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Nucleon-nucleon scattering above the pion production threshold

A. %. Thoma, s
University of British Columbia, TRIUiMF, Vancouver, Canada, V6T 1%5

A. 8, Rinat
Department of Nuclear Physics, Weizmann Institute of Science, Rehovot, Israel

(Received 10 January 1979)

Starting from a simple nonrelativistic field theory of pions and nucleons, we derive linear integral equations
coupling amplitudes of baryon number equal two systems. These equations guarantee two- and three-body
unitarity above the threshold for single pion production, and include explicitly the coupling of the WX to
(e.g.) XA and md channels. The relationship of this approach to earlier schemes is discussed.

NUCLEAR REACTIONS Nucleon-nucleon scattering. Derived coupled equa-
tions for NN, N4, 7t'd with heavy-boson exchange and NNvr vertex as input.

I. INTRODUCTION

There has been a keen interest in the NNm sys-
tem for the past few years. Much of this attention
has been focused on the resonance region where the
pion is relativistic but the nucleons may still be
treated nonrelativistically. (For a recent survey
see Ref. 1.) A major reason for this interest is
the observation that, because of absorption chan-
nels, an accurate description of pion induced re-
actions on nuclei must eventually go beyond stan-
dard multiple scattering theory. The NÃm system
is the simplest testing ground for any such theory.

Qur main concern here is that the same theory
which allows one to couple the NN system to NNm

also implies a model for the NN interaction. In
this context, we mention first the work of Afnan
and Thomas. 2 These authors studied a strict
three-body model for md scattering, and included
the coupling to the "NN" channel by allowing a
bound state in the mN P]] channel. Thus, while
one nucleon resulting from pion absorption on the
deuteron was truly elementary, the other was com-
posite (labeled N'). In spite of the unsymmetrical
treatment of the two nucleons, the theory repro-
duced the peripheral I = 1 NN phase shifts quite
mell. Since the driving term included only one-
pion exchange (OPE) no more was to be expected.
A covariant version' of essentially the same model,
still suffering from the mentioned defect, has been
worked out by Kloet et al.'

A consistent model has been proposed by Miz-
utani, ' and Mizutani and Koltun. ' They treated the
NNm vertex explicitly, and in particular showed
how to avoid double counting by removing the nu-
cleon pole term from the mN scattering amplitudes.
Expressions for any desired amplitude could be
given in perturbation theory. The Migutani-Koltun
model must then be solved in what is essentially

the one-pion approximation.
Using reduction techniques, ' and assuming the

NN interaction to be known, Rinat derived sets
of coupled integral equations for all other relevant
amplitudes (e.g. , NN- vd). ' In this context we
should also mention a Tamm-Dancoff approach to
the two-nucleon system with only the NNn vertex
as input. ' Finally, we mention a class of models
which couple the NN channel to other baryon num-
ber two channels in a potential-like picture. '
Specification of the coupling matrix (e.g. , OPE for
the NN-N& potential) defines these models. While
the work of Weber et al." showed the practical
importance of including the nonstatic aspects of
pion exchange in such potentials, we stress that
the static approximation' '" misses important con-
tributions to unitarity. This is particularly ger-
mane to the discussion of the inelasticity in pp
scattering, and to the analysis of possible reson-
ances in the region of 600-800 Me& proton labora-
tory energy. ""

In the following, we work out the consequences
of the Mizutani-Koltun model' (which, incidentally,
is closely related to the work of Ref. 14). Contra-
ry to the approach used in H,ef. 8, we now couple
the NN channel to the other NNm channels in a con-
sistent unitary fashion. In Sec. II me derive a set
of Faddeev-type equations (very similar in appear-
ance to those of Afnan and Thomas') for the coupled
NN-NN, NN-N&, and NN-7td amplitudes, using
graph summation techniques. In Sec. QI the same
set of equations is derived using reduction tech-
niques. "

In Sec. IV we show how one can formally elim-
inate all but the NN channel from the coupled in-
tegral equations and derive an effective NN poten-
tial. The latter includes higher order pion ex-
changes which could be represented by a one-
boson-exchange potential (OBEP), together with
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a part due to any number of nucleon-isobar re-
scatterings. Our derivation thus provides a theo-
retical basis for the model of Weber et al. ,

"as
well as a formalism for more complete calcula-
tions.

