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The topic of pion interferometry (identical pion correlations) is analyzed in detail in the context of
relativistic nuclear collisions. Through an exactly solvable field theoretic model specified by an ensemble of
classical pion source currents, J;(x), we calculate the w~#~ correlation function R(k,,k,) for chaotic,
coherent, and partially coherent pion fields. We analyze how R can be used to determine the degree of
coherence of the produced pion field as well as the geometric structure of the source of the chaotic field
component. With this model we are able to distinguish between those -correlations due to Bose-Einstein
symmetrization (the Hanbury-Brown and Twiss or Goldhaber effect) and those due to specific multiparticle
production dynamics. In particular we show that Bose-Einstein symmetrization dominates the form of
R(k,,k,) only for chaotic pion fields produced over a time scale large compared to m,, ~. If, due to collective
phenomena, there is some coherence of the pion field, then the intercept R (k,k) = 2 — D*(k) is shown to
measure mode by mode that degree of coherence D (k). Geometric information about the source of the
chaotic field component may be extracted from R (k,,k,) only after D(k) has been determined. Expressions
are also derived that incorporate distortions of R due to one-body and two-body final state interactions.
These expressions will be numerically evaluated in a subsequent paper. Relative 7777~ interactions lead to a
penetration factor G(k,,k,) that modulates the form of R(k,,k,). An expression for G is obtained to all
orders in the one-body optical potential but to first order in the two-body potential. This penetration factor
must be evaluated before data for R can be used to determine D (k).

NUCLEAR REACTIONS Relativistic nuclear collisions, multipion inclusive
cross sections, 777" correlations, Hanbury-Brown-Twiss effect, partially co-
herent fields, final state interactions. .
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I. INTRODUCTION AND SUMMARY

Pion interferometry involves the study of the
correlations between two identical pions (e.g.,
7°n") produced in hadronic processes. An obvious
measure of such correlations can be obtained by
comparing the double pion inclusive cross section
d®o(r"m)/d% ,d%k, to the product of single pion
inclusive cross sections d®c(n")/d*. The precise
definition of the correlation function R(,, k,) for
negative pions that we consider in this paper is

R(’Els Ez) = <nlr‘>2 o"-dSO'(ﬂ"‘n'-)/dakldakg

n,-,--1)) (Po(r)/dk,) @0 (1) /d°k;)

(1.1)

where o,_ is the total negative pion production
cross section, and (n,-) and {(n,-(n,--1)) are the
average first and second binomial moments of the
7~ multiplicity distribution. The ratio of multiplic-
ity moments in Eq. (1.1) is introduced since the
single- and double-pion-inclusive cross sections
are normalized as

f d*k A%k 80 (7 ")/ A%k, A%k, = (n,-(n,-—1))0, .
(1.2)
and

[ #rdioa) /e, = n, . (1.3)

The definition of R via Eq. (1.1) insures that R=1
if the negative pions are uncorrelated in momen-
tum space [i.e., d®o(r77)/d% ,d%,<f(k,)f(k,)] re-
gardless of whether the 7~ multiplicity distribu- .
tion is Poisson or not. The correlation function
for positively charged pion pairs is defined sim-
ilarly to Eq. (1.1).

The term “pion interferometry” is used to em-
phasize the analogy that the study of pion correla-
tions via Eq. (1.1) has to the well known technique
of second order intensity intevfevometry* devel-
oped by Hanbury-Brown and Twiss to measure

‘stellar radii. In quantum scattering theory the ap-

plication of intensity interferometry to deduce
structural properties of the target was formalized
by Goldberger, Lewis, and Watson.? Later, the
idea of using intensity interferometry with pions
to deduce the space-time structure of high energy
hadronic processes was developed by Kopylov and
Podgoretsky,® Shuryak,* and Cocconi.®
Experimentally, pion interferometry was first
used by Goldhaber, Goldhaber, Lee, and Pais®
(GGLP) to determine the dimensions of the pion
production region in pp annihilation. They sug-
gested that intensity interferometry is a conse-
quence of the Bose-Einstein symmetrization re-
quired for two identical pions. In fact, the en-
hancement of R(%,, k,) in Eq. (1.1) above 1 for
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small relative momenta has sometimes been re-
ferred to as the GGLP effect. Pion interfero-
metry has also been applied to other processes
such as mp, pp, and Kp collisions™* to deter-
mine the space-time dimensions of the pion
source. The most recent and extensive experi-
mental analysis of pion correlation data based on
pion interferometry is given in Ref, 12,

The most exciting recent theoretical develop-
ment has been the observation!3-!5 that not only can
the study of pion correlations reveal the space-
time structure of the pion production region, but
also R(E,, k,) can provide information on the de-
gree of coherence of the produced pion field. Thus
R(k,, k,) could ideally provide both geometrical
and dynamical information on pion production in a
given reaction.

It is therefore natural that these ideas on pion
interferometry have also found their way'®'!” into
the field of relativistic (~1 GeV/nucleon) nuclear
collisions. Since many of the models for nuclear
collisions!® involve classical geometrical concepts
(e.g., classical trajectories, impact parameters),
the determination of the space-time structure of
the pion source region could in principle provide
valuable constraints on these models. For ex-

. ample, the dimensions and lifetime of the pion
production region as calculated with either in-
tranuclear cascade or hydrodynamic models could
then be compared to the data. However, in addi-
tion to such geometrical information,*” the pion
correlation function R(%,, &,) could ideally shed
light on possible exotic processes that may also
be involved in nuclear collisions.!®

We note that the first data on pion interferometry
in nuclear collisions (**Ar + Pb,0, ~7"7" + X at 1.8
GeV/nucleon) are now available!® and clearly dem-
onstrate the feasibility of such studies. Further-
more, future experiments® using the Bevalac at
the Lawrence Berkeley Laboratory are expected
to increase significantly the amount of data on the
two pion correlations.

The purpose of this work is therefore to analyze
in detail the topic of pion interferometry in the
context of nuclear collisions. At the same time
we will discuss and attempt to clarify the theory
of pion interferometry as applied to any hadronic
process. In this paper we concentrate on the in-
terplay between the pion production and final
state dynamics and Bose-Einstein symmetriza-
tion in determining the form of R(%,, %,). In par-
ticular, we focus on the difference between cha-
otic and coherent pion fields and how the degree
of coherence affects R(%,, 2,). In a subsequent
paper? we will apply the formalism developed in
Secs. IV and V to obtain numerical estimates of
the effects of final state interactions on pion cor-
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relations in nuclear collisions and to discuss
specific experimental problems.

We now summarize the results obtained in the
following sections. In Sec. II we discuss the var-
ious competing sources of pion correlations in
hadronic processes with special attention given to
nuclear collisions. The role of Bose-Einstein
symmetrization on the ideal correlation function
(the GGLP effect) is then reviewed in Sec. III. The
usual heuristic derivations of the form of the cor-
relation function are presented and criticized be-
cause they neglect effects of multiparticle dyna-
mics on R. To enable us to incorporate such ef-
fects we develop next in Sec. IV a density matrix
formalism for calculating R(k;, k,). The density
matrix is parametrized via an ensemble of co-
herent pion states ]J} produced by an ensemble of
classical (c number) source currents J(x). In
Sec. IV C we show how such an ensemble of cur-
rents arises from a space-time picture of pion
production involving isolated inelastic scattering
centers. We analyze in detail the single and
double inclusive distribution and show that multi-
pion production amplitudes lead to interference
terms in R(E,, &,) that are, in general, much more
complex than those obtained from Bose-Einstein
symmetrization alone in Sec. III. We find that the
necessary conditions for R(fe',, 152) to reduce to the
ideal Bose-Einstein form are that the number of
independent source currents be very large and that
the total interaction time be large compared to
m, . Those conditions are shown in Sec. IV C 2
to lead to the production of chaotic pion fields.
In Sec. IVD, the effects of possible collective pion
production mechanisms are calculated. We de-
rive the form of R(%,, %,), Eq. (4.66), for the case
of partially coherent fields that can arise when a
group of nucleons radiate pions collectively.
Equation (4.66) shows exactly how R(%,, &,) can
determine the degree of coherence of the pion
field as well as the geometrical structure of the
source of the chaotic component. The intercept
R(k,k)=2 - D?(k) determines, in the absence of
final state interactions, the degree of coherence
D(%), i.e., the fraction of pions with momentum
% in the coherent state component. Finally, in
Sec. V we calculate how final state interactions
distort the form of R(%,,%,). In Sec. VB, the
exactly solvable field theoretic model, Egs. (5.1)
and (5.6), is presented showing how arbitrary
one-body optical potentials V(x) distort R(%,, &,)
via Eq. (5.36). In Sec. VC, an approximate
treatment of two-body final state interactions
U(x—-1v) is presented in terms of Bethe-Salpeter
amplitudes. The effect of U(x-y) is shown in Eq.
(5.52) to lead to a Gamow penetration factor that
modulates the form of R(g,, k,). Our most general



result for R is Eq. (5.63) incorporating distortions
to all orders in V and first order in U, and appli-
cable for partially coherent fields.

The complexity of final state interaction distor-
tions displayed in Eq. (5.63) demonstrates that the
naive analysis of correlation data via Eq. (3.6) or
(4.67), even for chaotic fields, may lead to inac-
curate geometrical and dynamical information.
For example, two-body 7”7~ final state interac-
tions can simulate a finite degree of coherence,
and one-body optical potentials can lead to 100%
distortions of the apparent geometry of the chaotic
source.?’ A systematic numerical study, to be
reported in Ref. 21, of the expression obtained
here has shown that final state distortions are
sensitive to the magnitude of the mean momentum
k= (k, +k,)/2 of the observed pion pair as well as
to the orientation of §=F%,~%, with respect to 7.
The most ideal configuration to study experi-
mentally is 2*§=0, i.e., equal energy pions, be-
cause this configuration is found to be the least
sensitive to uncertainties in the one-body optical
potential. Furthermore, optical potential dis-
tortions can be minimized by concentrating on high
momentum |%|>m, pion pairs. By measuring
R(k,, k,) as a function of § for fixed large % such
that G2 =0, it should be possible to unfold final
state distortion from correlation data.

Note that throughout this paper we use natural
units, Z=c=1.

II. GENERAL REMARKS ON PION CORRELATIONS

Correlations between identical pions produced
in hadronic processes can arise from a combina-
tion of several sources:

(1) Conservation laws: energy-momentum,
quantum numbers;

(2) Dynamics: production dynamics, final state
interactions;

(3) Bose-Einstein statistics.

There are basically two types of conservation
laws: those associated with kinematics and those
associated with internal symmetries or quantum
numbers. The conservation of energy-momentum
leads to kinematic constraints between the pro-
duced particles and leads to strong correlations
when one pion is observed with a momentum near
a kinematic boundary. For example, if one pion
carries away a large fraction of the available cen-
ter of mass energy, then a strong anticorrelation
must be observed [R(%,, z,) << 1 for k,~k, when
|%,| ~%max)- Such kinematic correlations can of
course be evaluated from Lorentz invariant phase
space (LIPS) integrals (see, e.g., Ref. 22).

Conservation of internal symmetries and quan-
tum numbers such as isospin and parity lead to
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correlations between the number of different
charged pions that can be produced in a given re-
action, Therefore, such constraints affect mainly
the pion multiplicity distributions and, hence, the
binomial moments in Eqs. (1,1)-(1.3). An example
of such multiplicity correlations is given in Ref.
23. To isolate the true momentum space correla-
tions with R(,, k,), it is therefore necessary to
remove the dependence of the normalization of R
on the specific multiplicity distribution. The cor-
relation function as defined in Eq. (1.1) accom-
plishes this goal. For an independent pion emis-
sion mechanism,?® R=1 regardless of the con-
straints imposed on (n,-) and (n,-(r,-~1)) by inter-
nal symmetries. It should be noted that (,.)
={n,(n,~1)) when the multiplicity distribution has a
Poisson form, as seems to be the case for fixed
impact parameters in nuclear collisions.?*

Besides correlations induced by conservation
laws, it is clear that the specific pion production
mechanism as well as the interactions of the pro-
duced pions with other hadrons in the final state
can also lead to pion correlations. The most ob-
vious example of a production mechanism that
leads to correlations is resonance production?®2¢
(e.g., p, A,, etc.). Another dynamical production
model that leads to strong correlations is the
cluster model*® in which pions and resonances
arise as decay products of hadronic clusters
(fireballs) that are independently produced in a
hadronic collision. In Ref. 15 the cluster model
provides an interesting example of how dynamical,
kinematical, and symmetry constraints can all
play major roles in influencing pion correlations.
In contrast to this model, there are also dynami-
cal models that lead to no intensity correlations.
As discussed in Ref. 23 and noted in Ref. 4, a
classical bremsstrahlung model for pion produc-
tion leads to coherent states which exhibit no pion
intensity correlations and, hence, no Hanbury-
Brown-Twiss (or GGLP) effect. Recently, Fowler
and Weiner*® have also emphasized this point. In
addition, the role of coherent versus incoherent
emission processes in influencing pion correla-
tions has been discussed in Ref. 14 from a topo-
logical approach to hadron dynamics. It is in fact
precisely this sensitivity to pion production dy-
namics that makes the study of pion correlations
so attractive in our view.

