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Previously developed techniques which sum the squares of proton single particle wave functions to obtain
nuclear charge densities are applied to the study of neutron distributions in ' 'Ca, ' 'Ni, " ' 'Sn, and ' Pb

by comparing to those neutron densities deduced from 800 MeU proton elastic scattering data. The proton
and neutron single particle wave functions are derived from a one-body, nonlocal Woods-Saxon binding

potential whose parameters are adjusted to give the experimental single particle energies, Empirical
spectroscopic factors determine the appropriate occupation probabilities for the single particle levels near the
Fermi surface. Proper attention is given to nonorthogonality problems and to the removal of the spurious
center-of-mass motion. These semiphenomenological neutron densities are compared to the predictions of
the density matrix expansion variant of Hartree-Fock theory and to densities which are empirically deduced

from recent 800 MeU polarized proton elastic scattering data. These "experimental" neutron distributions

are obtained from approximate second order Kerman, McManus, and Thaler optical potential analyses

using essentially "model independent" neutron densities. Qualitatively good agreement is obtained between
the semiphenomenological neutron densities computed here, the density matrix expansion predictions, and

the empirical results.

NUCLEAR STRUCTURE Sums of squares of single particle wave functions;
nonlocal potentials; nonorthogonality effects; computed proton and neutron one-

body densities for 40 e 48Ca 58 & 84Ni 118oi24Sn and 208P

I. INTRODUCTION

The calculation of nuclear densities from various
theoretical models comprises a significant fraction
of the recent efforts expended in nuclear physics.
Mean field theories, ' ' shell-model approaches, "
and Brueckner-Hartree-Fock techniques' typify
these efforts. In addition to these methods, recent
calculations of nuclear charge densities have been
presented" which utilize empirical, single par-
ticle binding energies and spectroscopic strengths
as determined from studies of single nucleon
(mainly proton) transfer reactions. These calcu-
lations generate the nuclear charge densities by
summing the squares of the moduli of nonlocal
Woods-Saxon wave functions with proper care
being given to nonorthogonality corrections, ' cen-
ter-of-mass motion, "proton and neutron electro-
magnetic form factors, ' spin-orbit corrections, '
and relativistic effects. ' Although using explicit
Woods-Saxon binding potential models, this tech-
nique has been able to obtain high quality repro-
duction of the "model independent" charge den-
sities determined by electron scattering and
muonic atom data for several nuclei. " Predicted
nuclear charge densities, using average binding
potentials, ' are in very good agreement with

several empirical densities from "0 to "'Pb."
Precision fits to empirical charge distributions
can readily be obtained by a minor adjustment of
parameters. " Thus, the utility of this model is
that it permits one to relate, in a phenomenological
sense, the copius amount of information gained
from single nucleon transfer reactions to the
equally abundant electron scattering and muonic
atom data. By carrying out such studies as are
presented in Refs. 7 and 8 one obtains a nuclear
structure model for a particular nucleus which is
consistent with the available nuclear reaction,
electron scattering, and muonic atom data, at
least with respect to the nuclear charge density.

In addition to the continued study of nuclear
charge densities by this method, one should also
test the accompanying neutron densities against
empirical results. Thus, in this work we shall
explore the feasibility of relating the volume of
single neutron transfer reaction data to the empir-
ically deduced neutron density distributions in
nuclei by an application of this semiphenomeno-
logical model similar to that given in Hefs. 7 and
8. Since empirical neutron densities in nuclei
have not been obtained with as high a degree of
reliability as have nuclear charge densities, our
purpose here will be to make qualitative compari-
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sons with these neutron distributions rather than
attempting detailed fits as were done for the charge
densities in Refs . 7 and 8 ~ Thus, qual itative com-
parisons as given in Ref. 10 for the nuclear
charge densities will be presented here for the
neutron distributions in ' ' 'Ca 58 "Ni '" "'Sn
and "'Pb.

Cons ider able experimental and theoretical efforts
have been expended in the last few years in an
effort to gain empirical information about neutron
densities in nuclei. Since strongly interacting
probes such as the proton, alpha particle, or pion
are often used in these investigations, the analy-
ses of the scattering data are to varying degrees
model dependent, and the results are always sus-
ceptable to theoretical uncertainties in the appr oxi-
mations to the many body scattering theories
which must be invoked or' to errors in the exper i-
mental hadronic scattering data which are analyzed.

Encouraging results have, however, recently
been obtained by Glauber" and Ker man, McManus,
and Thaler (KMT)" analyses of intermediate
energy (-I GeV) proton elastic scattering data.
Expe rim entally, recent polarized proton elastic
scattering data at 0.8 GeV obtained with the high
resolution spectrometer (HRS) at the Clinton P.
Anderson Meson Physics Facility (LAMPF) of the
Los Alamos Scientific Laboratory have been of
superb statistical quality. " " Great care has been
devoted to the precise det'e r m inatio n of the ab-
solute scattering angle and the overall nor mal iz a-
tion of the data. " These data together with the
earlier 1 GeV unpolarized proton scattering re-
sults from Sac lay" "and Gatchina" have per-
mitted studies of neutron distributions to be car-
ried out in many nuclei ranging from "C to
208Pb is,20,2 i Many theoretical and nume rjcal
efforts have been performed which carefully in-
vestigate the importance of spin dependence, "'
target nucleon correlation corrections, ""'
electromagnetic and relativistic correction.
var ious improvements to the usual "impulse ap-
proximation, ""and the degree to which model
dependenc e is im por tant in the analysis ."
Studies have also been made of the various sources
of theoretical and experimental uncertainties
which contribute to the total error in the deduced
neutron densities obtained from these Glauber or
KMT analyses. " The results of these experi-
mental and theoretical efforts are deduced neutron
density distributions and r ms radii which are
generally in favorable agreement with Hartree-
Fock' ' and the density matrix expansion (DME)'
predictions. Furthermore, the deduced densities
obtained from Glaube r and KMT analyses of the
0.8 and 1.0 GeV proton data are all in good agree-
ment with each other in most cas es ."" Absolute