Finally, we address ourselves to the question of
isobars in nuclei and argue that meaningful state-
ments can only be made within a specific model.

II. DIAGRAMMATIC TECHNIQUE

In this section we use very general arguments,
based only on the topological properties of graphs,
to derive integral equations for NN scattering
above pion production threshold. While this tech-
nique is closely related to that of Taylor, '" we
work with a much simpler system —nonrelativistic
nucleons and no antinucleons. The graphs we dram
are of the old-fashioned time ordered type. This
has the advantage, from the point of view of exact
two- and three-body s-channel unitarity, that we
always know how many particles are present. The
technique has been used previously to resolve the
question of double counting in the reaction NN- md, "and to isolate the effect of absorption on
md elastic" scattering, with results in complete
agreement with Mizutani and Koltun' and Rinat. '.

The power of the diagrammatic method is that we
do not need to specify exactly what Hamiltonian is
involved P~ (Certainly the Hamiltonian chosen by
Mizutani and Koltun. and used in Sec. IG is one
special case.) We simply assume that the renor-
malization procedure can be carried out complete-
ly for whatever Hamiltonian is chosen, and that
all renormalized graphs leading from the initial
to the final state could be written down. These
will all be irreducible in the sense that no explicit
self-energy diagrams or vertex modifications ap-
pear in the set.

Since we always have just two nucleons present,
it is sufficient to specify the number of pions
present at any time. Thus the sum of the contribu-
tions from all diagrams leading through some in-
teraction from an initial to a final NN state will be
denoted (Ol TIO&. This is the f matrix for NN
scattering. Next we observe that the set of dia-
grams making up (Ol T IO) falls into one of two
mutually exclusive subsets: class (o) contains
those diagrams where there is an intermediate
state with no mesons (just two nucleons) and class
(P) contains those diagrams in which every inter-

&"~~ =~+ ~GoT~~ (2.2)

formally illustrated in Fig. 1.
The difference in our V as opposed to that usually

appearing in the Lippmann-Schwinger equation is
that it includes the dynamical effects of pion pro-
duction. Our next job is to find an equation for V.
To do this we again subdivide the diagrams in
(0

I
T

I 0), into two disjoint subsets: class (y) con-
tains those diagrams containing at least one inter-
mediate state with less than two pions (and there-
fore just one, from the definition of (Ol T IO), ) and
class (6) contains those diagrams in which every
intermediate state has at least two mesons.

This leads to the equation

(0ITlo) =(OITlo) +( ol Tll& G (1ITIO), (2.2)

Cl~~~ly (0
I
T

I 1). »«1
I
T

I 0&~ are new objects in-
volving, respectively, the absorption and produc-
tion of one pion with an appropriate restriction on
the number of pions in any intermediate state.
(Once again G, represents a free particle propa-
gator —this time for two nucleons and a pion. )

Vfhile this hierarchy of equations could be con-
tinued indefinitely, we rely on the concept of two-
and three-body unitarity as a guide. (Two-pion
production is very small below about Tp "=800
MeV. ) Because every intermediate state in
(0

I
T IO), and (0 IT I 1), has two or more pions we

can approximate these objects with no effect on
unitarity. The simplest approximation for
(Ol TI1), is shown in Fig. 2(a), and, consistent
with earlier work, we mill retain only this. Al-
ternatively, it will be called g,~, the NNm vertex
function. Notice also that while we began by con-
sidering a system of pions and nucleons with only
mN interactions, we can formally introduce p, &

mediate state has at least one meson. The sum of
all diagrams in class P will be written (Ol T IO)„
where the subscript indicates the minimum number
of mesons in any intermediate state. If we now

cut the diagrams in class n at the last Aeo-nucle-
on-only intermediate state we find easily

«ITI0&=«IT I».+«IT lo&. (:.«ITIO&,

where Go describes the free propagation of the
two nucleons. In a more familiar notation this
mould be written

FIG. 1. Graphical representation of the NN scattering
equation (2.1). The shaded box represents the sum of
all diagrams irreducible on two-nucleon lines.