There is, however, another dynamical source
of correlations that stands in the way of simple
analysis of correlation data, namely, final state
interactions. While there is no rigorous separa-
tion between production dynamics and final state
interactions, an approximate distinction can be
made (see Sec. V). The best example of this is
the long-range Coulomb interaction that exists be-
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tween the final hadrons for times long after the
hadrons have been produced and are out of the
range of strong interactions. Normally, we think
of Coulomb interactions as small perturbations to
strong interactions. However, correlations be-
tween hadrons with small relative momentum

(g sm,Va) can be completely dominated by Cou-
lomb effects, In the case of nuclear collisions,
Coulomb distortions extend to even larger rela-
tive momentum, ¢ < (Zam,/R)'?~ZBm va).
The correlations induced by such final state in-
teractions can, therefore, completely mask or
distort the correlations (or noncorrelations) resul-
ting from particular production dynamics. Clear-
ly, the extent to which we can deduce various as-
pects of the production dynamics from correla-
tion measurements depends on our ability to un-
tangle the distortions due to final state interac-
tions.

The sources of correlations discussed so far ap-
ply to any pair of hadrons in the final state. How-
ever, there is yet another source of correlations
when the two hadrons are indistinguishable—Fer-
mi-Dirac (FD) or Bose-Einstein (BE) statistics.
For identical pions (7"7"), BE statistics will obv-
iously lead to enhanced correlations (R(g) >1) for
small relative momenta g (the GGLP effect®). On
the other hand, for identical fermions (pp), FD
statistics will lead to anticorrelations (R(q)<1)
for small q. However, it must always be remem-
bered that such correlations can be significantly
modified by the other sources of correlations
mentioned above. Whether the GGLP effect dom-
inates R(%,, k,) will depend strongly on the partic-
ular reaction under study.

In the case of relativistic nuclear collisions, a
typical reaction of interest is'®

“Ar+Pb,O,~ 771" +X (2.1)

for an Ar beam with 1.8 GeV/nucleon lab kinetic
energy. For a reaction with Pb the total center
of mass kinetic energy available for pion produc-
tion is Vs = M,,—~Mp, ~ 54 GeV. Therefore, the
number of pions that are kinematically allowed
(but with vanishing probability) is n, (max)~ 386.
In fact,?*'27 the number of negative pions observed
in reaction (2.1) ranges between 1-15 with aver-
age energies in the range ~10-200 MeV in the
center of mass. Therefore, there are not expec-
ted to be any significant kinematic correlations
for pion pairs in such reactions. Furthermore,
quantum number constraints such as charge and
parity conservation should also lead to negligible
pion correlations because of the “reservoir” of
quantum numbers provided by the 102 protons and
146 neutrons in the initial nuclear state. There-
fore, we expect conservation laws to have little

effect on R(k,, %,) for nuclear collisions.

Next, consider dynamical correlations., The
dynamics of reactions such as Eq. (2.1) are ex-
pected to be dominated by multiple nucleon-nuc-
leon collisions'®'3? (nucleon cascading), where
the relevant input quantities are the nucleon-nuc-
leon cross sections in the 1-2 GeV range. There-
fore, multipion resonance (p, w,...) production is
infrequent, and the main source of pions is through
A,,(1232) production and decay. Since the pions in
the nuclear cascade model are produced singly at
random space-time points with possibly many sub-
sequent rescatterings in the nuclear system, the
pion field is expected to be chaotic!''? in such a
model. Nevertheless, exotic production dyna-
mics due to collective nuclear instabilities could
possibly also occur in relativistic nuclear colli-
sions.'®?® If pionic instabilities®® do in fact occur
and lead to a coherent pion field admixture in the
final state, then R(Z,, ;) could provide evidence
for such phenomena.'®® The form of R for par-
tially coherent fields is derived in Sec. IVD.
However, as noted before, the effects of final
state interactions must be unfolded from
R(k,, %,) before such an analysis is possible. In
the reaction (2.1), the typical residual nuclear
charge is Z~100 and major distortions of
R(k,, ;) can be expected® for |k,~k,| =50 MeV/c.

In summary, dynamical correlations are expec-
ted to influence pion correlations in nuclear colli-
sions only through final state interactions if the
cascade picture for pion production holds, On the
other hand, both production and final state dyna-
mics will affect R if exotic phenomena occur. In
any case, conservation laws are expected to have
negligible effect on R for nuclear collisions.

Bose-Einstein statistics of course must always
be taken into account. However, BE interference
will dominate R only if no exotic phenomena occur
and final state interactions can be shown to be
small (see Ref. 21).

We turn next to the special case when BE inter-
ference dominates the n"7~ correlation function.

III. IDEAL BOSE-EINSTEIN INTERFERENCE

The usual derivation®*® of the GGLP effect be-
gins with the observation that the amplitude ¥,
for observing two identical pions with momenta
151 and Ez, given that they were produced at points
X, and %,, is given by

‘1’12 = (Elk.z ’551;"?2) o .‘/21_ (e‘i‘iﬁ‘;qe"iig';z_‘_ e-i?zl-;ze‘i}g-fl) R
(3.1)

where the second term in Eq. (3.1) arises, of
course, from the symmetrization required by BE
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statistics. The second step is to assume that the
pion source points %, and %, are randomly distri-
buted in a region of space specified by a normal-
ized density distribution p(¥). Then the probability
of observing two identical pions with momenta &,
and %, is obtained via

P(Eu ﬁz)‘x fd3xld3x2p(f1)p(fz)|‘1J12|2

o]+ [p(}gl—IEZ)IZ, (3.2)

where p(g) is the Fourier transform of p(¥). The
second term in Eq. (3.2) is the consequence of the
BE interference between the two parts of the
amplitude in Eq. (3.1). From Eq. (3.2) we, there-
fore, expect R(%,,k,~)*P(§) to measure the ab-
solute square of the Fourier transform |p(7)|* of
the pion source distribution,

To incorporate also the time dependence of the
pion source, Kopylov and Podgoretsky® derived
the form of R(%,, k,) using the first quantized
Klein-Gordon equation in the presence of several
source currents J,(%, ¢). The amplitude ¢;(%,t) for
a single pion to be found at (%, ¢), given that it was
produced by source J (%, t), was calculated in
Ref. 3 from

(8,8%+m, %) (%, t)=J (%, 1) . (3.3)
By parametrizing the source currents as
J %y 1) =d (F=F py t=t,), (3.4)

where the “centers” (%,,¢;) were assumed to be
randomly distributed according to a space-time
distribution p(x)=p(%, ¢), the amplitude for ob-
serving two pions with momenta %, and &, was
constructed as

1 _ ~ - -
¥, :72—_[(151(’?1’ w1)¢2(k2’ w,) + (bl(kz’ wz)d)?(k“ wl)]
oc-‘/—_;_ (ex‘klzleikzxz + eiklxzeihle)g(kl)g(kz) , (3_ 5)

where k;x; = w,t,~k X, and g(k)=J(k)A,(k), with

J (k) being the space-time Fourier transform of
J(%,t) and A (k)= (k® — m,? + i)™ being the pion prop-
agator. Assuming J(x)=5%(x) and ignoring the
problem associated with the on-shell singularity of
A (k2=m,?) =, Ref. 3 finally obtained

Ry, ky) <1+ [plly—gy w,—w,) |2. (3.6)

This heuristic derivation suggested then that R
measures not only the space but also the time
Fourier transform of p(#,¢). Equation (3.6) is
the basis of the expectation that the intensity in-
terference pattern measured via R(k,, k,) in Eq.
(1.1) can (ideally) be used to deduce the space-
time structure of the pion source.
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In actual applications the parametrization that is
used most often to determine a radius R, and a
lifetime 7, of the pion source ig? 791112

1%(g:R,)

R(gy, q,)c 1+, , (3.7)
T e T (g T o)?
where the Kopylov variables are defined as
Go= W, =Wy, (3.8)
_Noy=key) X (o, +2,)
1 Ty + % | ’

and I(x)=2J,(x)/x, where J, is the first order
Bessel function. Equation (3.7) follows for a uni-
form radiating disc of radius R, oriented in direc-
tion 7= (k, +%,)/ |k, + k,| and having lifetime 7,
i.e.,

o(%, 1) ={6(x  2)6|R 2=(%= (% " A))?] /1R 2}
x[6(t)et/ ™/ ], (3.9)

Another parametrization that is sometimes con-
venient involves a Gaussian form for the space-
time distribution.?!%*"1° In practice though, the
parameters R, and 7, do not differ significantly
when obtained via Eq. (3.7) or its Gaussian ana-
log.1®

Having thus reviewed the usual derivations of
the GGLP effect, it is important to note several
deficiencies in these. First, there is the ques-
tion of normalization. The use of plane waves and
free pion propagators in Eq. (3.5) clearly leads to
divergences which are hard to treat in a rigorous
manner. A second more serious criticism is that
these derivations do not properly address the

“multiparticle nature of the final hadronic state.

Only two-particle pion wave functions ¥, are
considered, although in general, a coherent super-
position of multipion wave functions (and hence, a
nontrivial multiplicity distribution) must describe
the final hadronic state., Given the source term,
Eq. (3.3) must be considered as a field equation
and cannot be justified as a first quantized wave
equation. Third, a specific dynamical assump-
tion has been made in Eq. (3.5) whereby pions are
produced independently at random space-time
points. Such a derivation therefore cannot reveal
the effects of possible coherent pion production

_ dynamics.!3*18 Fourth, in actual applications,

Eq. (3.7) is still not general enough even for
chaotic pion fields. As discussed in Refs. 25 and
26, when pions are produced mainly via reso-
nance decay, the existence of resonances with dif-
ferent lifetimes (I', ~ 150 MeV, I, ~ 10 MeV) can
significantly distort the shape of R(q,, q,;). For
nuclear collisions, this last problem is not ex-
pected to be important though, as noted in Sec. IL
Finally, the question of final state interactions
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has not been addressed. Often in applications,”*?
there exist prescriptions such as dividing the
m 7 inclusive cross section by the 7*7~ inclusive
cross section to cancel the effects of final state
interactions. However, not only Coulomb but also
strong interactions differ for 777" and 7*71" pairs,
and such prescriptions could therefore compound
the distortions of R(k,, k,) due to final state inter-
actions. )
To overcome the difficulties mentioned above,
we turn in the next section to a more general
method for calculating R(%,, k,), based on a densi-
ty matrix formalism for multiparticle production
dynamics.

IV. COHERENT VERSUS CHAOTIC FIELDS
A. Density matrix formalism

At time ¢= -, the initial state |¢,) is assumed
to be specified. For nuclear collisions, l(l)(,)
describes a state of two ground state nuclei and
their relative motion. No pions are assumed to
be present initially in |$,). The asymptotic
t =+ final state |q.’>“) is then obtained formally
by applying the full nuclear scattering S matrix,

EWENIHE (4.1)

Note that | ") should not be confused with the
M#ller outgoing scattering wave. |¢*) is tre-
mendously complicated and cannot be calculated
since it requires the complete solution of the
coupled pion-nuclear field equations. Neverthe-
less, we can attempt to parametrize ](1)‘) based on
a physically plausible picture of the dynamics.
The parameters specifying that picture would then
be determined phenomenologically from inclusive
cross sections. The hope in such a phenomeno-
logical approach is that the values of the para-
meters obtained will shed light on the dynamics of
relativistic nuclear collisions.

However, before discussing specific parametri-
zations we proceed formally to calculate pion-in~
clusive distributions from |¢*). The single- (neg-
ative-) pion-inclusive distribution for momentum
E is given by

Py@= LD 5 (x|a) 0|2
X

=(¢*|a*(®R)a(k)|p*) =(o* [N, (&) | 0"
=Tr{p'N,(R)}, (4.2)

where the sum over X and the trace are over a
complete basis of nuclear and multipion configu-
rations, a'(k) and N,,(E) are the creation and num-
ber density operators for (negative) pions of mo-
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mentum %, and
p* =10 )¢" | (4.3)

is the scattering density matrix with unit trace.
Note that energy-momentum conservation is im-
plicit in Eq. (4.2) because our definition of [¢*)
includes an energy-momentum conserving 6 func-
tion via the S matrix.?® From Eq. (4.2) it is clear
that the integral of P, (%) over d°k gives (n,) as in
Eq. (1.3), and that P,(%) just counts the average
number of pions in the final state with momentum
k.

The double- (negative-) pion-inclusive distribu-
tion is given in terms of g* by

dbo(nm)
Tk, Ak,

1}

~ = 1
Pz(knkz) O‘_

> [x|atk,)ak,) |0*) |2

=Trlp*a*(&,)a’ (,)ak,)a(k,)]. (4.4)

The integral of P, over d°,d%, then gives (n,(x,
~1)) as in Eq. (1.2). Clearly, P, just counts the
average number of (negative) pion pairs with mo-
menta &, and ,.

