpha, -
alpha) interactions. In both instances, however,
a trial-and-error approach was employed in the
choice of the occupation numbers.

Our purpose here will be to find the best possible
occupation for several many-fe rmion systems
interacting via simple though somewhat realistic
potentials, all within the context of a plane-wave
Hartree-Fock state, as a first step in the eventual
simultaneous treatment of correlations saith ab-
normal occupation by, e.g. , Bijl-Dingle-Jastrow

trial wave functions dealt with via a hypernetted-
chain scheme'

II. FORMALISM OF PLANE-WAVE
HARTREE-POCK THEORY

Consider N fermions each with p internal degrees of
freedom in a box of volume V to which one applies
periodic boundary conditions. They interact pair-
wise with a central potential v(r), with r=

~
r, —r, ~,

whose Fourier transform is

v (q) fear'r e -=+'~v (r)

and presumed finite. The lowest kinetic energy
expectatjon value between determinants of plane
waves occupying the lowest allowable k states is
then

(t) = Q k'n)-,

where normal occuPation and particle density are
defined by

nm = e(k~ —k),

vk~'
p= —=—~ n-==p=yM )=6 2 ~

(3a)

(3b)

More general occupation n„- is given by

n-„=0 or 1, g n„=N, -
p7.

and yields a total energy expectation value

E —= (t)+N(Vv+ V~)

g k'n„-+ ,'Npv(0)-g n„-,n„- v(-~k, —k, ~). (5)
k kl 2
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E b&E„,
for some density range.

In the Appendix it is made plausible that any
abnormal occupation n-„should be spherically
symmetric, i.e. ,

n-„=n(k) ~

(6)

For any n„-subject to (4) but different from (3a),
i.e. , abnormal occupati on, the kinetic energy in

(5) will of course be larger than (2), the direct
energy V~ will not change, but the exchange energy
V~ may conceivably be sufficiently lower than the
normal V~ so as to render

ween k and k + dk such that, for any smooth func-
tion Q(k),

dkdk k = dkn k k ~

d(k) -=v-' tan-'u (k) + -', (14)

ensures that 0- d(k)- 1 and transforms the pro-
b lcm to

—l[u] =-—(Z[u] —Xp[u])
5u 5u

We then attempt a functional minimization of E[d]
—&p[d], where )(. is a Lagrange multiplier. Letting

Otherwise, it would be extremely awkward to per-
form a more refined calculation than the present
one, including cor relati ons, along any of the lines
mentioned above. '

Then E(ls. (4) and (5) become, for sufficiently
large box volume V,

(
l(Cgk lCll +2Cy I d2%, d(tl)j

d d(k)
du(k)

where from (14} the last factor gives

(15)

C dkk2n k = p, (8) , -=d k)=0.
du(k) v(1+u') (16)

d/d = C, f dk k'm(k) ~ -'pii(0)

+ C„drr'v(r) dkk'j, (kr)n(k) ', (9)
0 ~E

vC—= v/2v; C~=-
2p 2mp

C» =- - /2vs, j,(x) =- (10)

V~=Cv dk dqn k . ~gg q
—=Cv n % n

The last term in (9) is just Vs and can alternative-
ly be written

To achieve a true minimum one must require

6'E[u] 6'5 6l 6d'(k)

(18)

which in turn implies from (11) that V~~ &0, thus
viol. ating (12). Since from (11), (13), and (17)

Since the last term vanishes at the minimum, (1'f)

will be satisfied, in view of (16), if and only if

g2E

6d(k)6d(q)

2„=—k'q' - dr r'v(r)j, (krj), (qr) .
0

1 d O'E[u] d
8 dI 2 (19)

Vd~L be suff iciently negative. (12}

III. GENERAL RESULTS

A. Functional minimization

Consider the possib'ility of using a function 0
- d(k)- 1 defined as the density of 1's in n(k) bet-

Since Vz", i.e. , with n-„given by (3a), is generally
negative, a necessary condition for (6) to occur
is that

the contradiction is avoided if

d'(k) =O~d(k) =0 or 1, (20)

namely, representation ofn(k) by a continuous func
tion is impossible. Since such a representation
should work if n(k) were not a "reasonable" func-
tion, we are led to believe that the optimal n(k) is
piecewise differentiable, i.e. , equal to zero or
one throughout finite- sized intervals. Therefore,
other techniques will be required. We first make
some general statements.