FIG. 2. The two lowest order contributions to
(0~ X[ 1&2. Only (a) (called gz) is retained in this work.
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exchange and so on through (0I T
I
0), (i.e., as the

exchange of two or more correlated pions). To in-
dicate this we shall henceforth label (0

I
T I0), as

V~E (HBE =heavy-boson exchange), although its
derivation was much more general than the OBE
model. With these definitions, and the approxi-
mation

where we have defined

@AN —~it GogN ~

as shown in Fig. 4.
Next we use Eq. (4.12a) of Rinat, '

nN eN e8G 8$ NN ~

(2.9)

(2.10)

(cf. Fig. 2), Eq. (2.3) can be written

(2 4)

~ = ~sea +g G (1
I T!0)i . (2.5)

The scattering amplitude (1 ITIO), has been dis-
cussed in detail elsewhere. "'" It is what is left
of the pion production amplitude NN -NNm after
the initial state NN interaction has been separated
out. In fact, by making a similar separation to
thatused in (o, ) and (P), and (y) and (5) above, and
also using the approximation (2.4), we find [cf.
Eq. (F.9) of Ref. 16]

0), =g~+&I
I
TII).G.gg. (2 6)

Now (1I T
I 1), is the transition amplitude from an

NNm state to an NNm state with at least one pion
in every intermediate state. The latter condition
guarantees that this amplitude has no contribution,
due to what has been conventionally labeled "true
pion absorption. " The only exception to this would
be crossed absorption contributions such as shown
in Fig. s, and these do not contribute to unitarity
below the threshold for two-pion production.

It is therefore very natural to identify (I
I
T

I I),
with the Faddeev amplitude for AN scattering
using phenomenological nN t matrices and exclud-
ing pion absorption. The nucleon pole term of the
Py j inte ract ion must be exc luded . In the earlie r
work by Rinat' such purely multiple scattering
amplitudes were labeled by a superscript zero.
Consistent with that work and using separable mN

t matrices, we find for the 3-3 amplitude

(1ITII)i=pg~G~g. +Kg.G. T~".'G g. .

The sums over X and p in Eq. (2.7) include all
mN and NN channels interacting through the separ-
able f matrices g, G, g, . Using Eq. (2.7) in Eq.
(2.6) leads to

(1ITIO) =gg+Qg Gq B ~+ QT 'G B

(2.8)

to establish from Eq. (2.8) that

~x =A+K AG~ ~, nr~zz ~ (2.11)

Here (dNN is the M'oiler operator corresponding
to T», and the sum over X does not include N, of
course. We can now use Eq. (2.11) with Eq. (2.5)
to obtain an equation for the NN potential,

The second term on the right is just the nonstatic
one-pion exchange NN interaction, so that we could
label the first two terms on the right VoBE

OBE HBE ~N ogN ' (2.12)

Finally, we can substitute Eq. (2.12), which
we have derived for the NN potential including
pion production, into the original scattering equa-
tions (2.1) and (2.2):

TNN VoBE + BN„G),T),N&NN+ VoBE Go TN

+ BN~ G)t T~N(uNN G() TNN . (2.13)

