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Interactions of two composite clusters are treated in a multiple scattering framework whereby many-
particle operators are decomposed into a systematic and finite series such that there is an ordered
sequestering according to particle rank. Thus an A-body operator is written as the superposition of all
distinct groupings of interactions that occur between pairs of particles, three particles, four particles, etc.,
such that all groupings contain at least one particle from each of the composite systems. It is shown how the
transition operator, a reaction operator, and an optical potential may be described in this framework. The
general nature of this decomposition is demonstrated and its connection to more standard multiple-scattering
prescriptions delineated.

NUCLEAR REACTIONS scattering theory, multiple scattering, nucleus-nucleus
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expansion.

I. INTRODUCTION

A substantial number of different approaches
to multiple scattering have appeared in the litera-
ture, with wide variations in the physical systems
to which they are addressed. The unique physical
situation available for study in the collision of
nuclei at intermediate and high energies (and per-
haps also the collisions of isolated nucleons as
well) prompts us to consider a subset of those
approaches in which there is an ordered seques-
tering of the degrees of freedom into groups of
constituents, which either participate in the reac-
tion or observe (the spectators) the interaction
region. In this paper we describe the interaction
of two composite structures in a manner which
aQows for the presence of arbitrary N-body for-
ces. Our work extends the development of Ernst,
Londergan, Miller and Thaler (ELMT), ' and of
Siciliano and Thaler (ST).' We show schematically
how the mean-field effects arising from many-body
interactions may be accommodated. Furthermore,
in outlining a reaction operator formalism we
indicate how Pauli effects may be included in a
natural manner. Thus, even in the particle-nuc-
leus limit our approach constitutes an extension
of the work of ST.

While multi-body interactions' ~ (more than two
or three body) are not normally addressed in nu-
clear applications, which is the area of our pri-
mary interest, the formal development allows
for their presence and may be applied to a wide
variety of reacting systems. In this spirit we
attempt to limit the restrictive assumptions on the
character (e.g. , fermions or bosons) and dynamical
framework (i.e., nature of the interactions) gov-

erning the behavior of the constituents in the
composite systems. As an example of possible
applications for multi-particle forces, this deve-
lopment may be used to describe nucleon-nucleon
scattering as the interaction of two systems of
quarks. Another area in which many-body forces
are sometimes treated explicitly is that of chemi-
cal reactions. '

In Sec. II we deal with the definition of the Ham-
iltonian and introduce the connection with the
transition operator T. Notational conventions and
general definitions are described. We show how
the Hamiltonian may be reexpressed in terms of
mean fields and provide a methodology for em-
bedding effective few-body operators in the full
N-body problem. Section III is concerned with a
generalization of the correlation expansion of ST
to a cluster-cluster expansion. This correlation
expansion, while reminiscent of the generalized
cumulant expansion method, "' is developed from
algebraic identities for finite systems. In the
limit of a structureless projectile this reduces
to the results of ST. We call this prescription
the generalized spectator expansion. General
procedures for decomposing arbitrary N-body
operators are demonstrated. In Sec. IV, we em-
ploy physical intuition to exploit the freedom in-
herent in such decompositions and thus delineate
those quantities not formally specified by the
Hamiltonian. In Sec. 7 we use projection opera-
tors to develop a many-body reaction operator K,
whose two-body components resemble the Brueck-
ner reaction matrix of nuclear structure calcula-
tions. In addition, an optical potential for interac-
ting composite systems is presented. Finally, in
Sec. VI we consider the construction of the matrix
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elements for two-body operators arising in the
generalized spectator expansion (GSE).

II. HAMILTONIAN FRAMEWORK AND DEFINITIONS

A
& f jk &$23 oop

~ ~ ~
y

j&j&k
(2.1)

where the particles in cluster A are labeled se-
quentially as 1, 2, 3, ...,A. Furthermore, 6 " is
defined as a multi-body interaction, where (v)
c (A) and

i vi is the number of particles in the
subset (v). Implicit is the restriction that if one
of the particles in the subset is removed from the
system, then u~"'-0. As an example, let (v) =149,
then v =3 and 9'"'=u ' is the three-body inter-
action between the objects in A labeled 1, 3, and 9.

We wish to consider the possibility of including
auxiliary potentials in the formalism. To be spec-
ific, we introduce a set of auxiliary potentials that
satisfy mean-field equations. However, such re-
strictions are not essential to the developments
which follow.

We define a set of n-body mean fields due to the
averaging of the sum of the m-body interactions
for m &n. Thus, we write schematically in terms
of the 6("),

U'"'(n) -=g (u'"»), »,
{j&k4J.~» )=( W)C{A)

(p)n(v)-=O, ivi+fp f
=21, fpf 1.

(2.2)

Here U'"'(n) is the
i vi -body mean field experien-

ced by the subset (v) due to the n-body interac-

This section is devoted to a concise description
of a general N-body Hamiltonian, partitioned into
two clustersA and B such thatA+B =N. No re-
strictions are imposed upon the nature of the
fundamental objects which comprise 1V. They are
elementary in the sense that it is possible to
write many-body potentials which describe their
mutual interactions, but they need not all be
identical.

We shall introduce auxiliary potentials, since
in many applications important physical effects
can be included in this way, even in low-order
expansions. No requirement is made that such
auxiliary potentials be used nor that they approxi-
mate a particular form. Restrictions, such hs they
must satisfy mean-field equations, may be im-
posed to facilitate rapid convergence in specific
applications.

Consider an N-body system of "elementary»
particles, subdivided into two clusters A and B.
We write the Hamiltonian for the cluster A as

a" = '+su' +
j~

U13(3) —(/123) 4. (/134) + (lll35)

U13(4) —(u~1234) + (01235) + ($1345)

Ul 3(5) —($12345)

Alternatively, it is possible to define the auxi-
liary potentials U'"'(n) as any "convenient» or
physically motivated set of functions, rather than
obtaining them from the "fundamental» interac-
tions. In either choice, the total auxiliary poten-
tial of the

i
v

i
th rank becomes

h
U )- U{)n

tt-i vl a
(2.3)

We now rewrite (2.1) in terms of the quantities

I ' =u'+k'+ U' (2.4)

6'j+U'j — U' 2,

V~ jk = U& jk + p&jk
i&j&k

(2.5b)

and generally

Q{v) + U{v)
{v)&{A) {v)c{A,)

U{~m)

tv I =m

Equations (2.5a)-(2.5c) imply that the u'"' may
be defined as

& j —&j+U j U 2+Uj2

&&jk &&jk+ pi jk

2
[U (3) +U'(3) +U'(3)]

(2.5c)

(2.5a')

1
[U s(3) +U4(3) + UJ2(3)]A-2 (2.5b')

and generally

&{v) Q{v) + U{v)

U (i„i)
i vi -ml "'t wml=e

(2.5c')

tions averaged over the other
i

p, distinct parti-
cles. The notation (u '""'),

„& means the averaging
of the operator v{"")over a set of basis functions
for the labeled particles contained in (il). The
selection of these basis functions may be dictated
by the specific application. As an example of
(2.2), consider the two-body mean-field interac-
tion for (v) =13 when A =5; then
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With these definitions we may now rewrite the
Hamiltonian H" as

A A

H" = Q h' + Q u" +.. .u""'", (2.6)

In a manner reminiscent of (2.6) we define a,

subcluster-subcluster interaction by the expres-
sion

V,'"„'&-=Q u' + Q u'~ + Q u'
s +.. .u,'"„&,

V ~v& Q u('+Qu'&'+. . .u'"'.
~&jC( V) &&j&AC (V)

As an example, we let A =9, (v) =127, then V'"
=u" +u" +u" +u'". lt is apparent that for (v)
= (A), V'"' is the total interaction for the system
A, i.e., H~ =Eh'+ V'~&.