B. Some a priori results

(a) Since the plane-wave (pW) Hartree-Fock (HF) energy is a rigorous upper bound to the exact (Schrd-
dinger) ground state energy we have the following:

Lemma. To avoid collapse, v(0) &0.
Tkeorem lf v(q) is m.ontonically decreasing [and hence non-negative since v(~) = 0] there is no abnor-
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mal occupation.
Proof A. necessary condition for Eq. (6) to be satisfied is

v"' —v-'= —
t ~, f &9 f adp(~ ,k—&. ~)fn;,n;, —&(0 -& )e(& &.)I« (21)

or the term in n„- n„- is more positive than that in

8(kz —k, )8(kz —k, ). This will not occur since ab-
normal occupation populates higher k„k, at the
expense of depopulating lower k„k,. The average
argument of v( lk, —k, l) will the~refore be larger
and the average value of i smaller for abnormal
than for normal occupation. Q.E.D.

Corolla. y.
(i) There is no abnormal occuPatioN for the

electron gas problem where v(q) =4me'/q' for q& 0
and v(0) =—0.

(ii) There is no abnormal occupation for a single
repulsive Yukawa po'tentiaL [such as the Bethe
homework potentialv, (Ref. 6)] since v(q) =

l
const l/

(p'+q')
(iii) There is no abnormal occupation for liquid

'IIe interacting via a Bruch-McGee molecular in-
teraction since its Fourier transform v(q) &0, Vq,
and decreases monotonically. '

Remark. The theorem applies to a general n-„,
not just n(k).

(b) A digression on bosons allows us to assert for
the PW-HF permanental state expectation value
(N» 1)

4.9r

v, (r) = 9263.14— (24a)

e ~.gr 8-2, 8t'

v, (r) = 9263.14 —2358—

-14.95 (24b)

e-4, 2t' ~-2, 8r

v, (r) = 14 177.6 ——4554
y' r

~ 4F +«0, 7Y

+ 150.67 —14.95r (24c)

In addition, we have constructed a semirealistic
potential which is a sum of two Gaussians with
parameters such as to (1) reproduce the deuteron

'lJ'(r) (Mev)

of course, other" HF orbitals will accommodate
such potentials. We shall employ the Reid so-
called v„v„and e, homework potentials given by
(in MeV, r in fm)

E = ~ k'n&+ —,Npv(0)

+ ~ u.-,u~,v(l»-k. l) ~=0, 1, 2, . . . , N,
(22)

20(X

E„,= ~Npv(0),

gp
——NQg, 0,

(23) F000

the following:
Theorem. Ifv(q) ~ 0, Vq, thenthereis no abnormal

occupation.
Proof. See Eqs. (22) and (23).
Corollary. There is rio abnormal occupation for
(i) liquid 'He with a Bruch-McGee potential, "'
(ii) the charged boson gas, '
(iii) bosons interacting via the homework po-

tentials vo vy and v, .'

-50—

-100—

/
/

I
/

/
/

/
/

g/

IV. MODEL POTENTIALS

Since (1) is assumed finite we must exclude all
hard-cored potentials from PW-HF theory though,

FIG. 1. The homework potentials vo, v&, v2 and the
sum-of-Gaussians potential v G as given by Eq. (24). Note
that the top and bottom vertical scales are different.
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&tq)(MeV-tra') X 10'5-

VG---—
Vt

———
Vp" "-"
Vp

and is one of the very few nucleon-nucleon po-
tentials with the desirable feature of simultaneous-
ly binding both the deuteron and nuclear matter in
PW-HF theory, which is not accomplished by any
of the Beid homework potentials vp 5, and
The potentials (24) and (25) as well as their Four-
ier transforms are shown in Figs. 1 and 2. 'The

normal PW-HF energy per particle as well as the
lower bound (25) are shown for the tro potential in

. Fig. 3.