However,

~~~
' =(I + Go T~N)

' (2.14)

For completeness we record the equations satis-
fied by T»(XxN), viz. Eq. (4.8) of Rinat,

T~~ =B~N+B~~Go T„~++B~„G T„~ . (2.15b)

{a) {b)

can be used to simplify the second and fourth terms
in Eq. (2.13) to yield

TNN =.VOBE + VOBE Go NN N)t GX XN ' 2,15a

(c)

FIG. 3. Crossed absorption graph (with n ~ = 2) omitted
in the three-body approximation to (l~ T~ 1)~.

FIG. 4. Illustration of some single-particle exchange
amplitudes. (a) Bz,N, (b) &~N, (c) Bpg. The first two
appear in Eqs. (2.15) and (3.22), the latter for instance
in V, Eq. (4.1).
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Equations (2.15) constitute the end of our search.
They constitute a closed set of linear integral
equations coupling the reactions

NN -NN,

NN -N&,
NN- md

(or NN -NP in general) .
(2.18)

These equations guarantee two- and three-body
unitarity and, as we shall explain in Sec. IV, should

therefore provide a reliable framework for the
description of NN scattering above pion. production
threshold. So far we have ignored numerical fact-
ors arising from antisymmetrization. While these
could be determined in the preceding formalism,
they fall very naturally out of the reduction tech-
niques of Sec. DI, and we have included them ex-
plicitly only in that section. In concluding this
section, we note the formal similarity of Eqs.
(2.15) to those introduced ad hoc t&y Afnan and
Thomas' several years ago.

III. DERIVATION OF T~~ USING A REDUCTION TECHNIQUE

We now proceed with an alternative derivation of the results, Eq. (2.15), exploiting a reduction technique
used in Ref. 8. In order to avoid lengthy derivations we shall frequently cite results from there(I), referred
to by an equation number.

Our starting point is the Mizutani-Koltun Hamiltonians'6

B=H +H', (3.1a)

where H, =Q„-b'aIa-„+p; q'b&b;is the energy of free nucleons and pions. In that model (which has no anti-
nucleons) only nucleons undergo mass renormalization, ko=(k2+AP)'~' is the nucleon energy after renor-
malization, and q'= (q~+m, ')'~'.

Using a summation convention for notational simplicity, one writes the interaction H' as

H ' = —,
' g (k'k,'

I
v '

I
k~k&a, a.„, a& a& +g (k q'

I
M&'

I
k q) a-, b;~Ib;+ p [g~(k', k q) a,' aIb;+ Hc.]+Hc; (3.1b)

k4 Wk' kk' q
Og

H' contains an NNm vertex part, an NN, and a wN interaction. From the latter we remove those parts
which can be generated by the NNw vertex. Thus, one associates with v'- v»~, the heavy-boson exchange
portion of v». Finally, HcT contains counter terms. The truncation of the basic interaction appears at
first sight artificial, but is actually necessary in order to avoid overcounting.

We start with an exercise which we &hall frequently use and which is illustrated for elastic mN scatter-
ing. For (q'k'I m, „lqk) =(q'k'I qk in) one may write

(q'k'I qk in&= & "(k-k')5"'(q- q')+ Go(q'+&')(q'k'lt. ~lqk&

= 0 e &(k —k')be &(q- q')+ (q'k'I G(ko+ &Io) J~II q& (3.2)

The first line [cf. I (2.14)] is a standard result, the second one is derived, reducing out of the scattering
state I qk in) the nucleon with momentum k, thus [cf. I (2.11)]

I
qk in) = (u, I qk& = ag I q&+ G. t I q&, (3.3a)

where as usual we denote by

G( )=( -H)-' (3.3b)

the propagator for the fully interacting system. J-„ in Eq. (3.2) is the Hermitian conjugate of the N current
operator [I (2.2)]

Jl~(t) =-ih-„(t) = —[H, a„-(t)]

(3.4)

(3.5h)

=—,
' p (k,'k,'

I
» '

I k,k)a„,a~@aI +g (k'q'
I
go'

I
kq&a. b;,b;+ g [g*(k~g', k)a~, b &,+ g „(k',kq ')at;, b &, ]

1 k'$'
qa

(when no time label is mentioned, t =0 is implied). We also cite the following relations, which are readily