An analogous set of equations may be written
for the system of particles B using Greek sub-
scripts (|x,P, y, . . . ) in place of the Latin super-
scripts (i,j,k, . . .). Equations (2.1)-(2.7) could
be rewritten in this fashion, for example, (2.6)
becomes

(2 7)

B B

Ha=gh +Qu &&+ Q u
&&y

OD n&D a&0 &Y

+ ~ ~ ~ U$2s ~ ~ B ~ (2 6')

which retains the same form as the initial Hamil-
tonian but allows the use of auxiliary potentials.

We now introduce the subcluster interaction V'"',
defined by the expression

gc {v)
aC{P)

i&j,C{V) gC(V)

OC (If ) O& PC{p )

(2.9)
where (v) c(A) and (p, ) c(B).

In illustration of (2.9), let (v) =17 and (p, ) = 59,
then

V59 =U +V +U +U +U

17 1. 7 17
9 59 59 59 '

Physically, this includes all two-body, three-
body, and four-body interactions which occur be-
tween the elements 1 and 7 of A and the elements
5 and 9 of B. V,'"„') includes all two-body through

(~ v~ + ~p ~)-body interactions occurring between the
sets (v) and (p), which are not purely system A
or system B interactions. Specifically, V,'"„') 0
V(»-=0 and V'") n V =0.

We recognize that for (v) =—(A) and (&u)
= (B), we

recover the full cluster-cluster interaction V,'AB', .
The total Hamiltonian may be written as

And we can write Ha =Zh + V&». The remainder
of the equations are apparent.

Consistent with the notation used in the preced-
ing discussion, we define the interaction existing
between clusters A a.nd B, using Latin (Greek)
superscripts (subscripts) to refer to elements of
cluster A (B):

H =H +H

H =H +V'"' =H +V.

The transition operator T is defined by

T =V+VGV,

or equivalently by

(2.10a)

(2.10b)

(2.11a)

A,B A, B AsB

VI»I = Z un+ Z "a'+ ~ un»
e ~&jf I ~ f a& g

~ &A)+ ~ ~ s U(B) ~ (2.8)

Here uI"„» is the real (~ v~ +
~

&u ~)-body interaction,
occurring between the particles (v) of A. and (p, )
of B. If any one particle is removed from (v) or
(p) then uI"„»-0. In illustration, uf4 is the three-
body potential between particle 2 of A and the
particles 1 and 4 «B.

One could invoke a mean-field treatment of the
many-body interactions between elements of A and
B in a fashion similar to that describing the mean
fields for system A or B. Such a treatment could
be used as a formal basis for two-center shell
model reaction calculations, since the mean fields
would reflect the mutual interactions of A and B.
Both nuclear and atomic applications of such cal-
culations are common. '

It should be clear that, having incorporated what-
ever mean-field effects that are desired, we could
recover the form of Eq. (2.8). To signify this
possibility we eliminate the carets in (2.8).

T V+ VGOT V+TGDV (2.11b, c)

where G, and G are the respective propagators
associated with the Hamiltonians H, and H. They
satisfy the resolvent identities

and

G =Go+GOVG (2.12a.)

G=G +G TG . (2.12b)

In this paper we take the viewpoint that formal
developments cast in the framework of expansions
for T are desirable and present a systematic set
of simplifications, which offer flexibility and con-
venience for obtaining the transition matrix ele-
ment T. It is our contention that this framework
is not only computationally feasible, but also pro-
vides insight into some phenomenological treat-
ments.

III. CORRELATION EXPANSION OF T

Section II introduced the Hamiltonians, the.nota-
tion, and general definitions. The transition oper-
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ator T was shown to be expressible in terms of
the full N-body Green's function G, or in terms
of 6„ the channel Green's function. A practical
approach to the N-body scattering problem may
require some approximations. We develop expan-
sions of T which are based upon the assumption
that the scattering is dominated by a simple super-
position of two-body interactions, fol1owed by a
superposition of effective three-body interactions,
and so forth. Thus, in leading order, we aQow
pairwise encounters of the participant particles
with the remaining (N —2) particles behaving'as
spectators. The passive particles may, for exam-

pie, be responsible for defining mean fields in
which the other particles interact. In a corrective
sense, the next order includes the effects of a pair
of particles from one cluster and one particle
from the other cluster participating with (N 3)-
"passive& spectators, and so forth. We.show how

a systematic progression of such terms is related
to the exact T.

We introduce the algebraic identity of lemma A,
given in Appendix A. This lemma is an extension
of the one proved by Siciliano and Thaler' (ST).
In summary, it proves that for any many-body
operator, E(l. (3.1) is an identity:

A BA B A 8
&= Z Ze.'.Z Z(~i' e'. -e'.)-&Z(e.', -e.'-e,')

+ ij ij ij i j + 'i+ j+ i+
I&8

A I

+ ijk ij ik jk+
«j&k a=1

A

+ — — — + + +
i=I @&/&A
A

+ ijk ij ik jk ijk ijk + ij + ik + ik + ij + ik +
i&j&k a&8

+ 4 ~ ~

+ (y 1~2
' ' A ) (3.1)

for arbitrary p((",'&, provided only that E(l. (3.2)
hoMs,

Using the summation convention introduced in
Appendix A, we rewrite E(l. (3.1) as

g —y(A. ) (3.2)

For notational convenience we introduce the quan-
tities 8,'",'& defined by

~ = Pe'. + Qe'.&+ + e'., +. . .e,'",I. (3.4)

~."=(e." e.' e'.)—, -
e'., =(0*., —y.* —y,*),

e*& =(y*., -y.' -y,"-4'., -4'.,
+0*.+0'. +4B+&a»

(B( (~(B)

(3.3a)

(3.3c)

(3.3d)

(3.3e)

As pointed out by ST the arbitrariness in the
identity expansion gives us a great deal of flexi-
bility for decomposing many-body operators. We
exploit this freedom in developing our expansions.
The "arbitrary" quantities will be chosen on
physicaQy motivated bases to exhibit a systematic
progression in the decomposition of the N-body
operator into effective 2, 3, ..., (N —1)-body opera-
tors. Furthermore, we will utilize this Qexibility
to demonstrate connections between different
multiple-scattering formalisms.