Equations (4.2) and (4.4) are written in terms of
the density matrix p*, because p* is simpler to
parametrize than |[¢*). In particular, we shall
see that a very convenient way to parametrize
p* is through an ensemble average over a given
set of model states [¢,) as

p* Y p(e) [$a)dq |, (4.5)

with p(a) being a (normalized) probability distri-
bution for the parameters a specifying [(75“}. The
~ sign in Eq. (4.5) means that we require p* to-
gether with Eqgs. (4.2) and (4.4) to provide a good
approximation to only single and double inclusive
data. In other words, only those parametriza-
tions that can reproduce the measured P, and

P, shall be considered.

We note that the use of the density matrix for-
malism to compute inclusive distributions is well
known in high energy physics (see for example
Ref. 29). In the following subsections we utilize
this formalism to analyze the difference between
chaotic and coherent fields, as revealed through
the correlation function R(k,, £,).

B. Classical current parametrization
1. Coherent fields

In principle, we would like to solve the follow-
ing field equation for the pion Heisenberg field

¢ (x):
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@ +m, ) (x)=J (x), (4.6)

where J(x) is the nuclear current operator acting
as the source of pions. (Nonrelativistically,
J=f,9y'5).) What makes Eq. (4.6) intractable in
general is that the field equations for the nuclear
fields are coupled to the pion field also.

However, in a nuclear collision our {irst expec-
tation would be that multiple nucleon~nucleon col-
lisions dominate the nuclear dynamics. As long
as the number of produced pions is not large com-
pared to the nucleon number, we may expect that
the pion source current J(x) is not significantly
altered by the presence of produced pions. There-
fore, our first approximation to the nuclear dyna-
mics will be to ignore pion-nucleon rescattering.
This approximation decouples the pion and nuclear
field equations and replaces the pion source cur-
rent operator in Eq. (4.6) by its expectation value.
The current J(x) then becomes a (¢ number) space-
time function. The resulting physical picture of
the pion production dynamics is thus the same as
that of bremsstrahlung radiation.®® As the pro-
jectile nucleons collide with the target nucleons,
pions are radiated due to the large decelerations
involved.

We stress that Eq. (4.6) is still regarded as a
field equation for ¢(x), even though J(x) is
treated as a classical current source. This is in
sharp contrast to the first quantized wave equa-
tion, Eq. (3.3), used in Ref. 3. As we shall see
below, the importance of treating Eq. (4.6) as a
field equation lies in the multipion nature of the
final pion state.

Note also that the decoupling of the nuclear and
pion field equations greatly simplifies the final
density matrix p* in Eq. (4.3). In this approxima-
tion, p* factors into separate nuclear and pion
density matrices, p,,. and p,, each with unit trace.
Therefore, we only need to study p, in order to
compute P, () and P,(k,, ).

The solution of Eq. (4.6) and the construction of
the S matrix, when J is treated as a classical cur-
rent, are discussed in detail in Ref. 31. See also
Section VA. We only quote the main result: The
final pion state [¢!) produced by a classical cur-
rent source is a cokevent state [J> given by®!

Pty = |J>Ee"?/2exp(ifd%.f(lé)a*(f})) [0y, (4.7)

where
- iwg t= iy .
J(k)z % [20),2(27!)3]1 2 J(fy t) ’ (4.8)

is the on-shell [w,= (k%+m,?)'/?] Fourier trans-
form of J(%, ¢), and

ﬁ:fdak 7). ‘ (4.9)

Observe that the state |J) is a special coherent
superposition of pion states involving arbitrary
numbers of pions. In terms of finite packet states
%) .+ . ,x,), localized at space-time points

X1y ..y %, as defined in Eq. (A1), we note that up
to (27)*/? in the definition of J,

’J> - e-ﬁ'(zeimf,(o) ,O)

© mn
:e-ﬁlzz :Ln.[—,xl:xZ:..':xn:(»J’ (4.10)

n=0

with ¢%(x) being the creation operator of a wave

‘packet centered at x as defined in Eq. (A2). Thus

an external classical current source J(%, ) pro-
duces an indefinite number of pions in wave pack-
ets with a space-time distribution J (X, ¢) centered
at the origin. An additional property of ]J) is that
the multiplicity distribution for pions is a Poisson
with a mean n given by Eq. (4.9). Therefore,

(%=, ln,~1)) =i®. (4.11)

The most useful property of |[J) is that it is an
eigenstate of the annihilation operators a(k), i.e.,

a(R) |y =id (&) |J). (4.12)

Therefore, removing one particle from the final
state does not change the structure of the final
state. Coherent states such as in Eq. (4.7) often
arise in quantum optics and are used to charac-
terize laser fields.!

The density matrix corresponding to this classi-
cal current model is

P~ I |,

which describes a pure coherent state (Trp,
=Trp,?=1). We refer to Eq. (4.13) as the coherent
Jield parametrization, the parameters here being
those that specify J(%).

Utilizing Eq. (4.12), the m-pion-inclusive dis-
tribution is readily calculated, as in Ref. 29, to
be

P (,,.

(4.13)

ey k) =Trlp,at(k,) * * 2a* (B, )ak,) * * *a(k,))

=Ry 2o IR, |2, (4.14)

The two-pion correlation function is therefore
given by

R(Euféz):ly (4.15)

showing that pions radiated in a classical current
model are uncorrelated in momentum space. In
quantum optics,' the analog of Eq. (4.15) is the
absence of intensity interference or the Hanbury-
Brown-Twiss effect for laser fields. Similarly,
there is no GGLP effect for coherent pions even
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though BE symmetrization has automatically been
taken into account in Eqs. (4.7) and (4.10).

We note finally that the multiplicity distribution
of coherent pions which occupy a given momentum
state {Zz) is also Poisson, with a mean (n,(i?)}'
= |J (k) [*(27)*/V, where V is the normalization vol-
ume,>!

2. Charge-constrained coherent fields

One technical problem with coherent states in-
volving charged bosons is that they are not eigen-
states of charge. This problem can be easily by-
passed, however, by considering the following
charge-constrained generalization of the 7~ coher-
ent state®? )

I¢*(J,Z)>Efn1’zi 1—, fd3k1 co R, J(Ry) T (By)
e~ nl

xa*(k,) *+ 2 a' (k) |0) ® [45(2)),
(4.16)
where

~ o)

N1
n!

@@ 42, (4.17)

n=0

and where 7 is given by Eq. (4.9), while [¢}(2)) is
a state containing no 7~ but arbitrary multiple 7*
and 7° and nuclear configurations, constrained
only to form an eigenstate of the total charge op-
erator Q,

Q [4(2) = (Z +n) [43(2)) . (4.18)

In Eq. (4.18), Z is the total charge of the initial
(no pion) state [¢,) in Eq. (4.1). Equation (4.18)
then also guarantees that [¢*(J, Z)) is an eigen-
state of charge with a total charge Z. With Eq.
(4.16) we can now construct the combined pion-
nuclear density matrix for a fixed charge Z as

p |0, 2P, 2) ], (4.19)
from which we find

Pm(ép e :km) = lJ(fel) ’2 . 'IJ(EM) ,2

x (n,,(n,,—l): c(m,—m+1))
n‘m

3

‘ where (4.20)

<m@f4»-wm_m+1»=m(m£%md>, 4.21)

is the mth binomial moment of the negative pion
multiplicity distribution.

The (negative) pion correlation function is there-
fore given by Eq. (4.15), just as for the simple
coherent state parametrization, Eq. (4.13). Note,
in fact, that if the states ld):,(Z)> were unit normal-
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ized, then9U"'=e" P(n) is Poisson, and hence Eq.
(4.20) is identical to Eq. (4.14). In that case, Eq.
(4.19) is completely equivalent to Eq. (4.13) as far
as negative-pion-inclusive cross sections are
concerned. We therefore see that Eq. (4.15) is in-
deed possible for charged boson fields, and thus in
the following sections we continue to use uncon-
strained coherent states. .

Observe that the energy-momentum conservation
has not been enforced in Eqs. (4.7) and (4.16).
Since J (k) is to be constrained by the form of the
single-pion-inclusive distribution to vanish rapid-
ly near kinematic boundaries, the inclusion of
strict energy-momentum conservation for nuclear
collisions would lead, in fact, to negligible correc-
tions to Eq. (4.15).

C. Space-time picture and the chaotic field limit
1. Classical current ensemble

In the previous section we showed that a single
classical current produces a coherent pion field
that exhibits no GGLP effect, even though BE
statistics were properly taken into account. Since
it is rather unlikely that the source current J(x)
is the same in every nuclear collision, we consid-
er now a more general dynamical model that will
enable us to incorporate variations of J(x).

The physical picture we want to pursue is that
of pions being produced in N separate nucleon-
nucleon collisions in the spirit of intranuclear
cascade models.*® In this picture, the total pion
source current J(%, ) would thus be a sum of N
different currents, J,(%, ),

N
I(x) = ZJ,.(x).
i=1
EachJ, is then taken to parametrize a different
inelastic nucleon-nucleon collision. To incorpor-
ate also the space-time picture of the cascade
model, we localize!® the strength of each current
around some “inelastic scattering center,” «;,
=(%,1¢;), as in Eq. (3.4).
If we parametrize the typical inelastic collision
centered at x=0 by J,(x), then the pion source
current becomes

(4.22)

J(x) = }N: I, (x=—x,). (4.23)
i=1

The on-shell Fourier transform, Eg. (4.8), is
given by
XN ~ o~
T(R)=J, (&) 3 etentiz 5, (4.24)
is1 .
where w, = (k% +m 2)*/2. The space-time separation
of the scattering centers, therefore, introduces a

\
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sum of phase factors in Eq. (4.24). In a given nuc-
lear collision in which the x; are fixed, the final
pion state is again given by Eq. (4.7), but with J
given by Eq. (4.24). Note that |J) is not equal to
¥, of Eq. (3.5). It is also important to remark
that at this stage we still have not incorporated
final state interactions (see Sec. V). Our first
aim is to study the effects of production dynamics
on R(z,, &,).

Since the number of inelastic scatterings N will
vary from event to event as will the location of the
space-time centers x, (i=1,...,N), we will have
to average over the distribution Ps(N) of inelastic
scatterings as well as the distributions p(x;) of the
centers x,;. An additional averaging over impact
parameters will be discussed in Sec. IVC3.

The distribution of N and x; can be taken into
account via an ensemble average with the pion
sector density matrix given by

[ E Pg(N) fd“x,p(xl) s diyyplay) [ [ .
" (4.25)

N
2 e"‘m"’j
j=1

2

E;m(ku oo ’Ern)=<

N :
Z eih¥i

i=1

N=1 iy=1 fom=1

The evaluation of Eq. (4.28) is complicated only
by the combinatorial problem of how many of the
N?" terms in the brackets have a given number of
the indices (i, ..., i,,) equal to one another. For
a given index set we only need the relation

(etom), = f d*x,p(x,)e '™ =p(q) (4.29)

where p(g) is the Fourier transform of the scat-
tering center distribution p(x). Note that p(G=0,
qo=0)=1 by unit normalization of p(x).

For the case m=1, Eq. (4.28) is simply evalua-
ted to be

F,(B) =) + (NW=1)) [p(&, ,) |7, (4.30)

where (N) :ENPS (N) is the average number of in-
elastic scatterings, and (N(N-1)) is the second
binomial moment of Pg(N). (For a Poisson distri-
bution, as obtained in an intranuclear cascade
model, (N(N-1))=(N)2.) The single-pion-inclusive
distribution is

P,(k) =7, (%) 12<1~'><1+<—1\1(<1f\,—;Q o, w,) F) ,
(4.31)

2>
{N,xp}

N N
- ZPS(N)<Z e Y (et - -ef~m<rizm-f”2m’>m1) : (4.28)

This pion density matrix then describes an ensem-
ble of coherent final pion states. Note that the
centers x; are assumed to be uncorrelated in the
spirit of independent multiple scattering models.

Using Eq. (4.14), the m-pion-inclusive distribu-
tion in this model is given by

Py s bn)= 3 Ps) [ @ipley) diyola)
N

x [ [J(Zel) f2 s [J(E,,,) fz]
=(JT®R)[? - [ TE) [P e - (4-26)
It is clear from Eq. (4.26) that as a result of the
ensemble average there will now be nontrivial pion
correlations in contrast to the pure coherent field

result, Eq. (4.15).
For J given by Eq. (4.24), we then have

Poyyeen k)=, (B) |2 [, () PF sy - o -, )
(4.217)

where the dynamical form factor ¥, is given by

where w,>m_. Note that P,(%) is not equal to the
incoherent sum of the inclusive distributions,
[7,(k) [?, from each separate nucleon-nucleon col-
lision. There is also an interference term grow-
ing as (N?) that depends on the pion wavelength

|k |* and the nuclear dimension R,. For short
wavelengths, [k |> Ry, [p(k) [?< 1, and Eq.
(4.31) reduces to the incoherent case P, (k) < (N),
For long wavelengths, |k |<Ry%, so |p() [

~ |p(0,m,) |*. Taking the m, -0 limit for a mo-
ment and noting that [p(0, 0) [?=1, we see that the
interference term then dominates and P, (k) <(N?),
This difference between the long and short wave-
length limits for m, =0 is well known in the case
of Thompson scattering of photons from atoms.
Physically, it is due to the quantum property that
a particle with a given wavelength X cannot resolve
the structure of a system with dimensions less
than A. For a finite mass particle such as the
pion, there is an important difference, however.
The minimum frequency that a pion can have is
w(k=0)=m,. To see what effect this finite fre-
quency has, consider a Gaussian parametrization'”
of the inelastic scattering center distribution:
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- o _ (TR.R,R,)!
p(x; t) - 411.2

xexp{~z[(t/T)*+(x/R,)* +(v/R, P+ (2/R,\]},
(4.32)

where T is the rms time duration, R, is the rms
x dimension, etc., of the space-time reaction
volume containing the inelastic centers (%, ¢,).
The Fourier transform is then simply

p(k, w) = exp{~3[(wT)* + (., R, + (k, R,)?