V. NUMERICAL TECHNIQUES

0
q(fm'j

I I I

2 3 4 5 6 7

I

FIG. 2. Fourier transforms, Eq. (1), for the potentials
of Fig. 1.

S 12&6a2 2/'
E'*ao'/N ~——

~

p' '+ —,'pv(0) -2tr(0) .10m( v
(25)

The potential, called era, is (in MeV, r in fm)

5 (r)=22008 1' r -668 ' r (24d)0

' 6 (Met//particie)

[
I/, potentiai

[

-200-

-400-

.5 t
s I i t s i I

-800—

-t000
lower bound ~

FIG. 3. Energy per particle as given-by PW-HF theory
with normal occupation (fu11 curve) for the potential v z
of Eq. (24d) and the rigorous 1ower bound (dashed curve)
of Eq. (25) to the exact (Schrodinger) ground state result.

binding energy at -2.286 MeV, (2) not have any
bound states with I ~ 1, (8) give the not unreason-
ably large deuteron radius of 5.119 fm, (4) make
tr, (0) as small as possibl. e, and (5) make tr(q) &O, ttrq.

These last two properties enable us to employ
the rigorous locker bound" on the exact (Schro-
dinger) ground state energy per particle given by

A. Random search

In seeking the optimal n(k) we must avoid being
trapped in a local minimum of the PW-HF energy
(9) and should attempt finding the global minimum.

Since we know that n(k) will be constant through-
out finite intervals (cf. Sec. III A), it is reasonable
to divide k space into n shells each containing
equal numbers of particles and select at random
m shells out of the n shells such that the total
number of particles in the m shells is always
equal to N for any possible selection. Of course,
the individual shells should be reasonably small,
so as to generate reliable distributions. Sampling
a huge number of n(k) configurations, although
time consuming, provides a reasonable first ap-
proximation for the lowest energy configuration,
subject to a more refined search as described
below. In all cases only a single minimum energy
n(k) configuration was found.

B. Random walk

Having obtained, as described above, a first
approximation to the n(k) distribution giving the
global PW-HF energy minimum, we proceed to

CC k"improve upon it by recourse to a random-walk
algorithm as follows. A specific shell out of the
m occupied ones is emptied and one of the remain-
ing n-m shells is populated. Should the resulting
HF energy be lowered the new configuration is
kept, otherwise it is discarded. 'The process is
continued until no further lowering of the energy
is possible. After performing the steps described
in the last two subsections, one can be reasonably
sure to have found the global minimum.

C. Single-shell minimization

After proceeding according to Secs. V A and VB
for the model potentials described in Sec. IV, it
was found that if any abnormal occupation resulted
it was always of a single-shell structure, namely,
one in which- only those k states pertaining to a
given interval (k„k,) with ko~ 0 were occupied,
as found previously also in Ref.- 4.

It then becomes possible to devise the fol.lowing
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0
-50

—5.2—

VG potential

N/f71 =.4, P=.02 fm '

= k, (fm 'j

-54—

-5.6—

„E (MeV/particle)

FIG. 4. Variation with binding energy per particle of
the inner shell radius ko of the abnormal occupation given
by the single-shell configuration of Eq. (26), for a given
potential {the v a), value of m/m*, and particle density p.

features of abnormal fermion occupation, we have
used throughout effective masses m* given in terms
of the nucleon mass ei. 'This, of course, is equi-
valent to fixing the mass and increasing the coupling
strength of the potential. In this way we try to
ascertain in which region, if any, of the p vs m/m*
plane there exists abnormal occupation. As men-
tioned in Sec. V, any abnormal occupation found
to be energetically favorable was in the form of a
single-shell m(k) = {J(k—k, )e(k, —k). Figures 5-7
show below the dashed lines the zones of abnormal
occupation for the interactions v~, v„and v,
respectively, in the p vs m/m" plane.

