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We have measured the inelastic scattering of 35 MeV protons from the nuclei '*Sm, 7Yb, 2*2Th, and
2%U. Angular distributions were extracted for J” = 0*-8+ members of ground state rotational bands. These
data were analyzed using coupled channels calculations for scattering from a deformed optical potential.
Searches were made on some of the parameters of this potential, including the deformation parameters 8,
and B,. The multipole moments of the potential distribution were calculated from the parameter values and
are compared to the results of Coulomb excitation, electron scattering, and inelastic, alpha-particle
scattering studies. In general, these moments deduced in our investigation agree better with those from
Coulomb excitation and electron scattering than with moments deduced from a-particle scattering. But we
also find the moments from our study to be systematically smaller than those from Coulomb excitation.
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I. INTRODUCTION

The shape of a nuecleus is one of its most fundamental

properties, but the precise determination of the nuclear
shape is still an outstanding problem. The most extensive
and accurate data on nuclear deformations have come
from Coulomb excitation measurements. However, in
practice, the information which can be obtained from such
measurements is incomplete. Because of the rapid
decrease of excitation probabilities for the higher-order
moments, the Coulomb excitation technique is essentially
restricted to determinations of quadrupole (E2) and
hexadecapole (E4) moments. Even the hexadecapole
moment is often difficult to obtain precisely and is
subject to ambiguities. (See, for example, Ref.l and
references cited therein.) More importantly, Coulomb
excitation is sensitive only to the charge distribution of a
nucleus, and although information about higher charge
moments might be obtained from higher momentum-
transfer Coulomb measurements, such as high-energy
electron scattering, information about the neutron
distribution of a nucleus requires hadronic probes.

The standard technique for investigating nuclear shapes
is the measurement of inelastic scattering cross sections.
However, because the nuclear interaction is poorly under-
stood and is much more complicated than the electro-
magnetic interaction, it is difficult to make model-
independent determinations of nuelear shapes from such
measurements. For simplicity it is usual to analyze the
data in terms of a parametrized deformed optical model
potential2 (DOMP), which is a complex projectile-nucleus
potential as in the normal optical model but with
additional parameters describing the deformation of the
nuclear surface. The parameters are then adjusted to fit
both the elastic and inelastic scattering cross sections.
The phenomenological nature of this model makes the
deformation parameters (B)\) determined by such an
analysis rather uncertain and difficult to compare with
Coulomb excitation results. Recently, Mackintosh® has
pointed out that deformed optical model potentials which
are derivable from a simple folding preseription
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NUCLEAR REACTIONS '*sm(p,p*), ®¥b(p,p"), %2Th(p,p’), and ¥U(p,p’),

E, =35 MeV; enriched targets, nuclear emulsion plates (7 keV FWHM) and

position-sensitive proportional counter (15 keV FWHM), magnetic spectro-

graph; measured o (Ep’, 6); coupled channels calculations, rotational model;

deduced optical model and deformation parameters, quadrupole and hexadeca-

pole moments; comparisons to Coulomb excitation, (e,e’) and (o, a’), compar-
isons to Hartree-Fock calculations.

35 MeV and the targets !

-

(sometimes called the reformulated optical model*) have
the property that their multipole moments are
proportional to those of the underlying matter
distribution. Thus, to the extent that the DOMP satisfies
this property, the moments of the mass distribution can be
determined in a model-independent way.

Most of the hadron scattering data on heavy nuelei have
come from measurements using complex projectiles,
principally the pioneering o-—scattering measurements of
Hendrie et al.> However, protons appear - to have several
possible advantages over composite projectiles as probes
of the neutron distribution. The parametrized optical-
model potentials for a—particles are known to possess
many more ambiguities than those for protons making
proton scattering a more suitable candidate for the
moment analysis suggested by Mackintosh. In addition,
the fact that the p—n interaction is stronger than the p—p
and n-n interactions makes proton scattering more
sensitive to the neutron distribution. Furthermore, the
higher penetrability of protons in nuclear matter allows
them to probe the nuclear interior, and the electron-
scattering data of Cooper et al.® have given preliminary
indications that for some deformed nuclei the deforma-
tions in the interior may be different from those at the
surface. Finally, proton scattering should lend itself more
readily to more fundamental analyses such as those using
folding-model potentials.