+ (kR (4.33)
With this parametrization we then have the follow-
ing bound on p(k):

[p(2, ;) [< |p(0, m,) [2= " T?, (4.34)

As an estimate for the collision time T we note
that in intranuclear cascade calculations®® pions
are typically produced in nuclear collisions over
a time interval T~ (5-10) fm/c. In that case,
m,T 25 and exp(~(m,T)?)<< 1. Therefore, the
collision time T is expected to be long compared
tom,*~ 1.4 fm/c~5x 10" sec, and the inter-
ference term in Eq. (4.31) will be negligible even
for |k|=0. This is in sharp contrast to the zero
mass case (Thomson scattering) where the inter-
ference term dominates in the [[=0 limit. If
the interaction time were short, T <m, ", then
p(0,m,)= 1, and the interference term would dom-
inate for [k |<1/R,, even for the finite mass
case. While we have considered a specific model
for p(x) in Eq. (4.32), it is clear that also for the
general case, the crucial factor that determines
the importance of the interference term is the
relative size of T and m,”. As long as T >m,™,

P (k)= |7, () XY, (4.35)

with small corrections depending on the specific
form of p.

We note that the smallness of the interference
term can be tested experimentally by measuring
the A*®) dependence of the pion-inclusive cross
section on the number of incident nucleons A.

For equal mass, projectile-target combinations
a(k)~1.67 if pions are produced incoherently,
)

while a(k)=~ 2.67 if the interference term domi-
nates. (These estimates are based on the assump-
tion that the total pion cross section goes as A2/3
while the number of inelastic scatterings (N)

ax Al) Another consequence of Eq. (4.35) is that
the average (negative) pion multiplicity is well
approximated by

ny~mN), (4.36)
where
i, = fd%lJ,(E,) [ (4.37)

is the average (negative) pion multiplicity from
each inelastic nucleon-nucleon collision. In the

1 GeV range, n,~ 0.7, thus the average number of
inelastic collisions, (N), is roughly given by (n,).
(Note that the total number of binary collisions
may be much larger than (N).) The smallness of
the interference term in Eq. (4.31) would thus re-
sult in an A' dependence of (n,). Evidence for an
A? dependence of (n,) would, in contrast, indicate
the importance of the interference term and re-
flect an unexpectedly short interaction time in this
cascade picture.

We note finally that the small correction term
in Eq. (4.31) also decreases very rapidly with in-
creasing |k|. For [B]|zm,, |p(k, w,) [*< 1 regard-
less of the value of T since the nuclear dimensions
are large compared to m,™* R,,~ 3m,'). We con-
clude that as long as pions are produced by sep-
arate inelastic collisions over a long enough time
or we consider |k|2m,, the single inclusive dis-
tribution is well approximated by the incoherent
sum of the distributions from each collision.

Consider now the double-pion-inclusive distri-
bution. From Eqs. (4.27) and (4.28) we need to
calculate %,(%,, k,). There are now N* terms in
the parentheses, but most of the terms give rise
to the same contribution. For example, there are

" N(N-1)(N-2)(N-3) terms such that all four indices

(35 ++., i,) are distinct. Noting Eq. (4.29), the
ensemble average of each of these terms is simply
lo(e,) [2|o(e,) ,2. Similarly, there are N(N-1)
terms such that 4, =4,, i,=4;, buti #i,. Each of
these terms gives rise to |p(k,—k,) [°. Collecting
all terms, we find

F,(ky, ko) = (N + NN =1 |o(,~E,) |2+ ok, + &) 2]+ (N*(N=1)[ |o&,) 2 + [0 (k,) []
+(N(N-1)(N-2))2 Re [p(k1—kz)P*(k1)P(k2) +p(k, +Ro)p* (ky)p* (k,)]

+(NN=-1)N=-2)(N=3)) [p(k,) |* [p(2,) >

First note that if N=1, i.e., there is only one
current source, then §,=1, and we recover the
coherent field result Eq. (4.14). As the number of

(4.38)

r
sources N increases, more of the terms in Eq.
(4.38) start contributing. The various terms arise
from the interference between different possible



amplitudes for producing two pions. In order to
have a clearer understanding of Eq. (4.38), it is
instructive to identify the amplitudes that lead to
the various terms.

In this classical current model there are two
ways in which a pion pair can be created. Either
the two pions are produced by two different sources
(x;# x,) or they are produced by the same source.
Denote the amplitude to produce the two pions
from different sources i and j, i#j, by A,. De-
note the amplitude to produce the two pions by
the same source i by B,. The total amplitude to
produce the two pions is then

M=3" (A, +4;, ZB,,
T

i>j
as illustrated in Fig. 1. The probability of ob-
serving the two pions is then |[M |>. By grouping
the N* terms in ]M ,2 we can associate the follow-
ing interference terms with each of the terms in
Eq. (4.38):

(4.39)

S 1Ayl Z [B; |2 —(N%), (4.40a)
i#j
Z A AL —~(NN=-1)) [p(k,~P,) |?, (4.40p)
Y
3 B.Bf —(NWN-1)) |o(k, +k,) |7, (4.40c)

i#j

Z A AR+A; AN+ Z (A, B}+A,;;B}+c.c.)

i#j#h i#y
— (N2 (N=1))[ |p(,) |? + |p(k,) 2], (4.404)
Y A, Bf+cc.) —(NN=1)(N-2))
itjtk
X 2Re(p(k, +k,)p*(k,)p*(k,)),
(4.40e)

k k
Xj @—" X ® 1 k
M=> + ’ + 3 xe<_ "
i>j | X e—__ X o L \kz
J STk, 7 e ko
ikx;
Xj e————k = e  Jylk)

FIG. 1. The amplitude M to produce two negative pions
with momenta %4,%, due to an ensemble of classical cur-
rent sources J,(x —x;) centered at space-time points x;.
These Feynman diagrams correspond to the amplitudes
A;; and B; in Egs. (4.39) and (4.40).
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Z A AR+A,

i#jtR

Af) ~ N (N-1)(N-2))

X 2Re (p(kl-kz)P*(kl)P(kz)) ’
(4.40f)

> AyAf—~NEN-1)(N-2)V-3)) |o(k,) |* |o(k,) 2.
“i#jER#lL (4.40g)

These equations display the physical origin of each
of the terms in Eq. (4.38). Note especially the
origin of |p(k,~k,) [? from Eq. (4.40b). It is due
to the interference between the amplitude,

A (R, ky) o ei¥ig*2¥i for producing a pion with
momentum k, from source 7 together with a pion
with momentum %, from source j#i and the amp-
litude A,(%,, k,) for producing a pion with mo-
mentum k, from source ¢ together with a pion
with momentum %, from source j#4. This is
clearly the Bose-Einstein statistics interference
term as considered in Sec. IIl. However, in con-
trast to the results of Sec. III, there also appear
to be many more interference terms due to the
multiparticle dynamics. The term in Eq. (4.40c¢),
for example, arises only because a given source
can emit two or more pions by itself.

What Eq. (4.38) demonstrates in this simple
analytical model is that the details of the multi-
particle production dynamics can lead to major
modifications of the ideal Bose-Einstein correla-
tion result, Eq. (3.6).

In the case of nuclear collisions though, we can
argue that the correction terms in Eqgs. (4.40c)-
(4.40g) are very small. This follows again from
the fact that the collision time T is long compared
to m,"!. Thus, Eq. (4.34) implies that all terms
containing p(k,) and p(k,) are negligible. Noting
that [p(k, + &) f ’p(k +hyy 0, +w,) [2< [p(0, 2m,) [
the term from Eq. (4.40c) is then also negligible.
For nuclear collisions we can, therefore, well
approximate %,(&,, z,) by

F,(ky, By) = (NP + (N(N=1)) [p(l,~E,) [2] (1 + €)

(4.41)
with

€~0(V) [p(0, m,) )< 1.

Note that p(k,-k,) = p(k,~%,, w,—®,) can be of order
unity since for |%, I-[kzl, w,~w,= 0 and p(0, 0)=1.
The only interference term that survives for long
interaction times is that due to Bose-Einstein
symmetrization, Eq. (4.40b).

From Eq. (4.41), we calculate next the second
binomial moment of the mu1t1p11c1ty distribution.
Noting Eq. (4.36), we find

{n,(n,~1)) = (n>2< >(1+€+6)

e (4.42)
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where

€ ~O(N) [p(0, m,) [?)

and
_ (N(N‘ 1)) 3 3 7, % 2
o= fd k@, [, (b)) ey =), (7,) |
~0(1/A), (4.43)

where A is the number of nucleons involved in the
nuclear collision. To arrive at this estimate for
5 in Eq. (4.43) we used (N(N-1))/(N? <1 and esti-
mated the integral divided by #,? to be O(((k,)R,)"%)
via Eq. (A21). Here, (k,) is the average c.m. pion
momentum produced by J, (k), and R, is the average
radius of p(x, ). Since ((k,)R,)*~O(A) for relativis-
tic nuclear collisions as we show in Appendix A,
we finally get Eq. (4.43).

We note that for one source current, Pg(N)
=0y,,, €=06=0 rigorously, as expected, because
pions are Poisson distributed in a coherent state,
Eq. (4.11). As the number of sources increases,
€>0 and 6>0 lead to non-Poisson behavior. How-
ever, as the number of sources becomes very
large, 5—-0, and as long as the total interaction
time grows with (N) such that

(V)] pl0,m,) [<< 1

is satisfied, the Poisson relation between the
first two moments is recovered again.

(4.44)

2. The chaotic field limit

From the results of the last section on the clas-
sical current ensemble, we can now derive a set
of conditions under which the correlation function
R(%,,%,) reduces to the ideal BE form of Eq. (3.6).
In terms of the form factors &,,

92@1, Z’z) <ﬂn>2
sy1(%1)371(52) <n1r(n1r—1)> ’

In general, we see from (4.31) and (4.38) that R
is much more complicated than Eq. (3.6) owing to
interference of multipion production amplitudes.
However, for long interaction times, for which
Eq. (4.44) is satisfied, R reduces to
R, By)=1+ (1-%) [o(k,=R,) |2,

R(ky, ky) = (4.45)

(4.46)

with corrections O(1/A) from Eq. (4.43). In the
limit (N) > 1, Eq. (4.46) therefore reduces to the
ideal BE result, Eq. (3.6).

We saw that the long time constraint, Eq. (4.44),
leads to Eq. (4.35). Now we see that Eq. (3.6)
follows from Eq. (4.45) in the limit when a large
number of sources produce pions incoherently with
respect to each other in a large space-time vol-
ume. This type of pion field ensemble is thus re-

ferred to as a chaotic field.

We have thus found one dynamical model that
leads to the ideal BE form, Eq. (3.6), in the ap-
propriate limit.’®*** To demonstrate that the es-
sential ingredient leading to this result is the
space-~time picture of the distribution of sources
and not the specific dynamical model involving
classical currents, we present another derivation
of Eq. (3.6) in Appendix A. That derivation deals
exclusively with a space-time parametrization of
pr» Eq. (A6), using normalized wave packets lo-
calized in space-time. Again Eq. (3.6) follows in
the limit, Eq. (A15), where the average spacing
between two localized packets is much larger
than the dimensions of the packets. In that case
the relative phases between any two pions, A¢
~ kyx,—k,x,, is essentially randomly distributed
between 0 and 27, and the resulting pion field is
again chaotic.

We note that there is a mathematical shortcut to
obtaining Eq. (4.46) when condition (4.44) is satis-
fied. That is to introduce random phases ¢; be-
tween the currents J,(x) in Eq. (4.22). The Fouri-
er transform of the chaotic source current in this
space-time picture is thus defined as

N -~

Ten(R)=d (R) ) et teiontiikFi, (4.47)
i=1

The m-pion-inclusive distribution is then calcula-
ted as in Eq. (4.26) except that we must also aver-
age over all ¢, from 0 to 27. The resulting form
factors then lead directly to Eqs. (4.35), (4.41),
and (4.46). The additional interference terms in
Eqgs. (4.31) and (4.38) vanish upon averaging over
¢; We shall use this mathematical shortcut to
chaotic fields, below, and in Sec. IVD.