We 'expand the Green's functions G and Gp via
the identity (3.1). Thus we obtain for G the ex-
pression
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+ 0 ~ ~

+gI& +d~ +g&t +Kg)

G= Pg.'+ g(g". -, g'. -g'.)

+ g ~g ~g

(3.5a)

for any operator Z =X+Y, if the sets {X«"„&&j and

( Y«"„g. satisfy the conditions of lemma A for X
and F respectively, then the set defined by Z'&"„))

=X(("„'& + g("„'& does so for Z. Similarly, corollary II
(multiplication corollary) specifies that for Z =XY,
the set Z(v) -X'v) y(v) ls a legitimate expansion set
of Z.

Lemma A allows us to write the expansion of the
cluster-cluster transition operator T:

~0t . ~e ~eg ~ag

(3.51) r =gt'. +g (t*.~-t*.-t~) +g (t&, —t.' t,')-

where the definitions. of the y(("„)&'s in terms of the
g«",'&'s follow from E&ls. (3.3}. For G„we obtain
the identical form, except we now use g&"„'& instead
of g( )

+ ~ ~ ~

-t~ —t'g —t ~

+t'„+t& +t~& +t~&)

(S.81)

G. =Kg; g (g."-g.'-g)'", (3.6a)

(3.61}

7 + + 7 g + 7 P
+ ~ T(B) P

(3.Bc)

The only restrictions imposed on the fg«"„'j and the,
(gI"„'&) are that g' '—= G and g'"'=G . These ensure
that lemma A holds.

The cluster-cluster interaction V(B) may be
expanded in terms of (8.1) also; however, here
we can immediately select the physically relevant
choice for the expansion set. The subcluster-
subcluster potentials V«"„', defined by (2.9) satisfy
the conditions of lemma A, and thus we write

v&A) - g v& +g (v&g vi vg)

i
to ="o +Ue&eUN ~

t' =(u'+u' +u')

(8.9a},

(3.91)

which we will refer to as the generalized spectator
expansion for the transition operator T.

Making- use of corollaries I and II of Appendix

A, the definition (2.11a) for T, E&l. (3.5a) for G,
and Eq. (S.V) for V, we obtain defining relations
for the t,'"„'&.'

+ Q (v'
«

—
v&t

—v' )

+ g (v'.~, —V.'~ —v,'~ - v'„, —v~,

Vf j+Vgj fjV4 j
A Q 0& Ot 7

it g=V ~+V gg gV g,

(8.91'}

(8.9c)

(3.9d)

+ 0 0 (3 'I)
t(v) V(v) + V(v& (v) V(v)
(v) (v) (v&~(v& (~) ~

(8.9e)
U~+ Ue + Uog+ U~+' ~ ~ ~

(3.8a)

It is.physically apparent what each expression in
(S.V) represents, when we recall the meaning of
the uI"„'&. The element v&"„'& is the "real»

I vI
+

I
p, Ith-body interaction existing between the (v)

subcluster of A and the (t&, ) subcluster of 8. In the
event that a particle is removed from either (v) or
(p), this potential vanishes.

Appendix A includes two useful corollaries which
simplify the constriction of expansions for opera-
tors defined by algebraic functions of other opera-
tors. Corollary I (addition corollary) states that

t(A) V(A) + V(A) ~(A) V(A) —y(B) (B& (B)~(B) (B) (3.9f)

From the form of E&ls. (3.9), it is clear that for
the appropriate definltlons of the g(("0))j the t((v ))

become pure y (I vl +
I y I)-"ody operators. Speci-

fically, only the labeled particles (v}.from cluster
A and (p } from cluster B may participate actively
in t("„'&. The remaining particles play the role of
passive spectators. Inspection of the terms in

(3.8c) displays the symmetry under interchange of
clusters A and J3, In v' we note that the labeling
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(3.10a)

(S.lob)

(3.10c)

expressly separates the ith and o.th particles from
the (4 —i) +(B —n) remaining particles and treats
them as "effective» two-body operators. The so-
called passive spectators may participate to the
extent of defining background mean fields.

If, instead of using (3.5a) for G, we use (3.6a)
for G, and the iterative definition (2.11b) for T,
the resulting expansion (written with t I'„'& and
fI'„'&) of (3.8b) and (3.8c) has the following defi-
nitions for the t', "').

t iy y'iS + yidgi
Q O CC CC Cg y

i i + i -it ug ~eg ~a8geg u8 ~

number of participant particles:

T(2) = Q 7'

T(3)=Q 7 "+Q ~',~,

T(A+ B)= & '"'

where

(A+B)
T= T(n).

n=

(3.12a}

(3.12b)

(3.12c)

(3.12d)

t (V) —I'P V) + $P(P) ™(V) P (P)
tie) "(~) "(~)~(~)' (e) ' (3.10d)

t (A) y(A) + y (A) - (APg(A)
(B) (B) (B)~(B) (B) (3.10e)

In principle we need not require that t,'"„')—= t',",'„ for
general (v) and (p). If we impose this restriction
then we can show that g(",)) and g,'",') are related by
the resolvent expressions

(v) - (v) - (v) Ty (v) (v)
g (u) g (w) g (v)~ (~)g (~) &

- (v) - (v) (v) - (v)
g (u)+ g (v) t (v)g (v) '

As we have seen, the identity lemma and
corollaries I and II have provided us with con-
siderable simplicity in constructing operator ex-
pansions. This has facilitated establishing de-
composition sets for operators defined in terms
of other operators with previously defined expan-
sion sets. In particular, we have exploited the
lemma to generate freedom in the choice of the
subcluster propagators g('"„') or g("„') without intro-
ducing any approximations in T. A primary em-
phasis of this work is to introduce certain physi-
cally motivated choices for these subcluster pro-
pagators (Sec. IV) and discuss their significance.

We may associate the expressions of (3.10) with
a grouping in terms of the particle rank or total

The physical content of the T(n)'s is clear.
T(n) is the contribution in which n particles parti-
cipate in the interaction. Thus T(2) is the super-
position of all pairwise scatterings of one particle
from A with one particle from B. T(3) contains
a pair from A(B) encountering one particle from
B(A) Sim. ilarly, for T(4) we have the sum of con-
tributions in which one particle from A(B) inter-
acts with a triplet cluster from B(A), and those in
which a correlated pair from A interacts with a
correlated pair from B. The extension to arbi-
trary T(n} is apparent. For particular choices of
g('",'), the T(",) can be shown to be completely con-
nected' ' with respect to the labeled particles and
completely disconnected from the spectator parti-
cles. This fact allows us to view the T(n)'s as a
perturbative sequence, in which we hope to obtain
a good approximation to T by the use of the term
T(2) with T(3), T(4), etc. providing the successive
corrections.