tests of the accuracy of the approxim ate m ultiple
scattering formulation as applied in these analyses
are somewhat lacking, however . Energy depen-
dent calculations of the total and total reaction
cross se ctions using the second order KMT optical
potential" have demonstrated that no gross, lowest
order problems exist with this analytical method
far proton energies greater than 400 MeV. This,
together with the good agreement obtained between
the deduced neutron densities and Hartree -Fock
predictions suggest that these empirically deduced
densities can be usefully compared to the results
of the semiphenomenological method of Refs. 7
and 8 ~

In Sec. II a brief outline of the s em iphenomeno-
logical technique of Ref s. 7 and 8 for generating
proton and neutron densities will be given as well
as specifying the one nucleon transfer information
used in the calculations for the nuclei considered
here. The computed neutron dens ities for 4O "Ca,

Ni, '"'" Sn, and ' ' Pb will also be compared
to the predictions of the density matrix expansion
(DME)' "code of Negele in this section. In Sec.
III a brief summary of the second order KMT
optical potential method for computing proton-
nucleus elastic scattering will be given. In Sec.
IV the elastic cross sections and the radial den-
s ity distributions and moments resulting from
the calculations of Sec. II will be compared to the
experimental data and the empirically deduced
densities. General trends, significant agreements,
and some notable disagreements between these
various density models will be discussed. Rela-
tive isotopic ne utr on density differences will be
studied here also. Finally in Sec. V a. summary
and some conclusions will be offered.

II. SEMIPHENOMENOLOGICAL COMPUTATION OF THE
ONE-BODY DENSITIES

The method of generating nuclear densities by
summing the squares of s ingle particle wave func-
tions has been described in detail in Ref. 7 and so
will only be summarized here. The calculation
begins by evaluating the single particle eigenstates
of the Woods -Saxon potential

V(r) = V~f, (r) + V~(h/—m, c)' —
d
—f,(r)L v + Vc(r),

where (for proton states only) Uc(r) is the Coulomb
potential corresponding to a uniform sphere of
charge of radius 1.1A"' fm and

f, ,(r) =(I + exp[(r -8, ', )/a, ',])
with R, = 1.1A"', g, =0.65 fm, Ri =Rp or R and

Qi Qp or Q for pr otons or neutrons . The we l1



20 NEUTRON DENSITIES AND THE SINGLE PARTICLE. . . 2405

depth V~ is adjusted to reproduce the empirical
single particle energies given by'8 (for both pro-
tons and neutrons)

where E~,. and S,. are the average binding energies
and the summed spectroscopic factors obtained
from one nucleon transfer reactions. The spin-
orbit potential strength is adjusted to reproduce
the spin-orbit splitting if known and is assumed
to be 7 MeV otherwise. The single particle eigen-
states of the potential in Eq. (1) which have the
same (le) quantum numbers but correspond to
different well depths, V~, are nonorthogonal.
Nonlocality corrections, introduced to minimize
this nonorthogonality, are parametrized by the
nonlocality length P and have been included either
by the method of Percy" or by the very similar
prescription of Fiedeldey. " The resulting nonlocal
single particle wave functions are still nonortho-
gonal. Following the Gram-Schmidt procedure'
these nonorthogonal wave functions are expanded
in an orthonormal basis (p j. The occupation
numbers of the nonorthogonal states, denoted by

(n„),are assumed to be equal to 1 for the deep
levels" and are taken to be ((2g+ 1) '(7))) (or
((2J+1) '(v))), where (m) ((v)) are the proton
(neutron) shell occupation numbers obtained from
spectroscopic factors in the case of the higher
levels near the Fermi surface. By making special
assumptions about the occupation numbers' one
obtains a simple expression for the one-body
nuclear density. This expression is'

p(r) = g(p. )f dr')r„(r'))'g(r, r')Ir", (4)

where (ng and y (r) are the occupation numbers
and radial parts of the orthonormal basis functions,

(Pg, and g(r, r ) is given by

"model independent" charge densities is well
documented. " Equations (1)-(6) are similarly
but separately used in the calculation of the proton
and neutron densities.