An important property of the chaotic field limit
is that the multiplicity distribution of pions which
occupy a given momentum state |k), denoted by
P(n3k), becomes a Bose-Einstein (geometric)
distribution.! To see this, we recall from Sec.
IVB1 that for a coherent state |[J), P(nsk) is a
Poisson distribution with mean |[J(k) /R, where
(27)%Q is the normalization volume arising in the
usual transition from discrete sums to integrals
(C;~ 9/ @k). For a chaotic ensemble of coherent
states, similar to Eq. (4.25), we have

P(n;k')
= lim <(—I‘I@-@T)!I—2—m—)"exp[— [on (R) l2/9]>

(N)-»> (¥, x)

(4.48)
where J,(E) is given by Eq. (4.47)—the ensemble
average over the ¢, is just a shortcut to incorpor-

ating condition (4.44). As a device for taking the
limit (N) -, it is convenient to use a sequence
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of “spike” source number distributions Pg(N’)
=by.y With N —. This, plus the definition (4.47)
and the (now exact) result (4.35), allows us to ex-
press the chaotic current strength in the form

N
Z ei®i gikxy

i=1

2

[en (B) |2 =11viﬂp—113@ (4.49)

where Pl(E) is the single-pion-inclusive distribu-
tion, which we shall hold fixed as N -, To eval-
uate Eq. (4.48), it is sufficient to obtain the pro-
bability density for the limiting random variable
|7,5(%) |? to have the value |[J[>. In Appendix B we
show this to be

Py (|7 [5%) = (P, ()" expl= |7 [*/P, ()] (4.50)
Therefore,

,p(n;l?z)= fod[J [P, IJ,z;;)(Ii'__:;{mlexp[_ 7 2/9]

“tep, (/] (4.51)

which is the Bose-Einstein (geometric) distribu-
tion with mean P,(%)/Q. We note?! that the ther-
modynamic (fireball) pion multiplicity distribution
for momentum state ]IE) is a special case of the
chaotic field result Eq. (4.51), when the single-
pion-inclusive distribution is thermal,! i.e., when

J

p”zfdsz(B) EPS(N,Z;)fd“xl"'d“x}vp(x“l.))
N

which is the obvious generalization of Eq. (4.25).
The m-pion-inclusive distribution in Eq. (4.26)
will thus involve an additional [d%b B(b) integra-
tion, and ¥, in Eqs. (4.27) and (4.28) also acquires
this impact parameter average. Since Eq. (4.44)
is expected to hold for all but the most peripheral
collisions, which are excluded anyway in inelastic
triggered data, we then have from Eqgs. (4.35) and
(4.41)

Py(R) = |TR) [*Ny 5

and

(4.54)

Py(ky,k2) = 'J"(gl) [2|7,(%,) |2

X[V + (NN =1) | p(ky = kp) [B5],
" (4.55)

where ( )5 denotes the impact parameter average
for a particular experimental trigger system spec-
ified by B(b).

_ In the chaotic field limit where (N(b)) > 1 for all
b in B(5), the correlation function reduces to

p(xlvh i)) IJ><J| ’

P (k)= Q(efor-1)", (4.52)

where B is the inverse temperature and (27)3Q is
the volume of the system.

3. Impact parameter average

Up to now we have implicitly considered a nu-
clear collision at a fixed impact parameter for
which p(x,#) could be calculated, for example, via
an intranuclear cascade model.*® The reaction
volume specified by p clearly depends®® on the im-
pact parameter b. Obviously that volume is lar-
gest for central collisions b ~0, and smallest for
peripheral collsions b SRy, +RA2_ Likewise, the
distribution of inelastic scatterings, Pg(N) in Eq.
(4.25), must also depend on b.

It is possible to select, experimentally, a range
of impact parameters, specified by a distribution
B(d), by an appropriate trigger system based, for
example, on associated multiplicities, azimuthal
symmetry, or asymmetry of reaction products.

In Ref. 19, for example, the inelastic trigger mode
for Ar+ Pb corresponds to B(b) = 6(bmay — b)/ 27D mar’s
with by,, =9.6 fm, as determined in Ref. 24,

The impact parameter distribution can be in-

corporated into p, as

(4.53)

R(ky,ky) =1+ (| p(ky =ky) [H5 . (4.56)

To get the maximum geometrical information out
of R it is clearly necessary to select as narrow a
range of b with B(d) as experimentally possible,
for R measures the impact-parameter-averaged
space-time reaction volume in the chaotic field
limit,

D. Partially coherent pion fields
1. Definition of degree of coherence

If the pion production dynamics in nuclear col-
lisions were simply a superposition of isolated
n+n-7+X as in intranuclear cascade models,
then the results of Sec. IV C and Appendix A sug-
gest that the pion correlation function is dominated
by BE interference. On the other hand, specula-
tions have arisen'®?® suggesting that collective in-
stabilities involving the pion field could occur in
dense nuclear systems. In that case, it is possible
that in addition to the chaotic field component com-
ing from isolated nucleon-nucleon collisions, there
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may be a coherent field component resulting from
the collective action of a large group of nucleons.

To study the effect of such a possible coherent
and chaotic field admixture on the correlation
function, consider the following model of the pion
source: '

J(B) =Jo(R) + I () (4.57)

where J; describes the current due to the collec-
tive action of a group of nucleons, while J, is the
current describing the chaotic component due to
isolated nucleon-nucleon collisions given by Eq.
(4.47).

The average number of pions in the chaotic com-
ponent is then

na= [ @RTAB) D s, 0prp =i, (458)

with 7, given by Eq. (4.37).
J

Py(ky, ey) = |Jy(Ry) + T lley) | | Tyey) + T en(By) % ¥, 04,%;)

On the other hand, the average number of pions
in the coherent component is

1y = fd"kao(/E)l?. (4.59)

The single-pion-inclusive distribution is then
found to be

Pi(E)=<n,,(E))=< IJo(’%) +Jch(i') '2>(N.o,-.xi)
= |Jy(R) |2+ V) [T (R) |2
=ny(k) + nenlk) (4.60)

from which the total average pion multiplicity is
seen to be (n,) =ny +ng. In Eq. (4.60), ny(k) and
nq(k) are the average number densities of co-
herent and chaotic field pions with momentum £.

The double-pion-inclusive distribution is in turn
given by

= |Jo(ey) [2|To(Ro) |2 + VY[ | () |2 |01 (Rp) |2 + | To(Rey) |2 T (By) |2] /
1) [*1, (Bo) LN + NV = 1) (kg = Ro) [*] + 2 Rel (5 (-y) o (k)T H(Ro M (R)YN) ks ~Ro)]

The second binomial moment is then
<n1r(n1r - 1» = ("o +nch)2 + nchze + ”o"cné E) (4-62)

where €,6 ~O(1/A), by estimates of integrals as in
Appendix A 2,
The correlation function is thus finally given by

£ iy 4 Menlfy) nea(ly) ’
R(fysFy) =1+l 0GE [ty = o)

kT, (b)) 2T )
2 Re[ P, (k) Py(ky)
X (V) pley "kz)] (4.63)

with corrections O(1/A). Note especially the value
of R at the intercept 2y =k, =k:

R(k,k)=2 - (D(R)), (4.64)

where we have defined the degree of cohevence of

mode % as .

_a®) P ngB)
Py(k)  ng(k) +ne(k)

Note that with this definition of the degree of co-
herence for mode %, D(%) is simply the fraction of
pions with momentum 2 produced by the coherent
source J;.

If we further assume that Jy(k), J,(k), and p(k)
are real [as for a Gaussian parametrization, e.g.,
Eq. (4.33)], then we can write

D(B) (4.65)

(4.61)

R(ky,kp) =1+ =D (k)1 =D (E;) %Ry = k)
+2[D(ky)D(ky)(1 =D(ky))
X(1L =D (k)] 2p(ky —ky) . (4.66)

In the chaotic field limit, D(k2)=0 and Eq. (4.66)
reduces to the ideal BE interference result Egs.
(3.6) and (4.46). In the opposite limit of a pure
coherent field, D(k)=1, and Eq. (4.66) reduces to
Eq. (4.15). For a partially coherent field with
0<D(k)<1, and D(k) varying from mode to mode,
R(EI,EZ) has the more complex structure of Eq.
(4.66).

Equation (4.66) is our main resiilt of Sec. IV,
showing that R contains both geometrical and dy-
namical information. As is clear from the way
that the functional form of D(%) and p(k; —k;) enter
Eq. (4.66), for partially coherent fields we cannot
simply extract p(g) from R(%;,k,) without first de-
termining D(%) via Eq. (4.64).

To illustrate the effect of a finite degree of co-
herence, D #0, on the apparent radius of the sys-
tem, consider a spherical source with rms radius
R,. To determine R, from correlation data
R(ky,k,), the usual procedure is to fit R(k1,%,) with
a simple parametrization such as in Eq. (3.7) or
its Gaussian analog. To eliminate the dependence
of the shape of R(%1,k,) on the interaction time, the
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difference g =%, -k, must be varied so that q,=w,
—wy=0is held fixed. In other words, we consider
only equal energy pions (|%y| = |%;|) ana vary the
angle between ki and %,. Letting K = 3(% + kz) be
the average pion momentum, an effective radius

R ¢ could be obtained by fitting R(kl,ﬁz) with the
two parameter form!?

R +G/2; K =3/2) | 5.520 1 + 2 exp(=G°R o1?) -
(4.67)

In Ref. 12, X\ was interpreted as the interfering
fraction of all 777~ pairs and R ¢ was interpreted
as the chaotic source radius. From Eq. (4.64) we
would interpret x as 1 —(D(XK))*. In practice, A and
R ¢ can be determined by a least squares fit to the
data. For our purposes we define R, through

8 R(K +§/2,K —4/2)
N (REE) -1 g’

(4.68)

Note that the constraint K*§ =0 ensures that both
pions have the same energy. If the chaotic source
distribution is given by l0(@,q,=0)|* =exp(-g*R,?)
and the variation of D(K +§/2) with respect to ¢ is
small compared to R; i.e., |VD(K)[ <R, then
from Eqgs. (4.66) and (4.68) we get

Rt '“"Roz/(l +D(1€)) (4.69)

with corrections O(|vD |?,v%D). Equation (4.69)
shows that the effective radius is smaller than the
true radius for partially coherent fields. Further-
more, Rg: may then have an explicit dependence
on the mean pion momentum vector K. It is,
therefore, clear that for partially coherent fields,
D(k) must first be determined before geometrical
.information about the reaction volume can be ob-
tained from R(ky,k,).

In addition, once D(%) is known, then the total
number of pions in the coherent and chaotic com-
ponents can be determined from

Reﬁ'z =-3z 1

ny= dekD(E)P,(E) (4.70)

and

Hen= f d*k(1 =D(R)) Py(R) . (4.71)
Note that while it is possible to define a global
degree of coherence via ny/(ny +n,.,) as in Ref. 13,
it is clear that the degree of coherence per mode
D(k) is a much more complete way of character-

izing partially coherent fields.

To summarize these results, we illustrate in
Fig. 2 the expected form of the correlation func-
tion for partially coherent fields. We consider a
case where D(E) is slowly varying so that Eq.
(4.69) holds.

2.25 T T T T

2.00

1.75

1.50

R(k+q/2,k-q/2)

.25}

1.00
o

qRo

FIG. 2. Identical pion correlation function, Eq. (4.66),
as a function of relative momentum § = k1 -—k2 for fixed
B= (k1+k2)/2 The orientation of § with respect to % is
held fixed at § *k =0, corresponding to equal energy pions
(|Z;1=1%5]). The effect of a finite degree of coherence
D(E) is illustrated. The source of the chaotic component
is assumed to be p(q,q0=0)=exp(—%q2R02). Note that the
effective radius Eq. (4.69) decreases with increasing co-
herence. Final state distortions are not taken into ac-
count.

2. Effect of impact parameter average

As in Eq. (4.53), we can incorporate an impact
parameter average over a range of impact para-
meters specified by a distribution B(b). In ad-
dition to the b dependence of the chaotic field com-
ponent, we may also expect that if there is a co-
herent field component, then the source Jy(%;b)
may depend sensitively on b. In particular, 7y(b)
is expected to be greatest for central collisions
which involve the largest number of nucleons in
the interaction region and, thus, maximize the
probability of collective phenomena.

