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The isobar-hole formalism for pion-nucleus interactions is applied to coherent m pnotoproduction on nuclei.
The unifying features of this approach for elastic scattering and photoproduction are discussed, and the
relationship to distorted-wave impulse appproximation calculations and the phenomenological doorway model

are examined. The results are presented for ' 0(y, m )' 0 and show a large suppression from the impulse

approximation prediction.

I

NUCLEAR REACTI0NS 0 (y, 7r ) 0 calculated in isobar-hole formalism;
comparison to DWIA.

I. INTRODUCTION

Recent analyses of pion-nucleus ela, stic scatter-
ing have led to the consensus that the first order
pion optical potential is inadequate. The precise
form of the higher order terms remains somewhat
controversial. One way to further investigate the
optical potential is to analyze other pionic rea.c-
tions, such a,s inelastic scattering, pion absorp-
tion, or pion production from nuclei. Only a. few
experiments of this type have been performed, but
several of these, if correct, indicate that we do
not understand fully the pion-nucleus reaction
mechanism.

A reaction which appears to be particularly at-
tractive for learning about the optical potential is
the coherent photoproduetion of w mesons from
nuclei. In contrast to elastic scattering, a produc-
tion reaction depends on the half-off-shell pion-
nucleus transition matrix. Furthermore, since
the photon interacts weakly with the target, the m'

mesons are produced throughout the nucl. ear vol-
ume. Therefore, in the framework of the dis-
torted-wave impulse approximation (DWIA), one
might expect to extract the pion wave function in
the nuclear interior. Saunders' analyzed the (y, m')

data of Davidson' using the D%IA with a standard
first order pion optical potential. The results for
"C are shown in Fig. 1, with the experimenta. l
cross section several times larger than that cal-
culated. One possible resolution of this discre-
pa,ney is that the optica, l potential is far too ab-
sorptive. Other possible explanations lie in more
complicated reaction mechanisms or in experimen-
ta, l difficulties.

In this note, we apply the isobar-hole formal-

ism' ' for pion-nucleus interactions to the coherent
(y, m') process. Detailed studies of m-'He and
m-' 0 elastic scattering have been performed with-
in this fra, mework. In these isoba. r-hole calcula-
tions, several dynamical a,spects of pion-nucleus
interactions are handled in an essentially exact
manner within the framework of the nuclea, r shell
model. These include, in a.ddition to the usual
pion multiple scattering, nucleon binding effects,
isobar propagation, and Pauli blocking. More
complicated mechanisms, such as pion absorption,
are treated through a physically motivated phe-
nomenology, namely, a "spreading" interaction
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FIG. 1. Coherent 7l photoproduction from C at inci-
dent photon energy E~= 250 MeV. Data from Ref. 2.
Solid curve calculated in plane wave impulse approxima-
tion. Long-dashed and dot-dash curves are DULIA cal-
culations with local and Kisslinger pion optical poten-
tials, respectively. These three curves are taken from
Saunders (Ref. 1). The short-dashed curve is the phen-
omenological isobar doorway result of Woloshyn (Ref.
9).
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for the isobar. The approach is reviewed briefly
in Sec. II. One aim in applying the formalism to
the coherent (y, m ) reaction is to obtain a quantita-
tive evaluation of the process using a more re-
fined description of the pion-nucleus interaction
than has been used previously.

'

Another aim is to
demonstrate the importance of modifying consis-
tently the production operator employed in dis-
torted-wave calculations using higher order opti-
cal potentials. Numerical results for coherent m'

photoproduction from "0are given in Sec. III.
Section IV provides a summary of our findings.

It is important to stress the differences between
the phenomenological isobar doorway approach of
Kisslinger and Wang' and the isobar-hole formal-
ism. The former, which has been applied to
elastic scattering, ' to analog state single charge
exchange, ' and to coherent m' photoproduction, ' in-
volves parametrization of the pion-nucleus transi-
tion matrix with a resonant form; the latter pro-
vides a vehicle fo a microscopic calcu1ation, with
only certain "higher order" processes, such as
absorption, treated approximately. The extent to
which the isobar doorway phenomenology' is justi-
fied by the results of the microscopic calculation
will be discussed in Secs. II and III.