On the other hand, there is no abnormal occupa-
tion for a repulsive square barrier of arbitrary
height. This result is mentioned since it is not
covered by any of the general assertions of Sec.
III, since, for vp~0,

simpler minimization procedure. For the single-
shell configuration

v(r) =v, &(c-r)~v(q) =4trv, c' ' q
gc

~(k) = e(k - k, ) e(k, —k)

the PW-HF energy (9) becomes

e(k, ) -=E/N =-,'C, (k,'-k, ')+-,'pv(0)

A~ A~

+ C~ dk dq%
Ap A'

where, by Eq. (8),

3

(28)

(27)

(28)

j,(x) —=x ' sinx —x ' cosx,

and clearly the Fourier transform oscillates.
Furthermore, for the boson case the repulsive
square barrier does originate abnormal occupa-
tion provided vp is sufficiently large. '

The results shown in Figs. 5-7 motivate the
following.

Conjecture. Assume spherical symmetry, i.e. ,
nt = n(k). In the spirit of making general assertions,

It is then easy to solve

""'='(k,) =0
ek,

and verify if

(29)
-ftC (MeV/particle)

Jt

.005-
/

0J

.05-
V& potential

e "(k,) & 0. (30)

As a by-product of this procedure one can prove
the following: 'The normal distribution constitutes
either a minimum or a saddle point of the energy
as function of k„since here Eq. (29) gives

OJ,
I

.25-

OJ

2{,k, '(k, ' —k, ')+ 2{„~ dq%, ,
1 Ap

1

k~

dqgg~, ,
=0, (31)

0, —.2

which is satisfied for k, = 0 since%„=0. Q.E.D.
Figure 4 shows &(k,) vs kc for the vo potential and
illustrates this fact.

05
/'( f in-')

0

VI. NUMERICAL RESULTS

Since the main objective of the present work is to
emphasize the peculiarities and characteristic

FIG. 5. Locus of points (dashed curve) in the m/m* —p
plane, along which the abnormally and normally occupied
PW HF are equal for the v z potential. Also shown (full
curves), related to left vertical scale, is the energy gain
of the abnormal to the normal case.
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-DE(MeV/particle)
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FIG. 6. Same as Fig. 5 but for thee& potential.

the next simple thing to consider after monotonic
decreasing tr(q) is a v(q) having a single maximum
excluding the origin, and then there may be abnor-
mal occupation. If so, we conjecture, it will be a
single- shell one.

Reason. Such a 6(q) will, by Eqs. (11) as well
as (1), produce an 5R~, 'with a single "ridge" per-
pendicular to the main diagonal in the kq plane.
Hence (n 3R ~n) will be larger, i.e. , Vs smailer
since C~&0, for n located at the ridge.

Also shown in Figs. 5-V are the energy gains
&E &0 over the normal occupation for different
values of m/m* as function of the density p. For
a given potential and effective mass (or interaction
strength) there is a finite range of densities for
which such energy. gains are found. This range
strongly depends on the potential involved and
shrinks to zero as m/m* grows beyond a certain
critical value different for each potential. Along

FIG. 8. Variation with particle density p of the inner
shell radius fo of the abnormal single-shell occupation
Eq. (26) which minimizes the PW-HF energy Eq. (27) for
the e &, v&, and e2 pair potentials for different values of
the particle mass m* measured in units of the nucleon
mass m. For reference the Fermi sphere radius A&
= (3x p/2)'~ is also graphed. Inset shows the single-
shell abnormal occupation (shaded) relative to the nor-
mal one (dashed).

the dashed line && is zero and decreases with
m*/m. At finite m*/m the density region for ab-
normal occupation does not extend to zero density
since at zero density there is only kinetic energy.