derived from the expression for J„- above:

J; I q.&=~'Ik.q~&+gg(k,', k~q, ) Ik,'&+ Ea*(k'q', k. ) l&~q~q'&, (3.5a)

J-„
I k, ) =v'

I
kk, )+ gg*(k,'q', k, ) I

k,'kq'&.
fr) q'
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Now, comparing Eqs. (3.2) and (3.3) one concludes that

(q'k'
I
G (k + q )Jg I q) = Go(k q ) (kq

I
t, z(k + q ) k'q') (3.6)

(where we use the convention of Refs. 7 and 8 where in current and scattering matrix elements initial and
final states have different orderings) and a similar result holds for any elastic scattering amplitude.

Our next step is the evaluation in (3.2) of GJ-„using

G = Go+ GH'Go, (3.7)

inserting a selected set of intermediate states. I.imiting ourselves in the case of elastic mN scattering to
n, (2 and using Eqs. (3.5) one finds

&k'q'I GJII q& = &k'q'I G
I
[lk"&&k"I+ Ik"q.&&k"q, I+ I&"q,"q."&&k"qi q."I ]j.-l q&

=g &k'q'I Glk"&r(k" kq)+g &k'q'I G Ik"q"&&q,"k,"I ~'l&q&~ g &k'q'I
G Ik "qq"&-*(k"q",k) (3 8)

When substituting (3.3a) for G only GH G, is effective in the first and third term on the right-hand side of
Eq. (3.8). We shall now approximate H' there by the vertex part in (3.2) and then reach

&k'q'I «'-I q& = «'q'I G~ lkq&+ «'q'I G lk. qi&[-N(k qk")Ge~(k", kq)]++ &k'q'I G Ik.q.&[-~(k. k"q)G+~(k"q k)]-

(3.9)

For the approximation just shown, Eq. (3.9) clear-
ly defines the total (or effective) ~N interaction.
Notice that the bracketed forms in the second and
third term correspond to the direct and the crossed
nuclear pole potentials. The former acts only in
the P» partial wave, whereas the latter has pro-
jections in any partial wave. Both terms ideally
complement w,'„ to its full strength w,„(cf.Ref.
6). In practice one uses for P» only the pole term'
and represents for the other partial waves [in par-
ticular for the dominant P» ("a")]the sum of M'

and the projected crossed pole by a separable in-
teraction w~ =g~X~g~. The corresponding t matrix
then reads in standard fashion

gout
Qgi =Qyg + 2

1
j„-,(t) dt, (3.13)

Z, =P(out k,'k2
I
jt„G(E—q "0)J,[H', a-„„]

and may then rewrite the second term in (3.12) as

& =P(out k', k,'
I
Jq„G(E —q"')

I k,"k,&g„*(kgb",k, ) .
(3.14)

Next, one substitutes (3.7) for G(E) and when using
(3.5), one readily derives for Z =Z, +Z,

Z, = Q (outk, 'k,'
I
J;., I k,"k,&G,p'„*, (3.15a)

~~ -g~G~g~ ~ (3.10) (3.15b)

xg„*(k,"q",k, ) .
We now use [cf. I (2.11)]

(3.12)

Except for the crossed N pole contribution to f,,~
which has n, =2, we shall, from now on, restrict
intermediate states to ~, & 1.

Consider now the elastic NN amplitude (E =k,'+ k,'
=t "+a"}1 2

(k,k, I T„P(E) I
k,'k'& = (out k,'k'

I j~ I k, ) . (3.11)

Next, we substitute into (3.11) Eqs. (3.5b) and the
equivalent of (3.2) for j, lk, ) and lktk,' out), re-.
spectively. Insertion of intermediate states with

n, ~ 1 then leads to

(k,k, IT„„lk;k;&=&kk, l~ I[I+G,T„„(z)]lk,'k,'&

+ Q (out k,'k'I a~„ lk,"k,&

Using first a version of [I (2.12), (2.8) ] and then
Eqs. (3.13), (3.10), and (3.11), Eq. (3.15a) can be
rewritten as

Z, =g(outk, 'k,'Ia~, j& Iq")G, „*

OPE OPE 0 NN( ) Sd 6 6N '

In Eq. (3.16)

(k,k, Iv„, Ik,k,'&

=[g„(k,q', k,')G,g*„(qk,', k, ) —exchange] (3.17)

is the properly antisymmetrized one-pion exchange
potential, which appeared before in (2.12), while

B&~ [cf. (2.9)] is the single-pion exchange ampli-
tude for NN-N&. We now turn to (3.15b) which
contains a commutator or N current operator [cf.
Eq. (3.4)]. One then expands Z, as before and ob-
tains three terms:

Z,= —,'g(out k,'k2'la-I » k2&«k2
I
+ Ik k.q&&k»ql] G(E- q"')jl,; Ikm'&G.g.*++(out k,'k2

I
jt-G- q"')~';-Ikq&g G. 0'* .

(3.18)