II. BRIEF REVIEW OF THE ISOBAR-HOLE FORMALISM

At intermediate energies, m'& scattering is
dominated by the J= -', , T= —', resonance, leading
to a picture of intermediate excitation of the ~
isobar as indicated in Fig. 2(a). Pion-nucleus
elastic scattering then proceeds as indicated in
Fig. 2(b): The pion generates 4-nucleon hole

states and the scattering process is given by ap-
propriate matrix elements of the &-hole propaga-
tor G». (References 3 and 5 contain detailed ac-
counts of the material in this section. ) This can
be made explicit quite easily in the projection
operator formalism. We define the I' space as
containing all states consisting of the pion plus
ground state nucleus. The D space contains all
6-hole states, and the Q space consists of all
more complicated channels. Given the doorway
condition II~ ——0, the pion-nucleus elastic transi-
tion matrix is given iby

=H~afE -Ez+ —,
' &f'{E) &~.E-'Hn~,

tX,„ IIDD+ IIDD+ II

HDD =H~p(E' Hp~) H—D,

H~D =HDTV(E' Hog) H—cD .

(l)

(2)

(3)

(4)

Here II» represents the m-&-h vertex function. and
the Breit-Wigner denominator (E E„+if'/2—)
represents the free & propagator. The interaction
HDD generates the elastic width and is represented
by Fig. 3(a). The spreading interaction H~D sums
intermediate coupling to the more complicated Q
space. One example of a spreading interaction is
indicated in Fig. 3{b); this corresponds to pion
absorption, since the intermediate state is a nu-
clear 2p-2h state. The isobar-hole Hamiltonian
X» also contains a diagonal interaction II» which
includes isobar propagation and binding effects,
Pauli blocking effects, and isobar-hole residual
interactions. We can define the normalized door-
way state for the I th pion-nucleus partial wave as

(a) (a)

(b) {b)

FIG. 2. (a) Pion-nucleon interaction via 6 excitation.
(b) Pion-nucleus elastic scattering in the isobar-hole
picture.

FIG. 3. (a) Pion exchange interaction HDD. (b) Exam-
ple for spreading interaction HDD -. coupling to 2p-2h
states (pion absorption).
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D,') = A;H, (q)„0),
(5)

A'i=&(q)i «~sIfs~ (q4'0& "'
where ( (q)~;0) represents the partial wave projec-
tion of the pion plane wave (wave number q) and the
nuclear ground state (we deal only with J'T=O'0
ground states). The doorway state is a linear
superposition of 4-hole states. The pion-nucleus
partial wave transition matrix is simply the ex-
pectation value of G~ in the doorway state:

%e stress that the doorway state generally is not
an eigenstate of the Hamiltonian K~„. If it were .

an eigenstate, the partial wave transition matrix
would simply be

this form and fits the expectation value to experi-
ment. In practice, an L-independent parametriza-
tion is generally used. ' '

To make detailed comparisons with data, pion
nonresonant interactions must be included also.
These can be handled" within the two-potential
framework. However, in the absence of high
precision (y, v') data, we shall keep only the reso-
nant interaction throughout this work, thereby
gaining some simplicity in the formal expressions
and in the calculations. In the energy region of
interest here, inclusion of the nonresonant terms
would have little effect.

A convenient orthonormal basis" for evaluating
Eq. (6) can be constructed a.s follows (i= 1):

Ã "2
TDoor way I

E-E,+,' 1'-&D,'IX,„lfc&

The phenomenological doorway model' assumes

(7)
where && is a normalization factor. The transition
matrix then reads

NI
E E„+,' zf'-X'„- (X'„)'

E E, + ~ir-X'„—

Note that the leading term in the continued fraction
conforms to the phenomenological doorway pre-
scription

I Eq. (7)]. The microscopic calculations
proceed by constructing the first few states in the
doorway basis Di) and evaluating the relevant ex-
pectation values in Eq. (9). An important result
is that the continued fraction converges to very
high accuracy with retention of only a few states
in the doorway basis. " For example, the result
for T~ with only one state (i.e., the doorway) al-
ready is accurate to about 15%, while three states
give accuracies better than 1%. This rapid con-
vergence offers some justification for the phenom-
enological doorway prescription for the partial
wave amplitudes. However, it will be seen below
that the matrix elements of K~„are strongly L
dependent, so that angular distributions are far
from scaled versions of the impulse approxima-
tion. Further, it must be remarked that this rapid
convergence need not hold true for inelastic reac-
tions.

Before leaving this section, it is worthwhile to
examine the behavior of the doorway expectation
value K«, since this gives a reasonable approxi-
mation to the partial wave amplitude. In particu-
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FIG. 4. Contributions to imaginary part of Xpp
&Do I Xah I Do ) . Im e ~: elastic width due to H&D,.