The numerical details necessary in computing
the nuclear charge densities are discussed in
Refs. 7 and 8. The parameters-which can be
varied to fit the empirical charge densities are
(1) the proton binding potential radius A~, (2) the
potential surface diffuseness a~, (2) the nonlocal-
ity parameter )6~, (4) the binding energies of the
deep lying proton single particle levels; and (5)
the occupation numbers of the highest proton or-
bitals near the Fermi surface. The range of
variation of these last two quantities is limited
by experimental data. The parameters which
most affect the computed charge density are the
potential radius and diffuseness and the occupa-
tion numbers of the highest single particle levels.
By varying these parameters the "model indepen-
dent" charge densities of ~' "Ca, "Ni, and' 'Pb" ' were fit as discussed in Refs. 7 and 8.
Owing to the lack of availability of "model inde-
pendent" charge densities for "Ni, '"Sn, and
"'Sn, the theoretical charge densities for these
nuclei were computed by assuming average param-
eters taken from nearby nuclei (from "Ni in the
case of "Ni) and the results from systematic
studies of the variation of the best fit parameters
through the periodic table. " The empirical rms
charge radii for these nuclei34 were fit by adjust-
ing parameters. The nuclear charge densities
were computed by taking into account the finite
proton and neutron charge distributions, the
relativistic Darwin-Foldy term' and the center-
of-mass correction" using Eq. (6) and the param-
eters given in Table I. Corrections for the spin-
orbit contribution' to the nuclear charge density
arising from the magnetic moment of the nucleon

g)», r') = (4») ' f dQg(
)
r —r' )*),

where

h(x') =Q d, v '"a, 'exp(-x'/a„'),

(5)

(6)

TABLE I. Proton and neutron charge distribution pa-
rameters. The parameters of Eq. (6) (see text) used to
evaluate the nuclear charge density. For protons, di 2 3
=0.506, 0.328, 0.166, respectively. For neutrons, di,
Q, ~, and a2 equal 1.0, -1.0, 0.685, and 0.799 fm, re
spectively. The values of ai 2 3 vary with mass owing to
the centermf-mass correction (see Ref. 7).

which accounts for the finite nucleon size. ' For
point density distributions, g(r, r ) is proportional
to 6(r —r') The abov. e expressions are valid for
spherically symmetric densities only. The sum
in Eq. (4) includes all single particle orbitals
which have a nonzero occupation probability.
The simple expression for the density in Eq. (4)
depends crucially on the assumptions about the
single particle occupation numbers discussed in
Ref. V. The success of Eqs. (1)-(6) in reproducing

Nucleus

4'Ca
48ca
58Ni

64Ni

ii6Sn
i24Sn
208pb

ai
(fm)

0.593
0.609
0.618
0.618
0.657
0.657
0.657

(fm)

0.244
0.279
0.299
0.299
0.374
0.374
0.374

1.203
1.210
1.215
1.215
1.235
1.235
1.235
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were also included. The spurious center-of-mass
motion" was removed from all of the computed
densities by the harmonic oscillator prescription"
with the oscillator length parameters being fixed
to yield the experimental rms radii.

A similar procedure has been followed in com-
puting the neutron density distributions. In all
the calculations presented here the neutron poten-
tial diffuseness and the neutron nonlocality param-
eter are assumed to be equal to those of the pro-
tons. The single particle binding energies and
occupation numbers are determined by the average
of the available experimental results. """ Thus
the only parameter which has been allowed to
vary in these neutron density calculations is the
neutron binding potential radius, 8„,which has
been adjusted for each nucleus to yield two values
of ar„~=(r„')'~'—(r ~')'~' which span the correspond-
ing range of values given by Hartree-Fock' ' and
DME ' predictions and analyses of proton-
nucleus elastic scattering near 1 GeV.""

The pertinent single particle energies, spectro-
scopic information and the local binding potential
well depths, V~, are given in Tables II-VIII for
4o48Ca 6 Ni ~ 8 Sn, and 2 8Pb, respectively,
for both protons and neutrons. The references
which provide these experimental quantities are
also given in each table.

In Fig. 1 the sensitivity of hx„~for "Ca to the
neutron potential diffuseness, nonlocality, binding
energies, and the 2P3 /2 occupation number is dis-
played. As can be seen in this figure, reasonable
variations in any of these parameters produce less
than 0.1 fm change in b,r„~which is comparable to
the magnitude of the uncertainty in the theoretical' '
and "experimental" values. "" Thus, the princi-
pal parameter affecting the computed neutron den-
sities is the binding potential radius, R„,and
therefore for now will be the only parameter which
is adjusted to yield comparisons with the empiri-

cal densities.
It is of considerable interest to compare the

neutron densities computed by this semiphenomeno-
logical method. to the predictions of the density
matrix expansion code of Negele "with respect
to the reproduction of interior quantum fluctua-
tions and general surface and tail geometries.
These comparisons are presented in Figs. 2-8 for' "Ca ""Ni '"' 'Sn, and '"Pb, respectively.
The DME predictions are indicated by the solid
curves, while the neutron densities computed
here are shown by the dashed (for the smaller
values of hx„,) and the dash-dot curves (for the
larger &r„~). The densities shown correspond to
point neutron density distributions. Note that each
density has been increased by a factor of 10 in the
tail region for clarity. With the exception of "'Sn,
the densities computed here reproduce the general
shapes and bracket the DME predictions. The
DME calculation for "Sn assumes that the 3s, /,
single particle level is completely filled, whereas
in the present calculation, this level is presumed
to be empty. This difference in the assumed
population of the 3sz/2 single particle level fully
accounts for the qualitative difference between the
density fluctuations in the nuclear interior of these
two calculations. DME predictions which assume
no 3s«, occupation qualitatively reproduce the
dashed and dash-dot curves in Fig. 7 to the same
degree as that displayed in Fig. 6 for '"Sn. From
Figs. 2-8 one can also see that, in general, the
surface thickness of the semiphenomenological
neutron densities are slightly smaller than those
of the DME method. Overall the semiphenomeno-
logical densities computed here reproduce the
interior fluctuations and surface geometries of
the DME predictions remarkably well, especially
when one considers that no attempt has been
made to fit these DME distributions other than to
obtain reasonable values of hr„,by variation of A„.