The effect of such an impact parameter average
is to introduce Jd%b B(b) on the right-hand side of
both Egs. (4.60) and (4.61). Because an average
over a product of functions can be quite different
from the product of their averages, the resulting
correlation function for an arbitrary B(%) will not
have the simple structure of Eq. (4.66). _

In order to extract information out of R(ky, ky) it
is absolutely vital to select a sufficiently narrow
band of impact parameters, Ab, via B(f)) over
which the degree of coherence D(k;b) satisfies
|aD/ab | k3 b . We must, therefore, en-
sure that

PAROK
1Jo(k, D) I* + (N T, (R) |

7 *Dp(R)=(D(%; D)5
(4.72)

is approximately independent of b over the range
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Ab specified by B(b). Note that Eq. (4.72) does not
prevent Jy(%,5) and J u(k, D) from varying with b
over that range. It only requires that the ratio of
the number of coherent to chaotic field pions in
each mode % be independent of b over a limited
range. In effect, all the variation of Py and P,
with respect to b in that range then comes from the
variation of (n,(5)), ((n,(5))%, and from p(q, D).
With Eq. (4.72), R(ky,%,) is given by Eq. (4.66) with
D(%) replaced by D z(?) and p(q) replaced by {p(q)) 3.

In practice, to maximize Dg(k), we must select
a narrow range of b around b =0 by measuring P,
and P, with additional constraints on the distri-
bution of the remaining fragments produced in the
nuclear collision. To isolate such desired central
collisions, highassociated (charged or pion) multi-
plicities, together with approximate azimuthal
symmetry may be required.19

This concludes our discussion of the effects of
different production dynamics on R(%y,%,;). We turn
next to the question of how final state interactions
can distort the interference pattern resulting from
a given production mechanism.

V. FINAL STATE INTERAdTIONS
A. Graphical analysis

In Sec. IV we considered a model of pion pro-
duction and absorption for nuclear collisions which
is based on an interaction part of the action func-
tional of the form

Si= f d'xJ(x)p(x) , (5.1)

where ¢ is the pion Heisenberg field and J(x) is a
classical source current. Equation (4.6) follows
immediately from Eq, (5.1), and in the interaction
picture I, (& |S,|O) =J(k), given by Eq. (4.8), is the
amplitude to create one pion of momentum % as
illustrated in Fig. 1.

The amplitude S, for no pions to be produced
can be evaluated using Wick’s theorem in the in-
teraction picture®! as

Soo=(0]T(exp[i fd“xJ(x)@(x)])‘O}

= exp[—% f d'xd'y J(x)Ap(x - y)J(y)]

ex i d'r |J(E, k)| )
Texpi- (27! ky? = 1R1%2 ~m 2 +ic

:e-;/2eix.7, (5.2)

where iAp(x —y)=(0 |T(¢,(x)¢,(y))|0) is the Feyn-
man pion propagator, # is given by Eq. (4.9), and
the real phase x, is given by the principal value

integral

d'e 1J(k, k) I?
J=—2Pf(2ﬂ)4 k(2—m) . (5.3)

Note that J(%, %,) is the usual Fourier transform of
J(%,t) and is related to J() in Eq. (4.8) via J(%,w)
X ((27)%2w,) V2 =J(E).

Equation (5.2) can be simply interpreted in terms
of Feynman diagrams. First we recall that the
linked cluster theorem asserts that logS, is equal
to the sum of all connected graphs in the theory.
For Eq. (5.1), there is only one connected diagram,
®->®, whereby a pion is created at some point x
and destroyed at some other point y. The value of
the diagram is precisely —-n/2 +iy, as computed
above.

The amphtude to produce exactly m pions with
momenta 2,..., k,is
Sy seveys by

=<E, ok, T[exp (z fd4xJ(x)¢,(x))] |0>

=id(ky) ik e X (5.4)

which is what we also get by evaluating the Feyn-
man diagrams in Fig. 3.

We can now recover the previous result, Eq.
(4.14), for the m-pion inclusive from

Pylkyy e kp)

:Zn 'm)'fdk""l dkls(kl7 ‘.,k)lz
(5.5)

In this model, P, is obtained by simply squaring
the diagram in Fig. 3(a).

(a) J(k)®/k'

J(Km) .

JO——=—RJ

Km

FIG. 3. Feynman diagrams corresponding to the amp-
litude, Eq. (5.4), to produce (a) exactly m pions with (b)
arbitrary vacuum fluctuation in the classical current
model Eq. (5.2).
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Now we turn to the effects of final state inter-
actions. To incorporate such interactions, we in-
troduce effective one- and two-body potentials
V(x) and U(x —v) via the following action functionals

Sy==14 [a'xo(0V(o) (5.6)
and
Sy=-1 f dxdy G (x —y)dX(y) . (5.7)

The optical potential V (dimensions m?) describes
the interaction of the produced pions with the nu-
clear system. The 77 final state interactions are
to be described via U (dimensions m!) in Eq. (5.7).
For Coulomb final state interactions, Egs. (5.6)
and (5.7) are modified in the usual way to take into
account the four-vector nature of the Coulomb
field A ,(x).

Introducing S, and Sy in addition to S; obviously
modifies the pion production amplitudes. In Fig,
4 typical final state distortion diagrams are shown.
In Fig. 4(a) two pions are produced at space-time
points x and y with amplitude J(x)J(y). The pions
then scatter in the external potential V(xi) at ar-
bitrary points x,;, and they also scatter off each
other via U before being detected with momentum
B, and k,. What greatly complicates the problem
is the two-body potential U which also leads to

(b)

[
®
=

(c)

n

Viy,) Vlyn)
*
Z J&‘) éno é ~ - év(x-y) f,’;(y)

Yi Yn J(x) y

FIG. 4. () The amplitude J5(%4,%,), Eq. (5.39), to pro-
duce two pions including final state interactions with one-
and two-body potentials V and U. (b) Scattering diagrams
with virtual pions that are neglected in comparison with
scattering diagrams (c) in the optical potential V. (c)
The infinite class of diagrams summed via Eqgs. (5.9)
and (5.12) to incorporate final state interactions with
the optical potential V.

interactions with virtual pions which are produced
and reabsorbed during the nuclear collision as
illustrated in Fig. 4(b). In contrast, the distortion
graphs due to the one-body optical potential V,
illustrated in Fig. 4(c), can be easily summed.
We turn in the next section to that special case
when S ; can be ignored compared to Sy.

B. One-body optical potential case
1. Coherent state distortions

To sum all rescattering diagrams in Fig. 4(c)
due to an optical potential V, we need only to solve
for the pion propagation ¢ Ay(x,y)
=(0|T(dy(x)dy())|0), in the Furry picture (see
pp. 566575 of Ref. 35) in which the field ¢ ,(x)
satisfies

@ +m+V(x)Py(x)=0, (5.8)

Then Ay, satisfies the integral equation

Ay(x,y) = d(x -y)

+ f d'z 8g(x = 2)V(2)By(z,y),  (5.9)

with Aj being the free Feynman propagator. In
terms of A,, we can sum all disconnected diagrams
to obtain for the vacuum-to-vacuum amplitude

Soo(V) =exp [— i/2 [ atxd'y J(x)AAx,y)J(y)]e”v ,
(5.10)

which is the natural extension of Eq, (5.2). In Eq.
(5.10) there is an additional phase 6, arising from
virtual pair production and annihilation in the po-
tential V(x). The expression for 6, involves a
coupling constant integration over f V(x)Ap(x,x)d s,
which we do not display since we will only be in-
terested in [Sy(V)|%. We assume that V(x) is not
strong enough to produce real pion pairs and hence
that 6, is real. This assumption is quite reason-
able for the final state interaction potentials in-
volved in nuclear collisions, and indeed, called
for by the very definition of final state interactions.
Only the external source current J(x) produces
real pions in our case.

Therefore, the probability that no pions are pro-
duced in the reaction is

[Seo(V) |2 =exp [— fd“xd‘y J(x) Re(iAV(x,y))J(y)]

=e "v,

(5.11)

As we will see below, under the assumption that
V(x) does not lead to real pair production and the
assumption that V(x) supports no bound states, the
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number 7, definedvia Eq. (5.11) will turn out to
be the average pion multiplicity.

Now, we compute the amplitude iJ (k) to produce
one pion of momentum k with no vacuum fluctu-
ations, as illustrated in Fig. 4(c). For the case

V =0, we already saw that J,.(%) is given by Eq.
(4.8). For V+0, we compute Jy in the (out) inter-
action picture using standard techniques (see pp.
146-149, 178-189 of Ref. 31):

i) = | 0) 00, = [ %F L1800 (310980 ™(V) = lim [ 733045 O] 1S | o) ot

=lim ] d3xf§(x)i5o[;%<—7l> J a2ty T KO T2 V) ule) -

X V)2 ) O ]

:}01‘1'1"1" i i(=-2)" fdsxf:(x)ié;) fd4z1 crdiz,db J(y) [i8g(x = 20)V(2,)iAg(2; = 25) " " V(2,)i A2, = V)]
n=0

=i j d'y J) (G ) *,

where in standard notation,3! f}¥(x)
=e'™/[(27)°2w,]! /%, 3, =3, — 3, and S is the S ma-
trix for the combined interaction S; and Sy in Eqgs.
(5.1) and (5.6). We have also defined the incoming
scattering wavefunction

Wi =lim [ ay /i), iy,
vy .
= [ %770}, 0| T4 ¢4 0)

=(k,, | oy(%)]0) . (5.13)
In Eq. (5.13) the second line follows from the def-
inition of A, in terms of the Furry picture fields
¢y and from the asymptotic weak convergence of
¢y to the noninteracting out field ¢, -

From Eq. (5.8) we see then that ¢, satisfies

(O +m?+V(x))9(x)=0 (5.14)
together with the boundary condition that
. _ e'ikx
x%}g}owk(x):fk(x)=[(2Tr)32wk]1 . (5.15)

Thus ¥, reduces to a plane wave at x,—~«, Natu-
rally, ¢, also reduces to f, in the case V - 0. Note
that we have implicitly used in Eq. (5.13) the as-
sumption that the vacuum |0y is stable with re-
spect to the interaction Sy in Eq. (5.6). This can
be seen from the first line of Eq. (5.13) since, in
general, both positive and negative energy solu-
tions of Eq. (5.14) contribute to A,(x,y). Equation
(5.15) only follows when the negative energy so-
lutions do not contribute in the y,— limit, i.e.,

(5.12)

no pair production occurs.
Under this same assumption we can write

iy (e, )= [ @k (805 =300 6y(0) (B ) s 603 [0

+ 600 = %0)(0 [$4(9) | %, ) (B, | D4 (x) | 0)]
(5.16)

since ¢, connects only one particle state to the
vacuum. Actually, Eq. (5.16) also requires that
V(x) does not support bound states, i.e., only con-
tinuum one-particle intermediate states contribute.
This latter requirement should also be well satis-
fied in nuclear collisions.

Summarizing Eqs. (5.12) and (5.13), we have ob-
tained the intuitive result :

JIy(f) = f dbx J(x) oy dv(2) [0) (5.17)

which states that the amplitude to observe one pion
with momentum % is the product of the amplitude
J(x) for creating a pion at some space-time point
x times the amplitude (2., $v(x)|0), for propaga-
ting that pion from x such that its wave function
approaches a plane wave as { —+ =,

We can now immediately calculate the amplitude
for creating exactly m pions as

Skyy.., Bp)=idy(ky) iy (k,)S0o(V), (5.18)
with the vacuum fluctuation amplitude Syy(V) given

by Eq. (5.10). To calculate the m-pion-inclusive
distribution via Eq. (5.5) we need to evaluate
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f [JV(E) |%d%k= J' d'xdly J(x)J(y)
x [ [a¥0[04(0)| oy X e | 04) l0>]
= f d*xd* J(x) Re (iay(%,))J(y)

=ny, (5.19)

which follows from Egs. (5.17), (5.16), and (5.11).
Using Egs. (5.18) and (5.19) in Eq. (5.5), we ob-
tain finally

P,,,(E,,,, ) i’m)= ’JV(Ei) |2 e IJV(Em)Iz s

which is the natural generalization of Eq. (4.14).
Integrating the single-pion-inclusive distribution
(m =1) shows immediately that n, in Eq. (5.19) is
the mean pion multiplicity.

Equation (5.20) demonstrates that for a pure cur-
rent source, the only effect of the external poten-
tial is to redistribute the momentum distribution
of pions without introducing correlations. This
is clear from the diagrammatic analysis. The
resulting correlation function is identical to Eq.
(4.15).