Im e z.. broadening from spreading potential and 4 pro-
pagation; Im e z. Pauli quenching; Im ~ ~: nucleon bind-
ing effects. (a) L'=1' state. (b) L'= 4 state.

lar, it is interesting to look at the expectation
values of the various dynamical ingredients in X~„.
The imaginary part is shown in Fig. 4 for the nu-
clear 1' and 4 partial waves. (The spreading in-
teraction is the same as that used in Ref. 4.)
Note the considerable variation with L. For the
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1', the pion "exchange" and spreading terms, t',

and e~ respectively, dominate; the former ensures
strong collectivity for the doorway state, while the
latter greatly increases the ratio of inelastic to
elastic scattering. For the 4, the binding and
Pauli terms, e~ and e~ respectively, become com-
paratively much more important.

III. COHERENT m PHOTOPRODUCTION

The structure of the coherent m' photoproduction
amplitude in the isobar-hole formalism is clear
from Fig. 5. The isobar-hole propagator is iden-
tical to that calculated for elastic scattering [see
Fig. 2(b)], and one needs to compute only the pho-
ton coupling to the &-hole states. This feature
unifies the coherent (y, w ) and elastic scattering
calculation. Formally, we have

(10}

The coupling H» is generated by the y+& vertex,
which reads in the & rest frame

G„„,=g„C(k, x) kx ST»

where t"' is the photon polarization vector and k is
the photon wave number. The m&& spin and iso-
spin transition operators are denoted by 8 and T,
respectively. The coupling constant g„=-0. 165f
is chosen to fit the experimental M„(-,') multipole
at resonance. " Defining the isobar doorway state
for photoexcitation D„)=&~HD,

~
(k)~, 0), we have

an obvious generalization of Eq. (6):

off-shell elastic amplitude is determined by the
overlap of the photon doorway state with the door-
way states ~D~~). Comparison of Eq. (6) and (12)
makes clear the sense in which a unified treatment
of elastic scattering and inelastic reactions is
provided in the isobar-hole approach.

In Fig. 6, we show the total coherent 'O(y, v ) '0
cross section as a function of energy. Compared
to the impulse approximation, the cross section in
the resonance region is reduced by about a factor
of 7, which is comparable to the reduction obtained.
by Saunders. ' The angular distribution for inci-
dent photon energy corresponding tooutgoing pion
kinetic energy &,p = 140 MeV is shown in Fig. 7.
The same reduction factor with respect to the im-
pulse approximation is evident here. Recalling
the experimental result' mentioned in the Intro-
duction, this is in sharp disagreement with the
Davidson data for the ' C(y, n')"C reaction. This
disagreement will be addressed below.

As remarked earlier, very few doorway states
were needed to obtain the elastic transition ma, -
trix. ' ' We show in Figs. (6) and (7) the results
obtained Qy saturating the sum in Eq. (12) with
only the doorway state Do) [this is analogous to
Eq. (7)]. This is remarkably close to the full re-
sult, demonstrating again the very compact de-
scription of pion-nucleus interactions in the ~-hole
approach.

It is important to understand how the convergence
in the doorway expansion comes about. Table I

I.5—

l0—

/
/

/
/

/ l

In the isobar-hole formalism, the "new" physics
probed in the (y, w') reaction are the off-diagonal
expectation values of the ~-hole propagator. In
optical potential language, this is equivalent to the
fact that elastic scattering determines the asymp-
totic pion wave function (i.e., phase shifts), while
a, product|on reaction is sensitive to the wave func-
tion inside the nucleus. The extent to which the
(y, m') reaction is sensitive to the pion-nucleus
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FIG. 5. Coherent m' photoproduction in the isobar-
hole approach.

FIG. 6. Total coherent x photoproduction cross
section from 0: solid line shows results of full cal-
culation; short-dashed line, of the one-doorway approx-
imation calculation; and dot-dash line, of the plane
wave impulse approximation calculation. The long-
.dashed line is the result of a DWIA calculation using the
full isobar-hole pion-nucleus transition matrix; many-
body effects in the production- operator fsee Eq. (16)]
are not included. The kinetic energy of the produced
pion is denoted by T .
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and may differ markedly even for reasonable elas-
tic phase-equiva1. ent theories. Of course most of
the (y, v )'cross section comes from the semiperi-
pheral and peripheral partial waves, so that micro-
scopic theories providing equivalent descriptions
of elastic scattering will not differ greatly in pre-
dictions of the coherent (y, vo) cross section.

The marked difference in the overlap (D, D„)
for different L values can be understood (somewhat
formally) by examining the impulse approximation.
We have

4. l

IO 20 30 40 50 60 70
8(deg )

FIG. 7. Coherent O(y, m. )'60 differential cross sec-
tion for T~=140 MeV. Labeling of curves same as for
Fig. 6.