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td-AGdA ~

which allows (3.18) to be rewritten as

(3.20}

(3.21)

Finally, combini'ng Eqs. (3.14), (3.16), and (3.21)
we can write

T„„=vp BE + vpBE GpTNN+BN~ G~ T~N+ 2 BNd Gd TdN,
X/2

X/2
T&N -B&Nr+BgN GP TNN+B~~G~ T~N+ 2 B~d Gd TdN,

dN dN dN O NN db, g gN ~ (3.22}

where [with v»E, vo» as in Eg. (3.17)]

OBE HBE OPE (2.13)

For the origins of the factors 2' ' see the final
paragraphs of Sec. V in I. The result (3.22) has

.been obtained by means of reduction techniques
applied to a solution of the Hamiltonian (3.1), (3.2)
and is identical to Eg. (2.15a) derived in Sec. II
by graph summation techniques. Notice that in
both methods states with n, ~ 2 have been disre-
garded.

The last two terms are seen to correspond to
n, =2 states [with the pions not c'onnected to the
same N as in (3.9)] and these will be disregarded.
In the remainder, one meets

&kA I
G(B- ~"')~&

I
@'&

= Go(& —q"')(k,"k2'
I T„„(E—q"')

I k,k,), (3.19)

which is an identity like (3.6) for the NN scattering
amplitude.

Notice that T» in (3.19) represents NN rescat-
tering in the presence of a spectator pion with
energy q"' and should be contrasted with an NN
amplitude in a pion free state. The former appears
to be dominated by the 'Sy Dy channel" and we
shall assume the interaction in that channel to be
separable. We thus have

be used. This prescription violates self-consis-
tency as well as strict unitarity above the pion
production threshold.

We have already observed the formal similarity
of our equations to those of Afnan and Thomas. '
In a theory which treats the nucleons symmetrical-
ly we have obtained an NN interaction much richer
than just the OPE of Ref. 2. Quantitatively this
means that now both time orderings for the OPEP
are included, and it will therefore have its full
strength. (This defect in the OPEP of Ref. 2 was
probably compensated for, . rather fortunately, by
fitting to a Pyy scattering length, which in view of
recent analyses, seems to have been too large 2')
As one remaining open problem we mention that
a consequence of the symmetrical treatment of
the two nucleons is the use of G, (the free propa-
gator) for two-nucleon intermediate states rather
than the dressed propagator v'N of Refs. 24 and 3.
This means that we omit the contribution to the
N-N inelasticity shown in Fig. 5. Fortunately this
contribution to pion production in NN collisions is
known to be very small below 800 Me&."

We now return to Egs. (2.15) or (3.22). Instead of
tNN or v» as in the theory of Rinat', their solu-
tion requires as input v„BE, the NN potential due
to heavy (p, &e, q, ~ . . ) boson exchange. For it,
there is no self-consistency problem since the in-
put contains only single N and m, and not p, co, .. . ,
exchange amplitudes. We shall return to this point
below, but first we construct the full NA' interac-
tion within the framework of the model.

In the following we shall for simplicity disregard
vN channels other than P =&. It is then easy to
eliminate from (3.22) T» and T„„with the result

TNN = +NN+ ~NN Go T

V~g = vcss + 2B~~ G~B~„+(B~~+2B„~G~B~~)

x G~(1-B«G~-2B „G,B, G )-'
/

IV. CONCLUSION AND DISCUSSION ~ ( ~/+2 ~dGd Bd~) . (4.1)

The set of integral equations (2.15) and (3.22},
derived by means of a consistent dynamical theory,
couples the NN elastic amplitude to the amplitude
for NN- vd, and all isobar (P) excitation ampli-
tudes NN -NP.

To the extent that the intermediate States have
no more than one pion this theory is unitary, and
may, as described in Refs. 3, 4, 17, and 18,
readily be cast in covariant form. It therefore con-
stitutes the desired extension of the model of Ref.