TABLE H. Single particle states in Ca. All energies are in Me7 and are relative to the ground state of Ca. Ex-
perimental values are from Refs. 35-49.

Shell
level

Pickup
Egg Sg

Proton states
V, 2P) (~, ~'p)

@Bj

Particle T&

&as Ss

Neutron
states

@s/2
1'/2
1ds/2

S/2
lds/2
1pg/2
1ps/2
1s~/2

13.19
2.82
8.33

10.94
16+ 1

0.16
0.58
3.70

-'' 1.75
6

8.5 +2
12 +1
16 ~2
31.5+ 3.5
36 +3
48.5 ~ 5

10.9 + 0.7
14.4+ 0.3
19.0 + 1.1
35 +1
35 +1
59 +3

-0.70
1.08

-1.02

3.76
7.36
0.32

-0.13
1.21
7.59

12+ 1
19 + 2
31.5
36+ 3
48.5

55.0 0.15
50.3 0.56
52.7 3.59
57.4 1.70
60.4 6
66.7 2
68.3 4
71.4 2

5.93 0.15
8.93 0.56

15.63 3.59
18.19 1.70
22.4 6
26.6 2
46.48 4
67.57 2
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TABLE III. Single particle states in Ca. All energies are in MeV and are relative to the ground state of 4 Ca. Fx-
perimental values are from Refs. 38, 41, 43, 46, 48, and 50-53.

SheQ
level

Pickup
Egi Si

Proton states
(P, 2P) Particle T&

EB1 +B2 S2

Particle T&

E~s S,

Neutron
states

P3/2

1'/2
1cE3 /2

2si /2

1d5/2

1Pi /2

1P3/2
1si /2

16.17
16.45
21.5 + 1

3.88
1.79
4.34

35+ 10
35 +10
55+ 10

6.08
9.62

3.96 -1.83
8

0 44 5.30
9.62

16.17
16.45
23.5
35 +10
35+ 10
55 +10

59.0 0.2
57.8 0.3
59.5 3.9
59.4 1.6
62.1 6
70.9 2
72.6 4
80.1 2

5.25 0.5
10.11 7.5
13.04 4
13.08 2
21.96 6
33.5 2
37.8 4
53.3 2

III. COMPUTATION OF THE PROTON-NUCLEUS ELASTIC
SCATTERING CROSS SECTION

The technique used here to compute the proton-
nucleus elastic scattering cross sections is the
optical potential approach presented by Kerman,
McManus, and Thaler (KMT)." The explicit form
of the KMT optical potential to second order in
the density is given in ihe appendix of Ref. 60,
which makes use of the closure approximation.
The explicit details which enable this. second
order optical potential to be numerically evalua-
ted are given in Ref. 20 which discusses the
impulse approximation and other simplifications
needed to render the first and second order terms
tractable. The necessary ingredients in these
second order calculations are; (1) the free spin-
dependent proton-nucleon scattering amplitudes,
(2} the one-body proton and neutron point density

. distributions of the target nucleus ground state
(computed in the previous section), and (3) target
nucleon correlation functions. A complete dis-
cussion of the s catter ing formalis ms and approxi-

mations used in analyzing proton-nucleus elastic
scattering data near 1 GeV is given for example
in Refs. 18, 20, and 21, and so will not be covered
in detail here.

The full expression for the proton-nucleon scat-
tering amplitude, t(q), contains five independent
terms. " For the even-even nuclei considered
here the double spin-flip components of t(q)" do
not contribute to the first order optical potential.
Therefore, the full expression for t(q} can be
simplified to

t„(q')=t,', (q') +it,', (q')(o, +v,.) n,

where n =(k, xkq)/~k, xkz~ and j refers either 'to

target protons or neutrons. As is customary at
energies near 1 GeV, these &-N amplitudes will
be parametrized as'

t', , (q') = (ik,o„/4v)(1—ia „)epx(-B„.q'), .

t~q(q') =(ik08~)/4s)(l —ta,~q)(q'/4+P)'"

x exp(-B,»q'),

TABLE IV. Single particle states in Ni. All energies, in MeV, are relative to the ground state of 5 Ni. The errors
for the energies of the ident and the deeper proton shells come from Ref. 40. The centroid of the ld states is E&
= 19.4 + 3.1. Since -20% uncertainties affect the measured spectroscopic factors, any value for the 2p3/2 occupation
number between 0 and 1.5 is probably consistent with the data of the first line in the table. We assume that the 2si/2
and the deeper shells are completely filled. Further experimental data are given in Hefs. 40, 54, and 55.