(13)

oi, g, g, It(q') L(L+ 1)(")"' n'E E +;rl2 2L+1

x [pI.„(k,q) —pl, (j'o, q)],

gives the overlap of the photon doorway state with
the A-hole state Di~) and the off-diagonal matrix
elements of the propagator (Do G~o D&~) for
i =0, . .. , 5 and L' = 1' and 4 . These quantities
determine the (y, w ) transition operator given in
Eq. (12). For the semiperipheral partial wave
L'=4, the states D~~) and ~lD„) have very good
overlap so that the partial wave contribution is
given almost entirely by the diagonal matrix ele-
ment (D,

~
G~„D,). Since the latter is determined

in elastic scattering, the (y, v') results for these
partial waves are essentially model independent
in that all reasonable theories providing the same
elastic phase shift will give the same (y, to) tran-
sition matrix element within about 10%. On the
other hand, the overlap (Do D„) is very small for
the central partial wave L = 1'. In fact, for the
central partial waves, convergence of the sum in
Eq. (12) comes primarily from the off-diagonal
matrix elements (Do~ G~„D,). Therefore, the
central partial waves are quite model dependent

(o;q' T, o;q)= ~ FE0«)T'E
E, ~o

g.'I '(q')T.=(4) E E +, ,r (2L+1),l.2'
"t.(L+1)pI. ,1(q.q)+LpI. 1(q q)) ~-

(15)

The photon and pion momenta k and q are almost
equal in the resonance region, so that the primary
difference between Eqs. (15) and (13) is the rela-
tive sign of the two moments of the nuclear density
p~, , and p~, . This is a direct reflection of the
different isobar couplings: the pion couples lon-

p~(u, q)= dr r'j~-(kr)j~(qr)p(r),
0

where the incoming photon momentum k is chosen
as the polar axis, g,h(q') describes the v&A vertex,
and p(r) is the nuclear ground state density. For
comparison, the pion elastic scattering impulse
approximation is given by

TABLE 1. Overlap of photon doorway state
l DP ) with piondoorwaybasis states lDQ&, defined

in Eq. (8), and matrix elements of the 6-h propagator for 1.'=1' and 4 and for kinetic ener-
gy T~=140 MeV.

Jff ]+
&Do'l G~hl &~'&

(GeV ) &D~lD )
&Do I G~olD, &

(GeV+)

0
1
2
3
4
5

-0.29
-0.31+0.24i

0.64+ 0.17i
-0.02+ 0.16i

0.06 —0.12i
-0.07 —0.27i

0.07+ 4.7i
2.5 —0.96i
0.15—0.87i
0.05 —0.05i

-0.06 —0.01i
0.03i

-0.91
0.07+ 0.15i
0.12+0.16i

-0.27+ 0.15i
0.24+ 0.34i
0.09+ 0.10i

6.1 + 11.0i
2.1 —.1.5i

-0.06 —0.89i
0.17 —0.21i
0.01 —0.03i

-0.02
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1

1~+ ~ jI.'-HDD -HDD
2

This is very similar to the DULIA form, with the

quantity in parentheses generating the pion dis-
torted wave in the optical potential and that in

curly brackets describing m' production through the

isobar. However, a very important difference is
that the production operator contains the doorway

space interactions HDD and HDD, corresponding to

a, production operator modified by the nuclear me-

dium. These can be understood as multistep con-

tributions in the conventional distorted-wave ap-

proach and are connected directly to the elastic
scattering spreading interaction in the isobar for-
malism. Consistent treatment of the production

operator and of the distorted wave is very impor-

tant. This can be seen by replacing the production

operator in Eq. (16) by the free y+N- mo+N

transition operator. This corresponds to the

DWIA approach with the distortion effected by the

PL

10

0 I 2 5 4 5

FIG. 8. Moments of the nuclear density p&(q, q) [see
Eq. (14)] in arbitrary units for several pion kinetic en-
ergies T~.

gitudinally, q S, while the photon couples trans-
versely, i &&4 5. Figure 6 shows p~(q, q) as a
function of I- and pion kinetic energy. For small
L and high energy, pl„=p~„so that the overlap
(fc ~g) is very small, For ialgel L'q pl-g&& pz+gq

so that the two (normalized) doorway states are
virtuaBy identical. This is the origin of the be-
havior demonstrated in Table I.