The scope of the identity expansion (3.8b) of T is
evident through its reduction to the generalization
of the Watson multiple scattering series for clus-
ter-cluster scattering. Let all g'(",') —=G, in Eqs.
(3.10) and allow only two-body interactions. As
the results in Appendix A show, the arbitrariness
in g(",') permits this choice, Then we obtain

A careful examination of the expressions for 7 ("„')

in (3.8b) yields

t i+ t 'Got'+ teGot i+ t 'Got Got '+ t~Got~iGot

+ Q (t ' Got ~I+ f JG,t,'+ t ' G,tqGot ~ + t 8'Got ~ Got ~+ ~ ~ ~ ) + Q (f ~ Got ~ Got ~ + )

+ o ~ e ~ (s.i6)
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Equation (3.15) may be reorganized to give

T+Q t + t'Got'+Q t'Gotg+Q t Gotj'+ Q t ~Got~Got + Q ~a~GO i otq+ Q t ~GogB~Got„+ ~ ~ ~

l'4 j, jan&
8&w Q.f g, g+

(3.i8)

Here Eq. (3.16) contains an infinite set of terms
and for P =1 reduces to

(T& =- T(n) » g T(l) ,
n-- $:-m+1

(4.1b)

T(a=i)=g r;+ Pt;G, f, ,

+ t,'G~t,jGot,"+ ~ ~ ~,
i&j
jf k

(3.17)

which is the Watson multiple scattering series. "
Thus, beginning with the expansion (3.8b) for T
we have obtained in a straightforward fashion the
generalization (3.16) of the Watson multiple scat-
tering formalism (3.17). We observe that the con-
tent of T in terms of the identity expansion readily
yields the connection with conventional multiple-
scattering series. The flexibility inherent in our
ability to choose the g&'",'} permits us to construct
different expansions on the basis of utility and
convenience. In brief, we have a method for ex-
amining cluster-cluster interactions in a syste-
matic fashion, which readily displays the connec-
tion to the exact result stemming from different
leading- order approximations.

IV. SELECTION OF SUBCLUSTER PROPAGATORS

(T) =- (T(2)&» Q T(n)
tl=3

(4.1a)

In Sec. III we decomposed the cluster-cluster T
operator into a finite series of participant-spec-
tator operators. While this expansion is not a
' perturbation" series in the standard sense of or-
der-by-order in some coupling parameter, we
hope that the selection of the subcluster propaga-
tors can be made so as to maximize the content
of T(2} which is readily calculable and minimize
the corrections due to T(3), T(4), etc. The corre-
13tion decomposition resembles the hole-line ex-
pansion" of nuclear-structure calculations which
is effectively an expansion in the density times a
correlation volume.

This section is concerned with developing a sys-
tematic set of definitions for the subcluster pro-
pagators g&",', and g',",',. We desire a set of g&"„') for
which the T(n) will satisfy one of the conditions of
(4.1):

(T&=—(T(m)&» T(n) .
m

(4.1d)

An example of such an application might be in
treating nucleon-nucleon scattering as a collec-
tion of quarks. Thus, for nucleons described as
bound states of three quarks, the scattering oper-
ator T may be dominated naturally by T(6).
Another example might be the collisions of even-
even N= Z nuclei. It may well be that the total
amplitude is dominated by the alpha-alpha terms
which are contained in T(8).

There is not an a priori guarantee that a set of
subcluster propagators exists for which any of the
conditions of (4.1) hold. We shall assume, for
practical purposes, that we can find a set for
which (4.1a) or (4.1b), with m small, is satisfied.
Much work h3,s been done in which one or more of
these conditions appears to have been fulfilled with
satisfactory results. To cite just one example,
consider the work of Fujita and Hufner" in which
they develop a phenomenological treatment of
back-angle proton scattering from nuclei. They
find that the differential cross section appears to
be the superposition of scatterings from single
target nucleons, correlated pairs, correlated tri-
plets, and so forth. Such a description demon-
strates an application where condition (4.lb) ap-
pears to be satisfied.

In what follows we hope to motivate choices of
the propagators which reduce the computational
magnitude of the lower-order" T(n) by ensuring
that the r~specti~e i I ) s are effective ~(=

~
~~+I ~~)

body operators rather than N-b'ody operators.
Furthermore, we believe such choices should
possess transparent physical interpretations.

(T(2))» (T(3)» &T(4)» (T(5))& ~ ~ ~ & &T(&}&

(4.lc)

In particular applications it is possible that a
specific subcluster-subcluster interaction pro-
vides the dominant character of the series, such
as in collective scattering processes. Thus,
another convenient condition might be
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Ho = h' + he" —h' —h

+ Q (h'(& —h' —hq)+ ~ ' ', (4.2a)

+ o ~ oe e ~ eg (4.2b)

with the restriction that

(4 3)h(B)

It is then natural to use the h(",
&

selected for a
given application to define the hitherto arbitrary
~ (V)g( )by

For example, jn T(2) we would like a choice of
the subcluster propagators g' which reduces the
t' to effective two-body operators rather than
being a fully coupled N-body operator. Similarly
in T(3), we desire fully coupled three-body opera-
tors, "disconnected" from the remaining N-3 ob-
jects. Or generally, T(n) is tobe ann-body operator
which is diagonal in the space of the remaining
N-n particles.

By using lemma A we can expand H„ the non-
interacting cluster-cluster Hamiltonian, in terms
of arbitrary partial Hamiltonians h ',",'& as

We are free to define the partial Hamiltonian
h ("„'& by the following expression:

h " =—h "'+h '" "'
(P& (0) (B"V) & (4.V)

h (v) h (v) g (v)
(v& (u& ~ (~) &

(4.8)

which obeys the restriction of lemma A, that h (B&
—IIp . as can be seen by examining the def initions
(4.5) and (4.6). It is important to emphasize that
the definition (4.7) specifically leaves out interac-
tions between elements of (v) and (A —v) as well
as those between (i),) and (B—p, ). In this way our
definitions ensure the spectator separation of our
expansions.

It is possible to introduce into these definitions
auxiliary potentials. These may arise from mean-
field definitions or may merely be physically or
computationally desirable. The only restriction is
that such fields must become zero for ())) = (A) and
(u)=(B)

An alternative definition for the partial Hamil-
tonian h (",'&, which also maintains the separate
character of the interacting particles and spec-
tators, is apparent from the definition of the
subcluster- subcluster Hamiltonian h (",'&. We may
choose

- (v& (Z I (v))-) (4.4a)
where

g ("„')-=(Z —h ("„')—V It'))
' . (4.4b)

proper limits af g, ) and g& &
respectively.