Shell
level @Bi

Hole
Proton states
Particle T&

Ea2
Particle T&

S3

Neutron
states

2P3/2 9.84
1f~/2 8.72

2si/2 11.16
lggt 14 + 2

1ds/2 23 + 5

1Pi/2 38 + 5

1P3/2 42 + 7

1si/2 57 + 7

0.25
7.37
1 31

2.56
1.79

2.42
0.66

-0.48
-2.94

0.46
0.42

2.69
7.60

11.16
14+ 2
23~5
38+ 5
42+ 7
57~7

56.1
54.6
53.3
61.2
61.2
71.8
71.8
79.6

1.33
6.67
2
4
6
2

2

8.54

17.56
17.84
22.6
28.2
30.7
37.9

2
. 8

2

6
2
4
2
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TABLE V. Sizgle particle states in Ni. AG energies
are in MeV and are relative to the ground state of 64Ni.

The experimental data used here are from Refs. 10 and
56.

TABLE VII. Single particle states in 124Sn. All ener-
gies are in MeV and are relative to the ground state of

4Sn. The experimental data for 4Sn are from Refs. 10
and 58.

Shell
level

Proton states
8 V

Neutron states
E (v)

Shell
level

Proton states
E V (x)

Neutron states
E (v)

lfs/2
2P3/2
lfz/2
ld3/~

2Si /2

lds/2
lpga/2

lp3/

2.69
7.60

14.0
11.16
23.0
38.0
42.0
57.0

54.4
55.0
56.7
52.9
62.6
71.6
73.8
80.6

0.25
7.75
4
2
6
2

2

7.54
9.57

14.26
22.96
23.41
30.8
44.5
48.7
66.3

8

2
6

2

where k, is the nucleon momentum in the two
nucleon center-of-momentum system and M is the
nucleon mass. These two amplitudes give rise
to the central and spin-orbit parts of the proton-
nucleus optical potential as shown in Ref. 62. The
values of the parameters of t~»(q') which reproduce
+-N data at 800 MeV are given in Ref. 20. The
present aggregate of N-N data at energies near
1 GeV is insufficient to enable a unique determina-
tion of the parameters of t~/(q') to be found so that
these spin-dependent quantities must be determined
by empirical fits to the proton-nucleus elastic
analyzing power data, the values of which are
given in Ref. 20 for the nuclei of interest here.
These same spin-dependent parameters will be
used in the calculations presented in the next sec-
tion and good fits to the proton-nucleus analyzing
power data are obtained.

1h«/
2d3/2

2ds/
lgz/2
1gs/2
2pi/2
2P3/2

lfs/2
lfz/2
2Sg /2

ld3/2
lds/2
1Pi/2

1 3/2
1st/2

14.4
15.1
17.5
19.8
27.7
33.1
36.2
41.0
51.0
53.4
69.0

61.0
61.6
62.8
64.1
67.9
71.2
72.8
75.2
80.8
81.9
92.8

10

4
6
8
2
4
6
2

2

8.0
8.58

10.8
9.97

17.0
19.7
22.1
22.7
30.5
37.5
39.2
44.0
54.6
56.8
71.9

6.63
2.87
5.81
7.18
9.92
1.99
3.98
5.97
8
2

6
2

2

The specific form of the second order KMT
optical potential used here is identical to that
computed in Ref. 20 in which the second order
term is proportional to a six dimensional integral
over the coordinates of two target nucleons. This
integral consists of the product of two nucleon-

Shell
level

Proton states
Vg (r)

Neutron states

TABLE VIII. Single particle states in Pb. AII ener-
gies are in MeV and are relative to the ground state of

Pb. The experimental data used for Pb are from
Refs. 10 and 59.

Shell
level

Proton states
E V, (~)

Neutron states
E &v)

2d3 /2

2ds/2

lgz/2
lgo/2
2~i/2

P3/2
1fs/
lfz/2
2Si /2

1d3/2
lds/2
lpga/2

1P3/2
1Sf/2

11.05
11.79
l3.21
14.26
21.94
27.2
30.0
35.2
45.1
47.6
58.3

60.4
60.6
60.6
60.6
64.1
66.9
66.2
70.9
76.1
77.4
83.0

10
2

6
8
2

6
2

2

8.92
11.2
10.3
17.9
20.9
23.4
24.0
32.1
39.6
41.2
46.2
57.5
59.8
72.1

1.31
5.45
5.96
9.88
1.98
3.97
5.96

. 7.97
2
4
6
2

2

TABLE VI. Single particle states in Sn. All ener-
gies are in MeV and are relative to the ground state of
~~GSn. The experimental information used for this nu-
cleus are from Refs. 10 and 57.