It is interesting to compare the expression for
~' in the isobar-hole approach with that in a more
conventional calculation using pion distorted waves.
Using Eqs. (1)-(3) and (10), the photoproduction
opei. ator can be written as

full optical potential including, for example, the
spreading interaction. These DVfIA results are
also shown in Figs. 6 and V. Clearly, the spread-
ing interaction in the production operator sup-
presses the calculated cross section considerably.
It is important to stress that a DWIA calculation
using the first order pion optical potential gives
results quite similar to those obtained in the full
isobar -hole calculation. The interpretation of
these results is clear. The full pion optical po-
tential leads to considerably less attenuation of
the pion wave function than does the first order
optical potential; this accounts for the substantial
increase of the DWIA cross section when the fuB
distortion is used. This increase is compensated
largely by reduction of the cross section owing to
the modified production operator in Eq. (16).
Consequently„one sees the importance of a con-
sistent treatment of the production operator and of
the distorting optical potential for the pion wave
function.

This leaves for discussion the Davidson result
that the "C(y, m')"C cross section is almost equal
to the impulse approximation result (see Fig. 1).
In light of our results above, we strongly urge
that the experiment be repeated. The Davidson
experiment had extremely poor energy resolution:
The photon detectors had energy resolution +12%
and +20/o and a bremsstrahlung beam was used.
The main argument used to support the coherence
of the measured m' spectrum was the angular de-
pendence. However, the cross section Bt large
angles failed to show the expected diffraction
structure, indicating that at least some of the
cross section was incoherent. Of course, in the
extreme that a totally inclusive reaction is mea-
sured, and excluding true pion absorption and
charge exchange, the nuclear cross section would
be large and approximately equal to the y+N- n'
+& cross section times the number of nucleons.
We do not mean to imply that this is sufficient to
explain the discrepancy; indeed the data appear to
be too high even for an incoherent process with
pion absorption and charge exchange included.

One last topic of discussion involves application
of the phenomenological isobar doorway model' to
coherent m' photoproduction. This has been done
by Woloshyn. ' His results are closer to the data
than are either the results of Saunders' or the re-
sults of our mi. croscopic isobar-hole approach.
However, Woloshyn's calculation has the very
serious shortcoming (recognized by the author)
that the phenomenological widths and shifts chosen
for the nuclear amplitude [the analog to Eq. (7)
for the (y, w') reaction] are independent of I-. We
heve seen that, even in the one-doorway approxi-
mation, these should be strongly L dependent (see
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Fig. 4). Furthermore, the one-doorway approxi-
mation upon which the phenomenological form rests
is very poor for the central partial waves. One

may expect a drastically incorrect angular dis-
tribution. Indeed, Woloshyn finds a large cross
section for backward angles, more or less in
agreement with the Davidson data (see Fig. 1).
This cross section is merely the result of the ap-
proximations made and is not a success of the
Inodel. As argued above, we expect that the back-
ward angle data reflects incoherent production.

IV. CONCLUDING REMARKS

We have discussed coherent w' photoproduction in

the resonance region using the isobar-hole for-
malism. Our expression Eq. (12) is written in

terms of matrix elements of the isobar-hole pro-
pagator, which has been used previously to de-
scribe elastic pion scattering, and in terms of the

overlap between photon and pion generated doorway

states. In the more usual optical potential lan-

guage, the calculation differs from standard DWIA

calculations by including higher order terms, con-

sistently, both in the distorting optical potential

and in the production operator. The many-body

modification &D& of the production operator corre-
sponds to a summation of multistep processes in

terms of the ~ hole spreading interaction fit to
elastic scattering. "

Our isobar-hole results for "O(y, v )"0are
qualitatively similar to DWIA results using a sim-
ple first order optical potential. Both calculations

give cross sections roughly an order of magnitude

less than that given by the impulse approximation.

This rough agreement is due to a competition be-
tween two effects: While the pion wave function is
considerably less damped in the isobar-hole cal-
culation, the n photoproduction is concomitantly
suppressed. Ignoring the many-body modification
of the photoproduction operator would lead to a
much larger cross section, apparently in closer
agreement with the old Davidson data (compare
Figs. 1 and 7). This large effect points to the im-
portance of a microscopic understanding of the
optical potential used in DWIA calculations.

As in elastic scattering, rapid convergence is
achieved in terms of &-hole doorway states, so
that elastic scattering and (y, v') can be "unified"
with only a few parameters in each partial wave.
However, the phenomenological isobar doorway
approach using I.-independent parameters leads
to serious errors in the evaluation of Eg. (10).

For the peripheral and semiperipheral partial
waves, the overlap (D, D„) is close to one. Con-
sequently, the corresponding (y, s' ) amplitudes are
determined almost completely by the pion-nucleus
elastic scattering phase shifts. Since these partial
waves dominate the cross section, discrimination
between different theories is likely to require fair-
ly accurate absolute normalization of experimental
cross sections and rather good angular distribu-
tions.
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