The position of the (abnormal occupation) Fermi
single shell is illustrated in Fig. 8 where the
inner shell-radius K, minimizes e(k, ) Eq. (27) for
a given density, effective mass, and interaction.
For comparison, the Fermi momentum kz ——(3tr'p/

9.5

-D, E (MeV/particle j

03-

.Ol-

0

V& PotentiOt

—.04

8.5

—.02

0
0.05 O.l, 0.15

P(fm-')
0.20

iO
0.25

FIG. 7. Same as Fig. 5 but for the v2 potential.

7.5
0

r(fm}

FIG. 9. The radial. distribution function as defined in
Eqs. (33) for normal and abnormal occupation with the
v& potential, for fixed values. of mlm*, p, and ko.
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2)' ' is also plotted. We also mention that for
sufficiently large m*/m one finds instances where
k, - k„. Moreover, k-0 at the boundary of the
energy-gain zones of Figs. 5-7. One might ask
by what physical mechanism abnormal occupation
affects the energy gain. To clarify this we corn-
pare in Fig. 9 the radial distribution function g(r),
defined through

(33)

l(r)—= — d'kn en ~,
(2s)'p

for both abnormal and normal occupations. It is
not possible to change the value of g(0) = 1- I/v
by any choice of occupation. Moreover, for small
but finite interparticle distances r abnormal
occupation will always inn ease the value of g(r)
and thus supPress short-range correlations. In
spite of the increased g(r) at very short distances,
the attractive part of the potential (at larger values
of x) is weighted by a substantially increased g(r)
resulting in a net energy lowering. Clearly, for
this mechanism to work the potential must have
long-ranged attraction. In order to avoid (N-
particle) collapse there must then be a short-
range repulsion. This combination will lead to a
Fourier transform v(q) behaving exactly like the
one used in the above conjecture, i.e. , having a
single maximum at finite q.

VII. CONCLUSIONS

The conditions under which abnormal occupation
exists for many-fermion systems have been given
for the first time in three dimensions. For the
model. many-nucleon systems considered (with
any number of species v= 1, 2, 4, . . . ), abnormal
occupstion was found to be energetically lower
provided the mass of the particles is increased,
i.e. , if the interaction strength is made sufficiently
large. In all cases examined the global minimum,
within the space of PW determinants, corresponded
to a single-shell occupation of states in k space.
'This was made plausible for any potential consisting
«a short-ranged repulsion and a sufficiently
strong long- ranged attraction.

It was shown that no abnormal occupation is
possible at all for the electron fluid, the charged-
boson fluid, a repulsive square barrier of any
height and diameter, and for a purely repulsive
Gaussian or Yukawa potential of any height and
width. [Presumably, this argument applies also
for any reasonably shaped purely repulsive po-
tential, just on the basis of the g(r) discussion of

Sec. Vlj. Also, there is no abnormal occupation
for either 'He or ~He liquids, if the particles in-
teract via a Morse interaction as modified by
Bruch and McGee.

APPENDIX: NONSPHERICAL DISTRIBUTIONS

We consider here the possibility of nonsphericat
n-„vn(k) giving lower energies than the spherical
one assumed in this paper, Etl. (7). By itself this
is neither reasonable as it would imply a preferred
direction in the Quid, nor desirable since cal-
culations would be appreciably complicated par-
ticularly if one wants to include correlations.

Consider the general distribution

n„=l4w Qn, „(k)&, (&)=I or 0.

After some straightforward algebra, Eels. (11)
become

V~a=- 3
277 p

xg (—)"j d). fd), x( , ) )x().' )))(,', (A2)

k 2k

Now since

n, (k)= dfln;F,* (fl),
1

(A2)

(A4)

we have either

n „=n(k, 0) -=1 or 0 for all A, given k,

~noo(k) =1 or 0, all other n, (k) =0

(A5)

n„-».const, given k ~ n,o(k) & 1, all other n, (k) 0 0.
(A6)

For X 40, the P~(z) will change sign making the
3g' smaller in magnitude with increasing ~. For
the (smooth) potentials considered here, %t' gets
smaller with ~ very rapidly, as can easily be
verified. Hence, it is most favorable to have
noo(k) as large as possible in order in minimize
(A2), which results in a spherical distribution.
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