(5.20)

2. Chaotic field distortions

Now consider a chaotic ensemble of currents as
in Eq. (4.47). The on-shell Fourier transform
Ju(R) is now replaced by

N
TRy = f A () * 3 et T (x = x))
i=1
ddq ~ % < 10, tqx
=\ = i
f(z,,)4 e (@) dq) Zi:e el (5.21)
in terms of the space-time Fourier transforms

i@ = [ et at (5.22)

and

J.(q)= j el (x)dby . (5.23)

Note that in the limit V—~0, ¢, (x)~fx(x) as in Eq.
(5.15), and therefore

)5 (20)0(dy =008 ~ B rs—rers -
(5.24)

In that same limit, J%(%) reduces to Eq. (4.47).
We can now eva_tluate the ensemble average over
N, ¢, %} for Py(k) as in Eq. (4.60),

Py(R) = ([IEE) B v, 040501
d'q d'q’ -,
= [ S

X[ (@)plg =gV Xa ) Wrla"),
(5.25)

where p(q) is the space-time Fourier transform
of the chaotic source distribution p(x) in Eq. (4.29).
To simplify Eq. (5.25), we note that according to
Eq. (5.24), ¥.(q9) must be sharply peaked around
dp=wy and §=k. The “width” of ¥, (¢) around
q =(wy, k) of course depends on the strength and
form of the external potential V(x). It is clear
that the average value (V) of the external potential
must set the scale of the width ¥,(g). On the other
hand, J,(q) varies on a scale @m,. Thus, if
w <<m,2, then J,(q) varies slowly compared to
¥z(q), and we can approximate

UM ()~ U (@) o (R, wy) - (5.26)
When Eq. 65.26) holds, Eq. (5.25) simplifies to
Py(R)~ |J (k) |[XN)py(k, k), (5.27)

where J,(k) is given by Eq. (4.8), and the distorted
transform of p(x) is defined as (note convention
about [(27)%2w,]!/? factors)

dq dq 3 1/2
pylf, B,) = f o Galen’2e,]

X P@)pla=q" V3, (@ ) (27)°2w,, ] /2

= f d*x p(o)(@; (D4, (1) (27)° (20, 20,) /2,
(5.28)

From Eq. (5.24), the distorted transform reduces
to the Fourier transform when V -0, i.e.,
Pv(ku kz)v_’p@l_kzs wl"*’z) . (5.29)

-0
Thus py(%, ) -1 in that limit, and Eq. (5.27) re-
duces then to Eq. (4.35).

For k,=k,, py(k,,k,) has the simple interpreta-
tion of being the probability to find the pion in the
interaction region specified by p(x), given that it
was measured at { - in state {k) For a repul-
sive potential, [¢;[*<1 for small x; hence py(, &)
<1. Thus py(k, k) can be thought of as a penetra-
tion probability through the external final state
interaction potential.

Evaluating next the double-pion-inclusive dis-
tribution in the approximation where Eq. (5.26)
holds and (N) > 1, we get
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Py (g, o) =TGR [P [TE2) [, 00
~ |7, () 7 |7, ey) [XN)?
X [py Ry, k))py (o By) + |0y Ry, ) [2].
(5.30)

In this chaotic field limit, we therefore obtain the
J

[axary p(x)p(y)l 3 03, 60, (9) + 43,600, (9)]

following expression for the two-pion correlation
function: ‘

A AR P |pv(k1,]~€z)|2.
Rl k)~ 1 oy o T

Noting Eq. (5.28), we can rewrite this expression
in analogy to the simple form in"Eq. (3.6) as

(5.31)

2

R(k,,ky)=
fd"xd“y p(p(v) [45 () [ [43,(9) |2

In the numerator the symmetrized two-pion amp-
litude appears, whereas in the denominator the un-
symmetrized amplitude appears. This is the ex-
pected form of the correlation function for the
chaotic field case based on the heuristic argu-
ments in Sec. III. Our derivations have the ad-
vantage of showing the conditions necessary to de-
rive Eq. (5.32) in an exactly solvable field theor-
etic model specified by Egs. (5.1) and (5.6).

3. Partially coherent case

For this more general case, the current in Eq.
(5.12) is written in analogy to Eq. (4.57) as

Jy(R) =JY(&) + JL, (%), - (5.33)

with J¥, given by Eq. (5.21) and J} given by Eq.
(5.12) with J(x) =J(x).
Evaluating the single-pion-inclusive distribu-
tion gives
Pl(%) =( IJ(‘),(%) +Jtrh(ié) l2>(N, LR
=ny(k, V) +n,(k, V), (5.34)
with ney(%, V) given by Eq. (5.27) and n,=|JY |2
Note that the degree of coherence, Eq. (4.65), is

affected by final state interactions. The distorted
degree of coherence is given by

’ﬂo(]-e, V)
[no(ie, V)*”ch(zy V)] :

Finally, evaluating the double inclusive distribu-
tion, the correlation function replacing Eq. (4.66)
is found to be

R(k,, 7)™ 14+ (1=Dy (k,)X1=Dy (%,)) |y (%, &) |2
+{Dy (&,)Dy (%,)[1-Dy &,)]
X [1-Dy(%,)[}*/* 2 Repy (&, 5)
(5.36)

Dy (%)= (5.35)

where

(5.32)

. - B py(élg IEZ)
py(ky, k) = (oy By, 1)py (Ry, 2,)P 72

replaces the Fourier transform p(k,~k,) in terms
of the distorted transforms given by Eq. (5.28). Of
course, in the limit V -0, Eq. (5.36) reduces to
(4.66).

Note that the intercept R(, &) = 2—Dy2(k) mea-
sures the distorted degree of coherence. Also, it
is clear that the geometrical information provided
by R(,, %,) is distorted by final state interactions.
For a general partially coherent field in the pres-
ence of final state interactions it is therefore a
nontrivial task to unfold the effects of V(x). In a
subsequent paper,?* we study systematically how
to unfold final state interactions for potentials
V(x) appropriate for nuclear collisions. Our aim
here has been to display the structure of the re-
lations between R(%,, ,), p(x), D(%), and V(x) as
summarized by Eq. (5.36).

(5.37)

C. Two-body final state interactions

1. The Bethe-Salpeter amplitude

With the inclusion of a two-body potential U via
Eq. (5.7), no exact calculation of final state dis-
tortions is possible. However, an important class
of diagrams [Figs. 4(a), (¢c)] can be summed to ob-
tain a reasonable approximation to such distor-
tions.

The essential physical approximation is that the
single-pion-inclusive distribution P, (%) is not af-
fected significantly by U(x—y). This approxima-
tion is expected to be good when the single-pion
trajectories (wave functions) are determined
mainly by the external potential V(x). For
Coulomb final state interactions the strength of
the external potential Za~1 is much larger than
that of the relative potential @ < 1. In this ap-
proximation, we therefore neglect the effect of
two-body final state interactions between ob-
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served and unobserved pions as in Fig. 4(b). Only
dlagrams summed in Fig. 4(c) are considered,
i.e.,

P,(R)~(|7y(®) [»,

as given, for example, by Eq. (5.34) for partially
coherent fields.

The double-pion-inclusive distribution, on the
other hand, is clearly sensitive to the distortions
of the relative wave function of the observed pion
pair. This is especially true for small momentum
transfers, |E,~%,|<m, V&, corresponding to
classically forbidden regions of phase space. The
class of diagrams that lead in the nonrelativistic
limit to the two-body Schrbdinger equations for
potentials V and U is illustrated in Fig. 4(a). Our
second physical approximation is, therefore, to
calculate the two-pion production amplitude
J,(%,, B,) as in Fig. 4(a). In this approximation
then

(5.38)

I,y ) = f dxd'yd ()7 (y)

X <k1’ k2, out IT(¢(9€)¢(3’)) '0>4a. ’
(5.39)

where ¢(x) is the Heisénberg field for the final
state functionals Sy, + Sy in Eqs. (5.6) and (5.7),
not including S;.

In analogy to Eq. (5.13), we will denote the
symmetrized two-pion scattering wave function
appearing in Eq. (5.39) as

a1, (0 9 D* = Ry, oy, OUt [TCH(0)0(9)) [ 0) «
(5.40)

In order to sum all diagrams of the type in Fig.
4(a), we first express Ypyr, 0 terms of the two-
pion propagator

-0 [T ()0 (3" ) o (x)p () |0)

via the usual reduction procedure.** Then the
Bethe-Salpeter ladder sum corresponding to Fig.
4(a) leads to the following integral equation for
G,:

Gyx'y's xy) =

G,(x",y'5%,9)
=[a,(x, x)Ap(y", ¥)+ A (", ¥)8y (7, x)]

+ifd4x”d4 "Gylx'yy's x", v U (x"=y")

XAV(XI’>X)AV(y’,’y)) (5-41)
where we used U(»)=U(~v) and the symmetry prop-
erty of G, with respect to the interchange of labels
xll ‘_’yll’

From Eq. (5.41), we obtain the Bethe-Salpeter
integral equation® for ¢, ,, as

d);v”z(x’}) ¢’*1”2(x’ v)-i qu "d% "‘/)kl kz(x Y )

XU(x"-y")AF ", x)A%(y", ),
(5.42)

where
Bron, (6 9) =5 (Y, (9)+ 93 (3, (9, (5.43)

is the asymptotic form of ¢ (x, y) with $3(x)
given by Eq. (5.13), i.e.,

Lm 9, 5, (%, y) = Pra 6 9). (5.44)
1g—>®

yo—>°
Equations (5.42)--(5.44) show that ¢’;1kz is the in-
coming two-pion scattering wave function in the
potentials V(x) and U(x—y).
In differential form, it is straightforward to
verify that

@+ m,” + VD, +m,% + V(9 a, (x, 9)

= =iU(x=y)i5 1, (%, 9). (5.45)
In terms of this Bethe-Salpeter amplitude, the
double-pion-inclusive distribution in this approxi-
mation is given by

Pz(’.éuéz)’%< 'Jz(iéui’z)’z)
2
=<;} fd‘lxd"yJ(x)J(y)z/)k1 kz(x,y)l >
(5.46)

Note that in the limit where the two-body final
state interactions are negligible (U=0), ¥; », T€-
duces to ¢; ,, in Eq. (5.43), and P, reduces fo the
external fleld distortion form in Eq (5.20).

2. Gamow penetration factor

An extreme case of interest is when the external
potential V can be neglected and only the relative
potential U contributes to final state distortions.
In that case, d’;ikz can be decomposed inte a pro-
duct of a center of mass and relative wave function
as

e R pr k(r) + g x(=7)]
(27)°(2w 2w,)1 72
d4 ’ e'iKRe'ia’r
(2m)* (217)3(20.)‘2(.02)”2
X[prxla) + brxl=a)],  (5.47)

where K =k +k,, g=(k; —ky)/2, x=R +v/2, and
y=R ~%/2, and ¢, x(q’) satisfies from Eq. (5.42)

Uy, 0) =

o7 kla’)=(2n)'6% g —q") —iaf(3K +9)8, (3K -q)

(2 )4 be (PG’ -P), (5.48)
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with AJ(p) =(p? —=m,* —ie)™.

In the nonrclat1v1st1c limit (|G|, |K| <m,), the
integral of ¢ «(q') over dg§, which is ¢, (¢,¢=0),
satisfies the nonrelativistic Lippmann-Schwinger
equation.®® The important point to note in Eq.
(5.48) is that ¢ x(¢’) is sharply peaked around
q’=gq, with a width that is determined mainly by

U(g —q"). This suggests that to a good approxi-
mation
- - diq’ JK/2+q)IK/2-q")
Ty Ty =~ (L4 K2 LA )IE/Z 2g

en)" T (2mn)¥(2w,2w,)'?
x%[‘lhq—x(‘l N+ x(-g /)}*
=iJ(fy)id (k) p (v =0)) *,

where J(F) is given by Eq. (4.8).

This approximation holds when ¢, x(¢’) is sharply
peaked compared to J(¢'). In this case, the double-
pion~inclusive distribution Eq. (5.46) becomes,
approximately,

Py(ky,ky) = i¢>;K(fr 0,t=0) X [J(ky) 2| I (k) [2).

(5.50)
For a partially coherent current ensemble, for
example, the ensemble average is evaluated as in
Eq. (4.61). Therefore, the effect of two-body final
state interactions on the correlation function R is
simply to multiply the correlation function in the
absence of final state interactions [Eq. (4.63)] by
a penetration factor

Glly,ky) = |pp (7 =0,=0)[?,

(5.49)

(5.51)
i.e.,

(R(Ry,R9)) y =Gl Ry )RRy, By oo -

In the nonrelativistic limit and for a Coulomb final
state interaction, .G is the well-known Gamow
factor®

G(Eh};Z) ‘:2"777/(621"‘" 1))

which is the modulus square of the nonrelativistic
Coulomb wave function at the origin. In analogy
to that Coulomb case we will refer to G(&,,k,) as
the Gamow penetration factor.

(5.52)

n=am,/|ky =k,

3. Distorted Born approximation and generalized
Gamow factor '

Up to now we have analyzed two special cases:
(1) external one-body potential only, V(x), Eq.
J

(5.20), and (2) relative two-body potential only,
U(x-y), Eq. (5.50). The more general problem
of combined one- and two-body final state inter-
actions involves the solution of Eq. (5.42), which,
even in the nonrelativistic limit, is an extremely
difficult task. The needed two-pion amplitude
Zp;;.kz in Eq. (5.46) is too complicated in practice
to calculate, especially for Coulomb potentials.
We can, however, obtain a reasonable estimate
for J,(k,,k,) in Eq. (5.39) in the case that U is
weak compared to V in the spirit of the distorted
Born approximation.

From Eq. (5.42), Vik, ™ Pin, to zeroth order in
U. This means that in the distorted basis speci-
fied by ¢z 4, the coefficients C(k,k,,kiks) in the
expansxon of «/)klk, in that basis are ppaked
around %)=k, ki=k, and kl=k,, ki=k,. LU is
weak compared to V then the w1dth of C(kll%z,l},’l};)
around those peaks will be small, and an approxi-
mation similar to that in Eq. {4.49) will be possi-
ble.