In order for the t (~& to operate upon the partici-
pants (i.e. , the labeled particles) the h (('„'& must be
defined to contain the (v)+(g) particles. The re-
maining particles may appear provided no inter-
actions are permitted which link the two groups.
We make the following definitions:

I&'"'=—g I&'+ V'"'
~(-(V)

h(~)—= Q I( + V( ),
e c(v)

h(") =h(")+h
(u) (u) '

(4.5a)

(4.5b)

(4 6)

The h '"' and h „&are the subcluster Hamiltonians
of the (v) and (p) subclusters of A and B respec-
tively. We can write residual subcluster Hamil-
tonians as h'" "' and h(s „&. Equation (4.6) defines
the noninteracting subcluster-subcluster Hamil-
tonian, h ',"„'&.

Here Z represents the complex parametric energy
which includes the appropriate boundary condi-
tions. From (4.4a) and the resolvent Eqs. (3.11),
we obtain for the interacting subcluster-subclus-
ter propagators g (("„'& the expression

~& (B)=-o ~
(x)

The &z ,'",'& may be chosen to represent the energy

(4 8)

shift due to the residual particles. It is readily
verified that (4.8) obeys the restriction of (4.3).

The definitions (4.V) of the partial Hamiltonians,
in conjunction with the definitions (4.4) of the pro-
pagators g ("„'& and Eqs. (3.10) for the partial transi-
tion operators t,'"'„have the virtue that the t ((",'& be-
come effective n(=

~

v~+~@~)-body operators which
are diagonal with respect to the residual Hamil-
tonian particles (spectators). Similarly, definition
(4.8) yields t('",'& which are true n-body operators.
Other definitions for the partial Hamiltonians h. ,'"„'&

are possible.
It is of some interest to note that the partial

transition operators t (",'& corresponding to the par-
tial Hamiltonians I) ((",&) of Eq. (4.8) with the choice
b e (("„'&=—0 and in the absence of mean fields (see
Sec. II) are the free (v)-cluster (p)-cluster transi-
tion operators. For example, t' is then the free
nucleon-nucleon transition operator, if i and n are
nucleons. Thus, for 4p' 0, t' isanenergy-shifted
two-body t operator; we may say that 4&' accounts
in some average fashion for the off-shell nature
of t' when i and o are embedded in larger groups
of particles. Including mean fields in h ',"„'& permits
a more complete treatment of the off-shell dyna-
mics and renders t' an off-shell two-nucleon
t matrix.
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The set of definitions (4.8) for the partial Hamil-
tonian yields the generalization of the propagators
defined by ST'; this selection also corresponds in
lowest order to the closure approximation" of
Ernst, Londergan, Miller, and Thaler (ELMT).'
In the work of ELMT, the T operator is approxi-
mated by replacing all of the g,'"„", s by the choice
for g and retaining only two-body interactions.
To obtain some systematic order-by-order esti-
mate of the discrepancy between 7 and HELM T p we
would look at [T(n) —T(n)ELMT]. For n= 2, T(2)

)ELMT'

We may give a spectral representation for the
partial propagator g&"„'& if we first construct the
scattering solutions to the subcluster Hamil-
tonians:

(4.10a)

[ (v)( ) $(v) y(v)]@&,+)Or)( ) p

[E (v&(f ) l ( A-v)]
X

&A-v)(f ) P

(~&( ) &3 u)] ~-()&-~)(

(4.10b)

(4.11a)

(4.11b)

and

-(.) ~ ~4 I".')(a)&(eI".')(a) ~

—q, , a— (4.12)

(4.13)

We may also use definition (4.7), in which case
we obtain the expression

Thus, for the definition (4.8) of the partial Hamil-
tonian h &"„'), the spectral decompositions of the
subcluster- subcluster propagators g('"„', and g(",')
are

(4.14)

)I
with an analogous expression for g', ",'). Here S is
the appropriate symmetrization operator. For
example, if all N particles are nucleons, then
8 antisymmetrizes the particles between the state
vectors &))) &'"„'&, y&" "', and X &s „&, unless the proper
symmetrization has already been included in the
intercluster potentials v,'"„').'

V. K MATRIX AND OPTICAL POTENTIAL APPLICATIONS

In reducing the N-body problem to systems of
fewer than N bodies, we have not addressed all
the physical and practical aspects that arise. For
example, in applying the GSE to nuclear systems
we have not considered specifically the effect of
the Pauli principle. We now focus our attention on
the nuclear applications and address the questions
of the Pauli principle, the strong repulsive core
of the nucleon-nucleon interaction (V„„)and the
reduction to calculable spaces. For bound states
of finite nuclei the effective two-nucleon interac-
tion has been derived from a free potential V„„
through the Brueckner G~ matrix,

G))(~) = V)&)&+ ))&N I,«) p(2& GB(~),
(o —ho —ho

where ho is a single particle Hamiltonian incor-
porating the kinetic energy and a single particle
potential for each of the interacting nucleons. The
G~ matrix is a renormalized nucleon-nucleon inter-
action which, through the infinite sum of potential

A =B+BCD

may be decomposed to yield

A =D+ DCPA,

where

D = B+BDQD.

(5.1)

(5.2a)

(5.2b)

The general expressions (5.2a) and (5.2b) to-
gether possess the same content as (5.1) and may
be used to generate specific operator separations.
The subcluster transition operators t «",'& of (3.10)
are defined by operator expressions of the form
of (5.1). Thus, if we define a set of projectors

scatterings, eliminates the strong effects of the
repulsive core in much the same manner as does
the t matrix. The Pauli operator Q~ prevents the
interacting nucleon pair from scattering into states
which are already occupied by the remaining nu-
cleons or which are treated explicitly in the dy-
namical framework (e.g. , diagonalization). For
all applications, Q~ must be specified in the se-
lected basis representation. The two most common
bases for nuclear problems are the harmonic os-
cillator and the plane wave representation.

Our development in this section uses K rather
than G~ or G to avoid notational confusion. We
develop a formal relationship between the T and
K operator expansions of GSE. From Appendix
8 we know that given projectors'~ P+ Q = 1, the
operator expression (5.1)



20 GENERALIZED SPECTATOR EXPANSION FOR INTERACTING. . . 2197

(v) (v) (v) - (v) (v) (v)
(v) ~( )+ ( )g {P)&( )~ {~)

which is related to t',"„')by the expression

t {v) -pv+p(v) - {v) ~ {v) ~{v)'
(e) + (w)g (u)~ (v) (v) &

(5.3}

(5.4}

(p &"
&, q ((",g to obey the projection rules of Appendix

8, we may define anew set of operators k ('",') by

A and B. Thus, for g', g'~, . . . , P and Q operate
in a sequence of different basis representations
but retain the same physical content. In order to
emphasize this point we shall use P„, and Q„,
throughout rather than P„«(",'& and Q„,&'"„'&. From
(3.10}we have

with the restriction that

~ (v& + (v) (5.5}

(v) (v) (v) (v) (v)t(~)= ~(~)+ ~(~)g (I )t O)

and in analogy with (5.3} and (5.4} we obtain

tr(v) + yg (v) - (v) m (v)I (V) "' (V) " (W)g (v) ~opt (P)

(3.10'}

(5.8a}
The Eqs. (5.3}and (5.4} are formally equivalent
to the expressions (3.10}for the subcluster transi-
tion operator.