8, where t» was assumed to be known. In that
theory, which has been applied to md scattering"
and to md -NN, "it was implied that whenever
t» was required the t matrix corresponding to a
static NN potential (e.g., Reid soft core") could

Neglecting for a moment contributions due to
'S, —'D, ("d")NN rescattering (i.e., setting
B~,=B~,=0), the NN potential is readily seen to
equal the sum of one-boson-exchange potentials
and —in the model —all irredicible NN amplitudes
which can apparently be generated by repeated

FIG. 5. Disregarded self-energy insertion on interme-
diate N line in some contribution to TNN which would lead
to an additional inelasticity.
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single ~ exchange between Nn states [Fig. 4c].
(Notice that in including the vd channel we addres-
sed ourselves to the I=1 part of V». Coupling
of NP with I =-,' isobars will lead to a theory for
the I=O components of V„„.) Likewise one may
interpret additional contributions if the transition
potentials ~„„~d~«are included.

We now wish to compare our results. It can
readily be checked that V„„, Eq. (4.1), with B„„=O
is just the potential devised by Weber, Eisenberg,
and Shuster. " Conversely, one can now precisely
define the model which leads in a unique fashion
to their NN potential.

Consider next a situation wherein one wishes to
couple the NN channel to nucleon-isobar (NP)
channels, with no more than one isobar P per
gN partial wave. Such a model is defined if the
potential coupling matrices are given. If one as-
sumes that all coupling potentials are mediated by
single-pion exchange, except V»» which contains,
in addition, heavy-boson exchange, one has

NS NN( 0BF ) NE &

gb. y NN NhgSN bN &

r r

Specifically excluded are couplings shown in Fig.
6. The assumptions just expressed are those of
the Jena-Kisslinger model or of the Helsinki-
Mainz group. "

The coupled channel Schrodinger equation cor-
responding to the potential matrix (4.2) is of the
form

(E —M~~- ~~~)"~=QB~B&s
(4.3)

with M the mass matrix. The formal solution of
(4.3) can readily be constructed, and, limiting our-
selves again to P =&, one finds for the effective
NN potential

I (s)=-
&6H

E.(p)+E,(I )
(p)E (p) IZ~(P)PGo(s, P)~P ~

(4.5)

G~ describes mN propagation only on the mass
shell, while G~ does the same for an interacting
wN pair also off the mass shell (in the restricted
sense of a separable interaction).

An important remark is in order here. It has
been shown by Aaron, Amado, and Young' that
integral equations for coupled amplitudes of the
form (3.22) embody a unitary theory (in the re-
stricted sense used above, and below the threshold
for the production of the lowest mass heavy boson)
provided the form factors g which build the driving
terms B ~==@,~G, ~gz) are the same as those which
describe the dressing I~(s) of the interacting pair
in Eq. (4.5). The model discussed here clearly
provides a basis for the cited coupled-channel
theories and points the way to a required unitarized
version.

It is not possible to overemphasize the import-
ance of unitarity if one wants to calculate the in-
elasticity in NN scattering in a coupled-channels
theory. In particular, using a static approximation
for G, in the driving terms (potentials) B~ ~
—= (g'~

~
Go ~g~) means that contributions to NN in-

elasticity of the type shown in Fig. 7(a) (See Ref.
3) are omitted completely. These are formally
of the same order as those shown in Fig. I(b)
which are approximately included by giving the
6 a complex mass. We are forced to conclude (as
is also implicit in Ref. 12) that static coupled-