3A/2
2fs/2
3P3!2

13/2

lhs/2
2fz/2

3~& /2

2d3/2

1$(/
2ds /2

lgz/2
lg9/~

2'/2
2P3/2
lfs/2
lfz/2
2Sf /2

0/2
lds /p

lpga/2

lp3/2
ling /2

3.77
2.87
8.03
8.38
9.37
9.70

11.43
15.43
20.0
21.8
26.1
31.9
34.1
38.3
41.7
48.7
50.3
57.0

61.3
61.9
62.6
62.0
60.6
61.5
61.3
60.5
66.6
67.6
69.7
72.6
72.1
76.9
76.9
81.3
82.0
85.5

0.25
0.20
1.55

12
6
8

10
2
4
6
8
2

6
2
4
2

7.38
7.95
8.27
9.01

10.85
9.72

18.5
19.0
19.6
22.1
23.3
31.3
33.3
35.2
37.3
42.7

.48.3
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nucleon t matrices and a two-body correlation
function, C,(r„r,). This two-body correlation
function thus contains all of the complex nuclear
dynamics inherent in the full two body nuclear
wave function. Many studies""""" have de-
termined that the most important nuclear correla-
tions to be considered here are those due to the
Pauli principle and to the short range nucleon-
nueleon repuls ive interaction. Following Boridy
and Feshbach'4 C,(r„r,) is thus approximated
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FIG. 2. Semiphenomenological point neutron density
distributions in 4 Ca (dashed and dash-dot curves)
compared with the predictions of the density matrix
expansion code of Negele (Hefs. 2, 28) (solid curves).
Note the two values of Ay„& assumed here. The den-
sities in the tail region have been increased by a factor
of 10 for clarity.
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For a noninteractirig Fermi gas the Pauli correla-
tion function for a nucleus with g nucleons is'4

f ..h(«) = -g(~ —4)/(&- &)Kj,(& «)/(&r«)l', (&0)

where k~ is the local Fermi momentum, here
assumed to be position dependent. " The short
range dynamical (SRD) correlation is assumed to
be24

fsRD(«) =-exp(-« /5 )

with 5 =0.4 fm.
By making the local density approximation and

various short range and large nucleus assumptions
as completely discussed in Ref. 20, local -p' ex-
pressions for the second order KMT optical poten-
tial are obtained. These second order terms are
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proportional to i{tpo,(0)}'p'(r)/„where &, is a length
which is characteristic of the correlation range
(i.e. , )tp ' or 5=0.4 fm). The center-of-mass cor-
relation correction has been estimated by the
method of Chaumeaux, I,ayly, and Schaeffer. "
Finally, the Pauli correlation correction to the
spin-orbit part of the optical potential has been
included here as given explicitly in Ref. 20. These
-p' forms for the second order optical- potential
terms have been shown to be capable of adequately
reproducing the less approximate coupled-chan-
nels calculations of Boridy and Feshbach" in
which similar correlation effects are considered.

Thus the final, complete optical potential used
in the calculations reported here is

U(t+2)oPt (p. ) U(l)(+) + U(2) oPt (+) + U(2,poP (+)

+ U(&) oPt
(&) + U(&) opt

(&)

(12)

where U(')(r) is the usual first order, spin-de-
pendent KMT optical potential given in detail in
Ref. 63 and Uc,„t(r)is the Coulomb potential for
for an extended nuclear charge density, pc„(r).
The first three second order optical potential

terms follow from the three terms of Eq. (9) and
each second order term is given in detail in Ref.
20. The full potential, U "')'"(p) is then inserted
into the Schrodinger equation with relativistic
kinematics"" from which the proton-nucleus
scattering amplitude is obtained. .

Thus the point proton and neutron densities
computed in Sec. II can be used to yield proton-
nucleus elastic scattering cross sections. When
analyzing polarized proton-nucleus elastic scat-
tering data with Eq. (12) the proton densities are
determined from empirical charge densities ac-
cording to Bertozzi et al. ' and Ref. 20, while the
spin dependent N ~ parameters of Eq. (8) and the
point neutron density distributions are determined
by simultaneous fits to the proton-nucleus cross
section and analyzing power data.

Error analyses are given in Refs. 20 and 22 for
the nuclei considered here and the densities com-
puted in Sec. II will be compared to these uncer-
tainty bands in the next section. It should be
emphasized both here and below that the widths
of these error envelopes correspond only to
statistical and model dependent errors and do not
include the very many systematic sources of un-
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certainty" which also affect the deduced neutron
density distributions. The effects of these sys-
tematic errors have been given in Ref. 22 and if
included in the error bands of Refs. 20, 22 and in
Sec. IV below would broaden the total uncertainty
envelopes in the nuclear surface region to about
+0.003 neutrons/fm', typically, but would not
greatly enlarge the already wide bands in the
nuclear interior.

IO'
I I I I I I I I I I I I I I

IO4

IO"

IV. COMPARISON OF THE COMPUTED AND THE
"EMPIRICAL" NEUTRON DENSITIES

Using the methods of Sec. III, the proton-
nucleus elastic scattering cross sections at 800
MeV which result from the proton and neutron point
densities of Sec. II have been computed for '"Ca,"~Ni " "Sn and ' 'Pb. The angular distri-
butions are shown in Figs. 9—11 along with the
experimental data obtained with the high resolu-
tion spectrometer (HRS) at LAMPF. " " The as-
sumed values of hx„~are shown for each nucleus
in the appropriate figure where the cross sections
which result from smaller neutron radii are
shown as solid curves, while the calculations with
the larger neutron radii are displayed by the
dashed curves.
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The overall slopes of the diffractive patterns,
the positions of the maxima and minima, and the
general diffractive structure of the computed cross
sections are seen in Figs. 9 and 10 to be in very
good agreement with the calcium and nickel data.
The failure of the calculated cross section to re-
produce the forward angle (& 7', ) data of p+4'Ca
has recently been attributed to experimental
problems. " Qn the other hand, the failure of the
computed angular distribution in the back angle
region ( 20', ) for "Ni is genuine, but similar dis-
crepancies appear in empirical fits to this same
data. " The significant result of these comparisons
is that no serious deterioration in the fit quality
occurs when the neutron number is increased by
8 and 6 in the calcium and nickel isotopes, re-
spectively. One might naively expect that the neu-
tron excess would alter the nuclear surface geo-
metry in the neutron rich isotopes of calcium and
nickel in such a way that a simple variation of the
neutron binding potential radii could not account
for. The results in Figs. 9 and 10 suggest that
the method of Sec. II should be quite applicable to
the calculation of neutron and matter densities in
these medium weight nuclei from & =40 to 64.