We may define a total E operator as

(5.6}

(a) Pauli-restricted
by lA+&- v-yl spectators.

(5.7}

The physical content of (5.6} is manifest once
the subcluster projectors fq(("„))j have been speci-
fied. Two examples we consider in this section
involve selections of {q(("„')) such that K is an opti-
cal potential or such that K= T. This latter condi-
tion implies only that q((~&) ———1(N}. The remaining
q'{",') are still at our disposal. Using the definitions
of the Brueckner reaction matrix as a guide, we
select q ',",') to have the property that states occupied
by the ~)A+ B—v- p~ spectators are forbidden to
the

~

v+ )L&~ participants. In this case we call the
k {("„',the subcluster reaction operators.

In order to illustrate the physical content of the
k(",'), we specify a set of q'{~)) in the spectral repre-
sentation of (4.14}or (4.12}. We define the Pauli
projector as

~(v) (v) (v) ™(v)~ ~(v)
(~)~ (v) opt (u) (5.8b}

Uopt I+ + 0+ +e

+ Q~g —Q~ —IMg + ~'' (5.9a}

Ul + ~ Usl + Us + y ~ ~
CL ~ R OIB (5.9b}

Recall from lemma A that U„,=-u', B,', and from
(5.8a} we obtain

(A) (A) (A) (A)
(3) (8) (B) OQoptn (B»

which is the conventional definition of U„,. In
correspondence to Eq. (3.12}for T(n}, we now
write

U„t(2}—= Q U', (5.10a}

U„&(3}—= Q U'~+ Q U'q, (5.10b}

We may then write the total optical potential as

Note that for (v}= (A.}and (p}= (B}, q ((~»)= 1(N},
since the absence of spectators eliminates the
additional external Pauli restrictions upon (a}. In
fact, whatever contributions are not included in

q ("„') are implicitly contained in p {'",'). From a prag-
matic viewpoint the content of q(("„') may be enlarged
or restricted in order to construct the model space
in which p('",') is desired to operate. However, we
must remark that while such modifications do not
affect the validity of the expansion for K, the con-
vergence of the lower-order terms maybe affected.

As mentioned above we can also construct an
optical potential through the judicious selection
of P and Q. In order to maintain a close parallel
to the work of ELMT and ST, we shall develop a
generalization of the optical potential discussed by
ST. We select P+ Q =.1(N}, where P is the pro-
jection onto the nuclear ground states of clusters

I vI =&
(A)CB

I vl =n-1

(5.10c}

Equations (5.10}let us write the total optical po-
tential as

A+

U.„= U.„(n}. .
n=

(5.11}

It is easy to recognize the physical content of
the U„,(n} for this expansion. U, ,(n} is the con-
tribution to the optical potential of n particles
scattering in all possible combinatorial patterns.
Specifically, U(2} is the superposition of all pair-
wise scattering between a particle from A and a
particle from B, in which both cluster A and B re-
main in their ground state configuration. For U(3},
we have the sum of the correlated pairs from
A(B} scattering from a single particle from B(A}
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and again both clusters A and B remain in their
respective ground states, and so forth for U(n).

We recognize that the exact content of U„,(n)
depends upon the subcluster propagators g™,'~&.

Thus, for different propagators, the exact con-
tribution of U„,(n) to U„, will change. Further-
more, while we have specifically retained the
conventional definition of U„, in regard to defining

Q„, and P„„we could in fact obtain a different
set of U,'„(n) which give U„, for an alternate view
of Q and P. For example, if we define the set of

{p&~"„')) as the projectors upon the ground states of
the subclusters (A —v) and. (B—t),), then U,'„—= U„„
but in general U,'„(n)0 U„,(n).

VI. MATRIX ELEMENTS

The bulk of our discussion has been concerned
with the development of formal operator expres-
sions and with the selection of subcluster opera-
tors based upon physical arguments. In this sec-
tion we are more directly concerned with the con-
struction of matrix elements for these operators.
We shall consider specifically the elastic scatter-
ing of two nuclei wherein we retain only two-body
potentials.

As has been emphasized by ST, it is only in the
case where t' is a two-body operator that the T(2)
matrix elements reduce to a simple form. In the
following discussion we shall suppress the indices
i and n where no confusion can arise. Further-
more, we restrict this matrix element development
to the case where g' is the sum of simple kinetic
energy operators for the interacting nucleons as in

(4.12). Thus, we write

g(p, k) = (z -P/2m —k'/2m) '. (6.1)

Here p(k) refers to the momentum vector of the
nucleon from A{B). We may now write for the two-
body operator t of Eq. (3.10') the expression

(p'k'ltlpk) ={p'k'(fJlpk)

+ dp "dk" p'k' v .p"k"

x g(p", k")(p"k-I t lpk). (6.2)

Let q and P, be defined as follows:

q=(p —k)/2, (6.3a}

P,=p+k. (6.3b)
Then t, for translationally invariant v, may be
written as

A A

p =p'+ p =p+P~;
g i

B
+ k~=kN+ PB

QPN

~„=x„/{M„+x,),
y, =x,/(M „+x,),
Pcm A B ~

P„=yB P„—y~ PB,

PA yA cm

PB yB Pcm

(6.6a}

(6.5b)

(6.6a)

(6.6b)

(6.Va)

(6. lb)

(6.8a)

(6.8b)

Here M„(Ms) is the mass of the nucleus A(B), and
the t)~(k~} are the individual momentum vectors of
the nucleons.

Consider an arbitrary two-body operator 8', in
order to form the matrix elements of 8' we must
first define the transformation which connects the
intrinsic wave functions (IWF} to the reduced in-
trinsic wave functions (RIWF). By definition we
call Q„(a}and $3(b) the intrinsic wave functions of
clusters A and B respectively in the eigenstates
a and b. Furthermore, we call 4„,.(a) and Cs (b)
the RIWF of the A-i and B-n systems. The mo-
mentum space wave functions are then functions of
the following coordinates:

4g(a) = 0 A[ p, ', p ' " p. " '](a)

y, (b}=y, [k,.„',k,.„',. . . , k. '-'](b),

4„,.(a) = 4„,.[P„,.;p.„',p;„, ~ ~,p;„"'](a},
4s (b) = 4 ~ [Ps;k,.„',k,.„',. . . , k. s ' ](b) .

The transformation which connects the DVF and
the RDVF is defined by the following expression:

~)' 0 (~)) f&5'&(i'+&=;-& )~ll'o„(~)).