channels treatments may significantly underes-
timate the inelasticity in NN scattering.

An obvious shortcoming of our model is the
truncation of intermediate states, limiting those
to contain at most one pion. It would be desirable
indeed to include two-pion contributions both as

Vmr ——voas +B~a G~ (1 —B~~ G~) ' B
This potential V» is obviously close to our solu-
tion (4.1) and differs in the propagator (G~)-'
=s -M~ '+-,'iM~I'~ as opposed to our propagator
[cf. Eq. (3.1O)]

G~(s) =s —(Mo~~)2+I~(s),

/
/

/

+
(a)

FIG. 6. Example of a &N-4N coupling which when
included in {4.2) would lead to contributions absent in
(4.1).

(b}

FIG. 7. (a) A three-body contribution to the imaginary
part of the NN scattering amplitude (i.e., N-N inelasti-
city), which is absent in the static model (e.g. , Hefs.
10, 11, and 13). (b) That part of the N-N inelasticity
which is included (approximately) in the usual static
models with a complex mass for the A.
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Bg~ -8g~+B~~, B~~ -8~~+ B~~ . (4.6)

We prefer here a well-defined model rather than
a possibly richer one, for which the question of
consistency appears related to the concept of an
elementary field.

In our final remark we wish to address the ques-
tion of the presence of isobars in nuclei in gener-
al, and in the deuteron in pa, rticular. " Can
one, from an experiment which ideally measures
a d&& coupling (width), "relate that strength to a
probability amplitude for the deuteron to contain
those isobars7

By way of illustration we consider neutron spec-
troscopic factors, for instance as extracted from
a (d, p) reaction. 3' Even if the tool for analysis,
the distorted wave first Born approximation, were
perfect, it would still require a mode/ for the ini-
tial state and the final one after neutron capture

background (crossed pions, etc.), p, . .. contribu-
tions, and the like. The ensuing complications are
not only of a technical nature. These relate to
questions of how a & couples to Np if the & is not
elementary, but emerges as assumed [cf.Eq. (4.5)j
from a model mN interaction. Repeated use has
recently been made of NNp and 4Np couplings in
the description of the md-NN process' '" and of
the n-nucleus optical potential. " In these theories,
one formally incorporates p couplings, postulating
the Born terms B„~, B« to contain p as well as
m exchange, i.e.,"'"

to extract a width. The various nuclear models
(e.g. , the shell model) chosen for analysis usually
allocate a simple, yet nearly complete set of con-
figurations to which initial and final states belong.
Within that framework, one may then formulate
sumrules (i.e., tests of unitarity) which have to be
respected, and which ultimately allow extracted
widths to be interpreted as probability amplitudes.

The example discussed emphasizes that the in-
terpretation of, say, measured d&4 couplings,
as probability amplitudes requires a model. The
one presented above, which is based on the Hamil-
tonian (3.1) with given heavy-boson potentials and
an elementary NNm vertex, satisfies demands on
consistency and unitarity within a given space.

Yet, regarding the question of the 4~ content of
the deuteron, our model has no answer because
the necessary coupling (cf. Fig. 7) is absent.
However, there is meaning to the question of how
deuteron wave function spreads over NN and NP
states. From the discussion it should be clear
that the answer is dependent on, say, the one-
boson content of V„~~ as are the neutron spectro-
scopic factors on configuration assignment and
chosen single particle potentials.
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