To develop this approximation we assume first
that the time dependence of V(x,!) is so slow that
we can replace V(x,!) by an effective time inde-
pendent potential V(¥). In that case the one-body
distorted waves in Eq. (5.14) have the form

-;wkt

‘pk(x )= U"(x)r2w (“'ﬁ)a]‘/z ’ (5.53)
where v,(%) -~ ei®¥ ag |% | ~. These incoming
scattering waves form a complete orthonormal
basis in the potential V(x¥). Again we assume, as
in Sec. V B, that V(¥) supports no bound states.
Inserting Eq. (5.53) into Eq. (5.16), the external
potential propagator can be decomposed into its
positive and negative frequency parts as

fd"k P"“"‘O o)
vl x)= (27)* 2w
% [Uk(xl)y (&) _ ’Uk(x)?};(ﬁ.(')]
w

~W,+1€ W+ W,~i€

=ALx’,x)+ A5{x! ,x). (5.54)

To calculate the first order correction 895 ,, to
z/),;lk2 from Eq. (5.42), we will neglect the negative
frequency part A;(x’,x) of A,(x'x) because U is
assumed so weak that virtual pair creation by U
is negligible. Therefore, the first order correc-
tion sz);sz from Eq. (5.42) is

SR e =i [ ady g ey W =y )A3 )M, )

AR ARy as
lf(zﬂ)q (5»)4 A (k )A (k )

X (R, |U RISy + (R, |U |RIRD)) @ e ze e [0, G0y (3)e 00 gikb030]

1 (5.55)



where A¥(k)=(2w,(k,— w,+i€))™, and the off-shell
matrix element is defined as

K, [U (kD)= [ a'x d'y [0}, oy @)eichioRomo]

X U(x=y)[0},(5)og,(§)ei *20eorso]

(5.56)

In the limit V -0, v,(%)~ ¢**% and
(e, |U [Rikely) = (21Y'6 ey + oy )= R (y~ B2 .
(5.57)

We can now evaluate the two-pion production amp-
litude Eq. (5.39) to first order in U as

Iy, k) =id (R, )id y(k,) + 8J (R, ) , (5.58)
where
_ d'ri_d'ky o,
6d ,(ky,5) = r;— (-2737 v(k})id y(R3)

1
X @y (2w,2w,) 7

X (i AY(R])ANRL) (R, [U |R1R)))
(5.59)

and the off-shell distorted transform J,(k, &,) is
given by

T, k)= [ d'x etoxon i@ (5.60)

Note that in our convention in Eq. (5.12), J, (%)
= Jv(E ’ wk)[(zn)32wk]-1/2.

Using Eq. (5.57), it is easy to show that when
V-0, Egs. (5.58) and (5.59) agree with Eqgs.
(5.48) and (5.49) to first order in U, as they must.

We can now invoke the same approximation lead-
ing to Eq. (5.49), i.e., the function in the brackets
in Eq. (5.59) is sharply peaked around k=%,
ki=k, compared to the slowly varying functlon
Jv(k’)J (k;). Therefore we obtain an approximate
factorization as

85y, log) mid y (R )iy ()0 ¥Ry , By) (5.61)
where

.. 4 4
8¢*(B, fy) =i dk dkz

(2,".)4 (27).)4 A&'(k{)-’ls(ké)
X((iky |U [R5 (5.62)

Finally, we obtain via Eqs. (5.46), (5.58), and
(5.61) the distorted Born approximation for the
correlation function as

[R(Ey, )Ny, v =S (ky, i) [R(Fy s B)lyao,vy s (5.63)

where G is the generalized Gamow factor to first
order in U, but all orders in V,
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S(ky,ky) =1 +2 Redop*(ky, ky) (5.64)

with 6¢* given by Eq. (5.62). In Eq. (5.63) Ry~ v
is given for partially coherent fields by Eq. (5.36).
Equation (5.63) is the main result of Sec. V,
showing how both relative and external final state
interactions affect the correlation function. If we
consider V to be the external Coulomb field of
strength Za, and U to be the relative Coulomb
7w potential of strength o, then Eq. (5.63) incor-
porates final state interaction to all orders in (Z«)
but only first order in . The numerical evaluation
of Eq. (5.63) will be published elsewhere.?! For a
brief summary of those results refer to Sec. 1.
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APPENDIX A. SPACE-TIME PARAMETRIZATION FOR
CHAOTIC FIELDS

1. Two-pion ensemble

In this section, we derive the chaotic field cor-
relation function Eq. (3.6), using a simple space-
time parametrization of the pion density matrix.
The model states in Eq. (4.5) will be chosen to be
localized packets |x,,..., x,) s around space-
time points x;, which are assumed to be distri-
buted in a space-time volume specified by p(x).

We construct the normalizable, symmetrized
packets via

[xly"': xn>_f =¢;(x1)"' qb;(x,.)iO), (Al)
where
. eikx . -
930 = [ a* G/ @), (a2
with

kx=wyx, k- x
and
[a(R),a* (% )]=6%F -5").

To ensure that f(x!x}f=1, we normalize f such
that

(2 )3 @)= (43)
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The two-pion state |xy)f is then normalized to
Ayl xy), =1+ | Lx|w)]2, (A4)
with

& 19),= 6,0, 0;001= [ é;’; e | r@) |2
(A5)

From Egs. (A3)~(A5), it follows that
1 sf(xﬂ XYYy < 2.

We can now construct a two-pion ensemble in
this space-time picture as

PN, f d'xd %y p(x)p()|xy);Lx9] , (46)
where
N/t = f d4xd*y p(x)p () xy|xy),

=1+ ﬂ &
(2m)* (2m)®

x| fR)p(k -k ,w, —w ) fR)|?. (AT)

Clearly, 1 <N, <2 because lp(@) |2 <1.
The single inclusive distribution in this picture
is obtained via Egs. (4.2) and (A8):

B(®)=N, [atxdiyp(p) (xy|a’®al®)|x),

=N,fd4xd"yp(x)p(y)fdsk'|<7?’5'|xy>f|2,

(A8)
where
- IR { (V4 (0]
(kk' lxy>f z(ezkxezk Yt e k ezky) T;F—_ (Ag)

is the two-pion wave function in momentum space
that is analogous to ¥,, in Eq. (3.5). Evaluating
Eq. (A8), we find

P,(k)=2N, ]{2(232 [1+e®)], (a10)

where e(%) is a correction term given by

~ - d3p!
€(k)—~j (—2—1;)-3—

F&) |2 pk~#)|?, (a11)

which because |p(q)|? <1 satisfies 0 <e <1.
The double inclusive distribution with this para-
metrization is in turn given by

Ey(fy, ;) =2N, l—)z(z‘kl))ﬁ Ml (1ot~ 1,

7T3

(2m)®
(A12)

Integrating Egs. (A10) and (A12) gnd noting Eq.
(A7), we see that (n,) =(n,(n, —1)) =2 as it must be

from Eq. (A6). Therefore the correlation function
Eq. (1.1), which is to be compared to Eq. (3.6), is

Rk, k) =[1+ |, - ) P11 - € By, B)],  (A13)
with a correction function given by -
cloy, k) =1 = {N,[1 +e(R)][1 +e ). (A14)

We show below that for nuclear collisions € « 1
and, thus, that the ideal BE interference result
Eg. (3.6) follows in this simple space-time para-
metrization of p,. Our aim in deriving Eq. (3.6)
from Eq. (A6) was to demonstrate that this form
for the correlation function is a general conse-
quence of a space-time picture of the production
dynamics and not unique to the classical current
ensemble derivation in Sec. IVC. It is in fact
straightforward (though tedious) to demonstrate
that Eq. (3.6) also follows under suitable condi-
tions from the more general space-time para-
metrization

DI AD) f d*x,p(x,) « + d*x,p(x,)
X |x1 oo x,,)f f<x1 ceo x,,f’ , (AlD)

with P, (n) being the pion multiplicity distribution.
The necessary condition to derive Eq. (3.6) from
Eq. (A15) is that the pion wave packets be small
compared to the dimensions of the reaction volume
specified by p(x).

2. Estimate of correction terms

Next we show that if the spatial extent v, of the
packet |x), is small compared to the spatial ex-
tent R, of the pion source p(x), then

€~0((r,/R,\) <1 (A16)

in both Egs. (A10) and (A13). To see this, we note
first that Eq. (A10) places a strong constraint on
|f(%)|? since the definition of the ~ sign in Eqs.
(4.13) and (A6) is that the right-hand side of both
Eqs. (A10) and (A12) provide a good approximation
to the observed inclusive distribution. Thus we
are not free to choose f(;e) as we like, but rather,
Eq. (A10) constrains ] f(7€)[2 to have a momentum
dependence similar to the observed single-pion-
inclusive distribution. Note the similarity between
the role of f here and the classical current J(%) in
Sec. 1V.

For relativistic nuclear collisions the observed
pion distribution, and hence ‘f(7e)|2, falls off rap-
idly for |k| > (k,)~m,. Therefore, we can esti-
mate 'rf~<k,)‘1~1 fm. Next, from dimensional
considerations of Eq. (A3), we can estimate the
order of magnitude |f(l~e)|2 for {I%i <1,/'rf as
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fk)|®

(2m)?
On the other hand, for nuclear collisions, the di-
mensionless p(k) satisfies |p(k)|<1 and must fall
off rapidly for |%|>1/R,, where R,~0(A3*m,™),
A being the average nucleon number in the pion
production region. For Eq. (2.1), A ~40. There-
fore,

[ a#lpte -1~ [ A’
1&-#"1$1/ Ry
~o<—1——> ~o(""”3> A18)
R® 2 ) !

For A>1, |p(k)|? is sharply peaked compared to
| 7(®)|2, and we finally obtain, for k<1/7,,

()~ L‘z’e—))lg—fdf*k' |~ %, 0, —wy)|?

~O((r,/Ry)*) ~ O(1/A) < 1. (A19)

Note that for £>1/7,,
rapidly.
Next, from Eq. (A7)

~0@r )~ 0(m,™). (A17)

|f|? and, hence, ¢ decreases

A% | iy -
=GR
<1+0(1/A), (420)

wheré we used Eq. (A3) to obtain the upper bound
on N, -1 and then Eq. (A19) to obtain the estimate
for e(k)

Equations (A19) and (A20) therefore imply that
e(®,,%,) given by Eq. (A14) is O((r,/R,)®) =0(1/A)

P(x,y;%)=3iri}<5[x (P (k)>1/2icose] [ (P;?)
= lim - ZW f du & f dve-iyv<exp[ (P (k)) 1 f (ucos9i+vsin9i)]>

N—>°°

) v i_l sin Gi]>

as stated in Eq. (A1S6)..

Finally, we note that the same arguments lead-
ing to Eq. (A20) can be made to estimate the cor-
rection term 6 in Eq. (4.43) of Sec. IVC1. In par-
ticular, comparing Eqs. (4.43) and (A7), we see
that we can identify

NN -1)) |
(N?)

where |f()|2=(2n)®|J, (k) |2/%,, with 7, given by
Eq. (4.37). From Eq. (4.35), this If(k |2 is also
constrained by the single-pion-inclusive distribu-
tion to decrease rapidly for |%k|2zm,. Thus, Eq.
(A17) still holds and the estimate for N,™ in Eq.
(20) still holds. Therefore, 6 =0(1/A) as stated
in (4.43).

5 Nt 1], (A21)

f

APPENDIX B

We derive here the limiting ensemble probability
density for the chaotic current strength |J,, ()|2
to have the value |J|2, Eq. (4.50). First define a
vector pair of limiting random variables

. - ) PI(IE) 1/2 7 N .
(X(%), Y(R)) =A}1m v Zcos 6, ﬁ sin 0,~> ,
gl i=1 1=l
, (B1)
where 6; =kx; +¢;. The chaotic current strength
Eq. (4.49) is then given by

| T (B) |2 =X2(R) + Y 2(R) . (B2)

The joint probability density of (X(%), Y (%)) is ob-
tained as follows:

{x;, ;1

= (xi,wi)

=lim(—2755f: due'ix"f dv e-"y”{fd"xlp(xl f _Zi)_ [’(ﬂigz)l/z[ucos(kxl +¢) +v sin(kx1+q§)]] }N

| —1%?2(21) f d“e'mf.w dye-m[l M(“ +”2)+O<N13/2>]N

P @) T [_ g(;)y 2)] :

(B3)

We emphasize that we have implicitly incorporated the condition of Eq. (4.44), N*/2 |p(k)|<< 1, via the de-
vice of averaging over the ¢; in obtaining Eq. (B3). Now we write the probability density for ]Jch(k)i to

have the value |Jf, in terms of p(x, y3 R):

Pm(IJIZ;l}FdeL dy5(|T[* -2 - y)p (x, 93 )

from which Eq. (4.50) follows immediately.

(B4)

We note that the bivariate Gaussian result for p(x, ;%) is simply an aspect of the central limit theorem,

as discussed in Ref. 1.
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