The angular distributions for proton elastic
scattering from '" "'Sn and "'Pb are shown in

Fig. 11. Although the positions of the diffractive
maxima and minima and the general shapes of the
diffractive structure are in good agreement with
the data, the overall slope of the diffractive pat-
tern is too shallow in comparison with the data.
By this it is meant that the ratios of successive
maxima in the computed angular distributions are
too small. Such a discrepancy is indicative of the
smallness of the diffuseness of the computed mat-
ter density. From these three examples one can
see that the calculational method of Sec. II predicts
too small a value for the neutron surface thickness
for neutron rich nuclei and indicates that both the
neutron binding potential diffuseness as well as
the .potential radius should be freely varied when

fitting matter densities in heavy nuclei with A.
~ 100.

The computed densities of Sec. II are compared
with the empirically deduced neutron density
envelopes of Refs. 20 and 22 in Figs. 12-15 as
explained in the previous section. The reader
should recall that these empirical error envelopes
include statistical and model dependence uncer-
tainties only. The densities computed by assuming
the smaller values of hr„~are indicated in Figs.
12—15 by the dashed curves, while those which
correspond to the larger values of 6r„~are dis-
played by the dash-dot curves. The shaded re-
gions indicate the empirically deduced results.
The general, qualitative agreement is fairly good.
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FIG. 12. Neutron density distributions for ' Ca and

the isotopic neutron density difference computed as des-
cribed in the text. The shaded bands indicate the em-
pirically deduced densities of Ref. 20, while the dashed
and dash-dot curves represent the semiphenomenologi-
cal results from Sec. H of the text in which the smaller
and larger values of b w„& given in the previous figures
are assumed, respectively. Note the generally good
agreement displayed in the lower half of the figure.

6 7

Notice that, as was the case with the angular dis-
tributions, no serious deterioration in agreement
occurs when comparing the results for two isotopes
as the neutron number is increased. Because of
this the is-otopic neutron density difference should
be reliably computed by the techniques of Sec. II
and Refs. 7 and 8, where a simple variation of the
neutron binding potential radius alone should suf-
fice.
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Probably the most reliable empirical informa-
tion presently available for neutron densities are
the isotopic differences. " Relative differences
between the neutron densities of isotopes should be
more accurately determined than the absolute densit-
ies themselves since most of the serious experimen-
tal and theoretical uncertainties cancel when comput-
ing the former. " Such empirical isotopic differences
have been computed for"*"Ca, ""Ni, and'"'"'Sn in
Ref. 20 and the results are shown by the shaded bands
in the lower halves of Figs. 12-14. The widths of
the envelopes are due to statistical and model
dependence errors and to the uncertainties in the
empirical proton distributions for both isotopes. "
The dashed (dash-dot) curves result from subtract-
ing the computed neutron densities with the smaller
(larger) b,r„~in the lighter isotopes from the den-
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FIG. 14. Same as Fig. 12, except for '. Sn. Note
the qualitatively good agreement between the computed
and the empirical isotopic neutron density difference
in the lower part of the figure.
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sities with the smaller (larger) sr„in the heavier
isotopes. The general agreement of the empirical
bands with the theoretical curves in Figs. 12-14
is very good. The excess neutron surface "bump"
is reproduced quite well by the calculations of
Sec. II. The above discussion and the results in
Figs. 12-14 suggest that in future work, one
should test the compatibility of the single neutron
transfer data with these empirically deduced neu-
tron isotopic differences rather than the absolute
densities themselves.

Finally, the moments of the computed neutron
densities are compared with those of the DME
predictions and the empirically deduced results.
The kth moment of a spherically symmetric neu-
tron density is defined to be

oo iyk
r' —= — p„(r)r'4vr'dr

N

These moinents have been computed for values of
4 from —2 to 6. The moments of the densities of
Sec. II and the DME densities for each nuclei are
shown in Figs. 16-22 relative to the mean values
of the moments of the empirical densities. The
solid curves indicate the DME result and the
dashed (dash-dot) curves display the moments of
the semiphenomenological densities in which the
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smaller (larger) values of br„,are assumed. The
total width of the- shaded region in each figure in-
dicates twice the uncertainty in the moments of
the empirical densities due to statistical and mo-
del dependence errors only.