(6 9)

In order to connect the two-nucleon matrix ele-
ments to the scattering system, we shall define the
relationship between the interacting pair and the
remaining (passive) nucleons. Let P, and P„be
the total momentum and relative momentum of the
A-B system We define P„(P~) as the total mo-
mentum of the cluster A(B), and P„,(P~ ) as the
total momentum of the cluster A(B) with the ith(nth)
nucleon removed. We then have the following def-
initions:

+1 dg"(j'lola")

-P '/4 -g-'/ ('I"l'l'I). (6.4)

An analogous expression exists for cluster B.
This equation defines the meaning of the RDVF
4„.(a). We define the single-body densities of the
RIWF, such that the bra-ket of the DVF yields
6(P„-P„')6,:,
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p»;(p»-p); = f O»;(p» p;.' p
* p )(»)O(», +p' —p )

Atl. Attp(tt t pltl i ' tpttt l(+ ) A(dpi' p(tt '''dpttt

where the integration of this density is

(6.10a)

pz. P ~ dP=6, ~ . (6.1

Having made these definitions and restrictions we can write the transformation for the A-B system in
the following manner:

(P,„PO„(o)O,(o))=

fdic

o(P'»p„-y», .p,.- P) dk o(k. »P,.—y»P..»P)~p k. p„,.(o)p,„(o)), (o tt)
'«I

Since we anticipate treating antisymmetrization through effective multi-body interactions we work in the
simple product representation. Thus, the matrix elements of the two-body operator 8' may now be written
as

, d ( )O, ( ))t.'~~P.'Pd»(o)d»(o))= f (p' kp»„;(»o)p(o)(d, .p' o(p'»+P„,. —y„P» —.P»)

x dk, 5(k +~Pa, y, P~„+P )8,'d pl~5(ptl+ P„, y„Pi P')

&&dk 5(k +Ps y~P, +P,)ip' k 4~,.(0)4s (0)). (6.],2)

This expression reduces to

(i„) f dp dk„'(p' ,k)„'t~~"p. 'k) 'p'!( "p- „yp.' —P',)p,",'(k„' —y P,'„+P',), (6.13)

where

p*'= p" + y,(P',. P.'.)+—(P'„P„'), -
F.=k.'+ y, (P;„Pl„} (P'„P'„),

(6.14a)

(6.14b)

and the densities are those defined by (6.10a),
(6.10b), and their equivalent for B The ar. gu-
ments in the one-body densities of the spectators
indicate their role in absorbing recoil momenta
in the interaction of the participating nucleon pair.

We can now write for the matrix elements of
T(2) the expression

VII. CONCLUDING REMARKS

Beginning with a Hamiltonian framework we
have described the transition operator T for the

(T(k))=AB f dpdk(p k tpk)''
.'"(p- y.P.'.—P'„)

xpd) )(k- y~P, + P,), (6.15)

where we have taken advantage of the indistinguish-
ability of the nucleons to obtain the result in terms
of one-body densities independent of the particle
labels. If we look at the limiting case of A -1 and
B-1, we find that (6.15) reduces exactly to the
two-body t matrix for the free scattering of two
nucleons.

interaction of two composite systems in which
arbitrary multi-body potentials are permitted to
occur. We have shown how few-body mean fields
may be ascribed to the averaging over the many-
body interactions, or alternatively, how auxiliary
potentials can be introduced in the formal struc-
ture. In Appendix A we have proved an algebraic
identity and a functional theorem with corollaries
which facilitate the reduction of N-body operators
to finite sums of arbitrary two-body, three-body,
.. . , N-body operators. We have shown how the
application to the transition operator T for clus-
ter-cluster interactions yields a generalized cor-
relation expansion, the generalized spectator ex-
pansion. Our multiple scattering theory reduces
in the appropriate limits to the correlation expan--
sion of ELMT or to the spectator expansion of ST,
and as well, contains as a specialization the
familiar multiple scattering theory of Watson. The
GSE includes the full extent of subcluster-corre-
lations in a physically transparent style. We de-
lineate the flexibility inherent in these operators
and obtain a result which is not a perturbation
series but an exact systematic decoupling of the
operator T into more manageable subpieces.

The flexibility of the GSE makes the connection
between the closure approximation, impulse ap-
proximation, "fixed scatterer, etc. , to the exact
T operator evident, and places them in the proper
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perspective as leading-order terms in exact de-
composition of T. Physically motivated arguments
have been used to select the apposite definitions of
propagators and the other operators arising in
selected applications. Emphasis has been placed
upon the connection of such arbitrary quantities
with the Hamiltonian. The nature of the GSE
casts a more fundamental aspect upon reactions
which have hitherto been addressed primarily by
phenomenology. We note especially the corre-
lated cluster treatment of high energy back-angle
proton scattering by Fujita and Hufner. " Also,
collective effects such as alpha clustering in even-
even nuclei may be addressed by this framework.

In illustration of the adduced flexibility we have
defined a reaction operator K, which makes provi-
sion for mean-field effects and Pauli restrictions
on intermediate state scattering (of fermions). In
the two-body pieces, the methodology resembles
that of the Brueckner reaction matrix for nuclear
structure calculations. We have also delineated
cluster-cluster optical potentials through the use
of projection operators. Finally, we sketched the
formation of the matrix elements for two-body
operators and demonstrated the embedding of
these matrix elements in the local one-body den-
sities of the interacting clusters.
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APPENDIX A.

In this appendix we prove a lemma and one
theorem with two specialized corollaries, which
allow us considerable flexibility in the construc-
tion of operator expansions. Vixen applied to
nucleus-nucleus operator expansions, this lemma
is seen to be a generalization of one proved by
Siciliano and Thaler. It reduces to their result in
the particle-nucleus limit. The basic building
blocks are purely algebraic expressions having no
commutativity or inversion restrictions.

Lemma A: The identity expansion

Given an arbitrary set of quantities Q I"„'&j, where
(v) &A, and (p)&fl, with A&0, B&0, the finite
series expressed. by

+ g
~

g 8 ~ g+ + + g+ g
e&8

ii& ii i~ i&+ i+ i +
i&j&k e=1

(%*a, 0'g —4",.——4g', + 0'+ 4'g'+ 0,')
i= «r

+ (yijk yij yak

pj's

yijk yqjk
O. e

+ 0'"+ 0'"+ 0"+ 0 j'+ 0'j '+ 0j
' 0" —4&g' —0' —-4e 0'" —&8)—

+ ~ ~ ~

+(&x2:::a- ' ' ') (Al)

is exact for all arbitrary Q&I"„'&j, provided only that
12"'A. (A j

8=&F2 "s-&(a)- (A2)

Proof. The proof follows the same procedure ST used in demonstrating a more restricted version of
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this lemma. We rewrite (Al) as
"AB AB AB

H=lim . '+ "—x ~i —x ~~ + ~g-x ~i —x ~
i 2, 0. i„a 8

A. B
+ (Q "])—x(f)"- x(t)])' —xQ'8 —xQ'8+ x'(t)'+ x '&f)' + x'p~(+ x'Q~g)

fM&8

+ o l ~ (A3)

In order to facilitate conciseness of expression and abbreviate the labor involved in demonstrating
various properties of the proof, we will use the following summation convention:

(algebraic expression, containing the ordered superscripts

[(i„i„i„.. . , i,},j. &A] and the ordered subscripts

[(«„«„.. . , «a), g&B]]= f [algebraic eapreeeicc].
iy, &i2 '"&i& ny&e2«"'eg

Thus, after performing certain summations, we obtain from (Al)

8= lim ' + ~i~ —x A-

D (g g.'.) —.(B-1)(g

+

+ g
~ x Q ~ 2

+ "~' -xA. —2

1)(g g ') + (P .g.'a)-*(B-1)(g g.']

gJ)—x(Xi —1)(Q g,'e)ex'(B —1)(B—1)(Q b,')

, (A —1)(A —2) (~
cg

, (B-1)(B-2),&

4.*, +x'

b..) —.(.— )(g g.-)

, (xi —g)(xi —1) (~,. ),( 1)(B g)(p b;,), (xi —1)(xi —1) (B 1) ip g;)

+ t ~ ~

+ (fy2, g x )

We now regroup the terms of (A4} in the manner

g = lim (P y' 1 (A 1)x (B—1)x+ (A —l)(B—l)x'+ +

(A —1)(A —2), (A —1)(B—1)(B—2) B (A —l)(A —2) (B—l)(B —2)
2 2 2 2

+ g y.'g [1 (B 1)x (A 2)x+ (B 1)(A —2)x '+ x' + "~ ]
(B 1)(B 2)

~e

+g (t)']) [1—(A —1)x —(B —2)x+ (A —1)(B—2)x'+ x'+ ~ "](A- 1)(A-2)
lae

+P (f)~e~& [1—(A —2)x —(B—2)x + x + ~ ~ e]
(A —2)(A —3)

+ ~ ~ 0

+ (b,.. . .,)I,
and this becomes

(A5)
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~m

lt=((m P &')(( —x) (1 —x& x (F (")(1—x& (( —x&
x~1

Al
y 82+ gg ] ~A2] ~B

+ ~ ~ 0

~ (y)2'''x&) (A6)

Taking the limit x-l, then yields
12"'A (A)

~12' "B ~(B) ' (A7)

Q.E.D. Having shown that lemma A is' true, we may
now demonstrate a theorem on functional forms
and specify two useful corollaries.

Corollary II: Multiplication corollary

Given X and Y, having sets {X&(",'&} and {Y(("„»}re-
spectively, satisfying lemma A, then for

(A13)

the set {Z(&",', }defined by

Z'"' =X'"' Y'")
(@) (w) (u) (A14)

Z=Z(X, Y), (AS)

f(B) ( (B)) (B)) ) (A9)

the set {Z&(",'&} described by the otherwise arbitrary
set of functionals {f&("„'&}as

Z( &=f( )({X("')}'{Y& ')}) (AIO)

satisfies lemma A for Z.
Proof.

(i) X',B»-=X; Y((~»&-=I' by lemma A,

(ii) f((~BI=E(X, Y) by (A9) and (i),
(iii) Z((B)'= E(X, Y) by (A10) and (ii),

(iv) Z((g»=Z by (AB) and (iii).

Therefore, the condition necessary for the set
{Z&'"„',}to satisfy lemma A is met. Q.E.D. We can
now specify theorem A to yield two corollaries.

Theorem A: The functional identity

l,et X and Y have sets {X(&"„'&}and {Y(&",'&} respec-
tively, which satisfy lemma A. Then for Z defined
by

also satisfies lemma A.
It is convenient at this junction to point out that

corollaries I and II are more fundamental than
their derivation implies. One can show trivially
for corollary I that X+ Y in terms of the expansion
factors yields identically the terms given by the
definition (A12). Furthermore, while it is not as
obvious, the expansion of Z =XY in terms of
{X(&"'&}and {Y(("„»}permits a rearrangement which
yields the identical terms of definition (A14). In
this regard, we must note that theorem A provides
a minimal condition upon the expansion factors of
Z, whereas, having defined the expansions of X
and Y, we obtain a specific expansion of Z in
terms of the sets {X((",»} and {Y&'",'&}. This facet of
corollaries I and II removes a degree of the ar-
bitrariness inherent in such expansions. Physi-
cally, this implies that an operator expression
has a "natural" set of expansion factors whose
form will be constrained by the form of the oper-
ator expression. For example, Z=XY has the
"natural" set of {Z(&"„'&—-X(("„»Y(&"„'&}, in which the ar-
bitrariness has been restricted to that of the X
and Y expansion sets.

Corollary I: Addition corollary

Given X and Y, having sets {X,'"„'&}and {Y&'"„'&}re-
spectively, which satisfy lemma A, then for

Z—=X+ Y,

the set {Z&(",'&} defined by

APPENDIX B

Consider a set of m operators P, defined in
the N body space V(N). By definition the P, are
idempotent projection operators in V(N), provided
that the following conditions are satisfied for all
P,. in the set:

Z'"' =-X(")+Y&")
(~) (v) (u)

also satisfies lemma A.

(A12) P,.=l N,
i=1

PiPJ= 6,.)Pi (B2)



20 GENERALIZED SPECTATOR EXPANSION FOR INTERACTING. . . 2203

Take an operator expression (83) defined in

V(N}, where

A =B+BCA. (83)

A, B, and C are unspecifj. ed N-body operators.
It is possible to generate an equivalent set of
operator expressions for (83) by using (81). Let
m = 2, and P, = P and P, = Q. We may now rewrite
(83) as follows:

A =B+BCA=B+BC(P+ Q)A. ,

A =B+BCQA+BCPA. (a4)

+ BCQBCPA+BCQBCQBCPA . (86a)

We see that (86a) may more concisely be written
as

Inserting the expression (84) for A into the second
term of (84) yields

A = B+BCQB+BCQBCQA+ BCPA+ BCQBCPA .
(86)

And again using (84) we obtain

A =B+BCQB+BCQBCQB+BCQBCQBCQA+ BCPA

We may identify a new operator D defined by the
expression

D =B — (CQB)"
n=

An alternate form for D is seen to be

D = B+BCQD.

(86)

(89)

Having defined D we now rewrite (87) in a much
simpler form as

A =D+ DCPA. (810)

ay using the projection operators P and Q we have
separated the single operator expression (83) into
two expressions (89) and (810) having the same
content.

Using the same procedures it is possible to ob-
tain three expressions for the set of three projec-
tors P, Q„Q,. Let Q=Q, +Q, . Replacing Q in (89)
then yields after some manipulation

E=B+BDQ,E,
D=E+ ECQ2D.

2

A=B Q (CQB)" +(BCQ)'A
„n=o

+B (CQB)" CPA.
n=o

(86b)

We can generalize this procedure to m projec-
tors. The result is a set of nz equations containing
various portions of the full content of (83). The
generalized set looks like

Iteration of this procedure yields Dn r
=D r+i+Dm-r+jCP .r D (811)

A=B Q (CQB)" +B Q (CQB)" CPA. (87)
n=O n=o where I =0, 1,2, ~ * (m —1}, and D „=Band D, =A.
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