Almost all proton scattering on heavy deformed nuclei
has been measured at fairly low proton energies where the
angular distributions are not sufficiently diffractive to be
very sensitive to nuclear deformations. The purpose of
the present study is to provide higher energy (p,p') data so
that the possible advantages of proton scattering as a
probe of nuclear deformations can be realistically
assessed. We have chosen a g)roton bombarding energy of

“*Sm, !7%yb, ?32Th, and
238 U, all of which have been studied by both Coulomb
excitation and electron scattering. For the present we
have chosen to analyze the data in the usual manner with
a DOMP and will try to relate the results to those from
the Coulomb measurements using the multipole moment
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technique suggested by Mackintosh. A greliminary report
of this research has appeared elsewhere.

II. EXPERIMENTAL PROCEDURE

The inelastic scattering reactions were measured using
35.-MeV protons from the Michigan - State University
isochronous cyeclotron with scattered protons detected in
the focal plane of the Enge split-pole spectrometer. Two
detection techniques were employed: 1) a delay-line
position-sensitive proportional counter with an energy
resolution of 15 keV full width at half maximum (FWHM),
and 2) to obtain better resolution some data for '**Sm
and !75Yb were recorded on photographic plates with a
resolution of 7 kev FWHM. The '°*Sm and !7°®Yb
targets consisted of metals prepared from enriched oxides
by standard lanthanide reduction techniques and were
150 yg/em?2 of !5%Sm enriched to 99% and 200 pg/em? of
176 Yb enriched to 97%. The 2%2Th and 23%°U targets
were in the form of natural thorium and uranium
tetraflourides. The 232Th target was 240 ug/em? thick
and the 238U target was 220 ug/em? thiek.

Data were recorded at laboratory angles from 20° to
120° in 5° steps. A monitor detector at 90° was
employed to assure accurate relative normalizations.
Most of these data were obtained using a sgectrograph
defining aperture with an angular width of 1° x 2°, but
sometimes widths of 1°x 1° (at forward angles) and
2° x 2° were also used.

Proton spectra recorded on photographic plates from
the lanthanide targets are shown in Fig. 1. The elastic and
fipt excited states produce tracks too dense to scan. The
4,6, and 8 states of the ground state rotational band
are clearly observed. Many higher-lying levels from
excited bands are also resolved and the strongest of these
states are comparable in magnitude to the 6 state of the
ground state band. Fig. 2 shows spectra of the actinide
nuclei recorded with the pr'oportiongl counter. The ground
state band is observed up to the 10" state. In 2°® U many
states from excited bands are observed, and the K"3=03
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FIG. 1. Partial spectra (elastic and 2+ excita-
tion peaks excluded) of inelastically scattered
protons from !5Sm and !7®Yb recorded on photo-
graphic plates. The broad peaks with hatching are
contaminant peaks. “Some examples of peaks with
known spins and parities are shown.
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FIG. 2. Partial spectra of elastically and

inelastically scattered protons from 2ph and 2%%U

recorded with a proportional counter.
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FIG. 3. An example of a fit to the ground band
peaks in 238y, The solid line is the result of the
iterative fitting procedure described in the text.
The large "wings" on the peaks are believed to
result from a degradation of position resolution as
delta rays are produced in the proton-gas (propane)
collisions.
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FIG. 4. Fits to the elastic scattering data. The solid line is the result of calculations employing the spin-
orbit interaction. The dashed line is the result of calculations without this interaction. The data for these
latter results have a somewhat different normalization so this calculation has been renormalized for display
purposes to the absolute cross sections predicted by the calculations using the spin-orbit interaction. All
parameters for these fits are given in Table I.

state at 0.732 MeV and the 273 state at 1169 MeV are qualitative  characteristic of the data is that the

stronger than the 6 member of the ground state magnitude of the cross sections decreases by

rotational band at this angle. approximately an order of magnitude for each
In extracting cross sections, the peak shapes were successively higher-lying ground band state.

assumed to be identical for all states in a particular The absolute cross sections were inferred by

spectrum. The peak areas were extracted by an iterative comparisons of the measured elastic scattering cross

procedure based on the shape of the elastic peak with the sections to those predicted by the coupled. channels

low energy tail varied to assure a best fit for all states of calculations (see See. III).

interest. An example of the peak fitting results is shown )

in Fig. 3 for 23'%([),[)'). Each data point has a 3% 1II. ANALYSIS

normalization and peak stripping error added in

quadrature to the statistical uncertainty. : The data have been analyzed in the standard manner 2’°