For each case in Figs. 16-22, except "Sn the
moments of the densities of Sec. II display the
same overall trend as do the DME density mo-
ments. Furthermore, it is seen that scaling the
neutron binding potential radius shifts the value
of each moment for 4 =-2 to 6 of the semiphenom-
enological densities by an approximately uniform
amount. In fact one could fit the DME m'oment dis-
tribution in this range fairly well simply by ad-

justingg

the neutron binding potential radius.
Carrying out such a fitting procedure should im-
prove the comparisons shown in Figs. 2-8 some-
what. In comparison with the moments of the
empirical densities the theoretical densities tend
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FIG. 16. Neutron density moments for 4 Ca as defined
in Eq. (13) of the text. The moments of the densities
of Sec. H of the text are indicated by the dashed and dash-
dot curves, while the DME prediction is given by the
solid line. The shaded band indicates the empirical re-
sult. The numerical values shown here correspond to
differences between the moments of the theoretical den-
sities and the mean value of the moments of the empiri-
cally deduced densities {see text).
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to have larger values for the lower moments,
while the higher moments are somewhat too small.
This tendency can be understood directly from the
radial distributions by observing in Figs. 12-15
that in the tail region, the theoretical densities
are depleted in relation to the empirically deduced
distributions. Notice of course that these differ-
ences in moments are only of the order of 0.1 to
0.2 fm with respect to the moments themselves
which vary from about 3 to 6 fm.

For the case of "'Sn a DME calculation in which
no filling of the Ss„,single particle level is as-
sumed produces a neutron densify moment depen-
dence similar in shape to those of the semiphenom-
enological densities indicated by the dashed and

FIG. 21. Same as Fig. 16, except for 4Sn.

dash-dot curves in Fig. 21. This new DME neu-
tron density has an rms radius which is 0.015 fm
smaller than the empirical value. This sensitive
behavior of the density moment decomposition to
the details of the occupation probabilities of the
last few single particle levels indicates the value
of this particular method of comparing various
theoretical and experimental densities.

V. CONCLUSIONS

In this work the semiphenomenological method
of Refs. 7 and 8 for computing nuclear charge
densities has utilized experimental binding energy
and spectroscopic information obtained from
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single neutron transfer reactions to extend the
previous calculations to include both the proton
and neutron one body densities. These are gen-'
erated by summing the squares of single particle
wave functions with proper attention being given
to nonorthogonality problems and center-of-mass
corrections. This method of phenomenologically
relating the single proton transfer data to the
high quality empirical charge distributions of
nuclei, as determined by electron scattering and
muoni. c atom data, has proven to be quite success-
ul fOr 16Q 39K 40,48Ca 58Ni 90@r and 208Pb 7,8&10

These same techniques have been used to gener-
ate neutron distributions for a number of nuclei
which have been studied with the recently developed
800 Me& polarized proton beam at LAMPF 13-16

These theoretical neutron densities have been
compared to those empirically deduced from sec-
ond order KMT analyses" of these new high quality
proton data. In general the resulting proton-nu-
cleus cross sections and the neutron density dis-
tributions arid moments are in good agreement
with the eleastic scattering -data and with both
the empirically deduced densities and those of
the density matrix expansion formalism. '"" It has
also been shown that the isotopic neutron density
differences computed in Sec. II and as deduced
from proton-nucleus data are in very good agree-
ment with one another. This particular test of
the applicability of these semiphenomenological
densities is significant since isotopic differences
are believed to be the most reliably determined
quantity obtained from analyses of proton-nucleus
elastic scattering at present. "' From Figs. 12-14
one sees that these differences are indeed well
defined by the above theoretical predictions. In
future studies the semiphenomenological approach
of Sec. II would be best applied to relating the
single neutron transfer data to these isotopic
neutron differences.

Systematic discrepancies between the semi-
phenomenological densities and the empirically
deduced distributions do occur, however. For'" "'Sn and "'Pb one observes in Fig. 11 that the
diffuseness of the computed densities should be
increased in order to better describe the cross
section data. In Figs. 16-22 the neutron density

moments are seen to be in slight disagreement
with the empirical results (of the order of 0.1 to
0.2 fm), the computed density moments tending to
decrease with increasing 4 relative to the empiri-
cal values.

In Figs. 2-8 and 16-22 we see that these semi-
phenomenological densities qualitatively reproduce
the interior shapes, the surface geometries, and
the density moments of the density matrix expan-
sion variant of Hartree-Fock theory. Sensitivity
to the occupation probability of the Ss,I2 single
particle level in "'Sn demonstrates the importance
of configuration mixing in these single particle
levels near the Fermi surface. The usefulness of
density moment decompositions in studying such
effects is also demonstrated here, and this method
is also seen to be a valuable means for comparing
various theoretical densities.

The success demonstrated here in this initial
attempt to connect the tremendous knowledge of
nuclear structure gained through many single
nucleon transfer reaction studies to nuclear mat-
ter density information recently gained from inter-

, mediate energy proton elastic scattering analyses
is very encouraging. Clearly, a semiphenomeno-
logical fitting calculation which tests the compat-
ability of the single neutron transfer data and the
empirically deduced neutron densities should
prove to be as rewarding as the earlier calcula-
tions of nuclear charge densities, especially if
applied to isotopic neutron differences. The use-
fulness of such a model in fitting proton-nucleus
elastic scatter ing data becomes immediately
apparent since the density model oX Hefs. 7 and 8
is much more physically grounded than other
models which are generally used, such as the
Fermi or Gaussian models. "
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