The proton angular distributions from the !3*Sm, using a DOMP to determine the transition matrix
176 yb, 232Th, and 23®U targets leading to the ground elements. The calculations were carried out using the
state and excited levels of the ground state rotational coupled channels code ECIS of J. Raynal.!! It was
band are shown in Figs. 4, 5, and 6. A striking feature of assumed that the nuclear states are members of a K =0
the data is the oscillatory nature of these angular band resulting from the rotation of rigidly deformed static
distributions. This is in contrast to the structureless mass and charge distributions. All non-zero couplings to
angular distributions observed both in lower energy proton order L = 8 (to order L =10 for investigations involving Bg
scattering on these same nuclei,” ’” and in scattering from but with no spin-orbit interaction) were included in the

heavy spherical nuclei at 35 MeV.!? A second coupled channels spaces, specified below.
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FIG. 5. Best-fit results for the inelastic scattering data for !'%'sm and !7%b,
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The solid line results from

calculations employing the spin-orbit interaction, coupling all levels up to 6 to L = 8. The Qashed lines
result from calculations not employing the spin-orbit interaction, but coupling all levels up to 8 to L = 10.
The deformation parameters used in these calculations are given in Table I.

The nuclear potential was assumed to have the standard
Woods-Saxon radial dependences, with the deformations
introduced by replacing the real and imaginary radii by

1/3

R(e)zroA (1+§ BXY)\O(G))'

Only B, and B, deformations were normally used; the
moments we present in Sec.IV result from these
deformations only. We did extend the calculations to
include B_ in some cases (with no spin-orbit interaction)
as discussed below. A uniform but deformed Coulomb
potential was employed with the values of the charge
deformation parameters Bc and Bg taken to be those
which reproduce the charge distribution moments deduced
in Coulomb excitation studies (Ref. 12 and see survey in
Ref.1). Al calculations employed 25 partial waves with
integrations carried out to 20 fm.

There is a substantial amount of coupling between the
deformation parameters. That is, direct and mulpstep
processes compete strongly, especlally for the 4 and
higher, state excitations. As shown in Fig. 7 for 176Yb,
the 4 and 6 angular distributions are very sensitive to
both the sign and the magnitude of B 4 This is especially

encouraging as the region of Yb, Hf, and W is the subject
of recent attention (e.g. Ref.13) as to the magnitude of
hexadecapole effects there.

In order to reduce the number of parameters which
might be varied to fit the data, the initial calculations for
the elastic scattering data were started with the spherical
average optical model parameters of Becchetti and
Greenlees.“’ By means of gradient searching, including
the 0, 2, and 4 states, the real well depth V, the
1mag1nary surface well depth W4, and the real and
imaginary dlffusenesses, a_and a,, were adjusted to give
best fits (minimum yx? fralues) to the elastic angular
distribution.  These searches were iterated with initial
searches on the deformation parameters, as the
calculations obviously depend on them as well as the
"geometrical" parameters.

We approached the problem of spin-orbit effects by
analyzing the data with and independently without the
inclusion of the spin-orbit interaction. We used a
deformed, full-Thomas form (c.f. Ref.15) for this
interaction, which gave good fits over our angular range.
For simplicity, we kept all deformations equal for the
nuclear part of the optical potential, including the spin-
orbit part. Only its depth V., was adjusted and average
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FIG. 6. Best-fit results for the inelastic
Fig. 5 for description of the curves.

radius and diffuseness values!'* were used.

The best fit results for the elastic scattering data are
shown in Fig. 4 for calculations with and without the spin-
orbit interaction. We tabulate the resulting optical model
parameter values in TableI. Note in Fig. 4. that the
inclusion of the spin-orbit interaction is necessary to
properly describe the minima, most noticeably for '7®Yb
Without including the spin-orbit term the imaginary
surface depth W; must be greatly increased in order to
decrease the dep?hs of these minima from the extremely
deep ones which result if one uses the spherical, average
parameters.’"

The procedure for fitting the inelastic scattering data
was typically, as follows. By grid-searches, including the
0,2, and4 states, 32 was varied, assuming sqme fixed,
"reasonable" B, wvalue, to best fit the 2 angular
distribution. 4Using the resulting B, value B, was
similarly determined, but with the coupled channels space
increased to include the 6 state (and sometimes the 8
state if no spin-orbit interaction was employed). Thesg
two steps were iterated, attempting to minimize the X
values for each angular distribution (X3+, X22+, and x2,)
at consistent values of 8, and B Unique values of B
and B8, will migimize the x? values (within  20%) for the
0% 2% and 4 states, but not for the 6 states. In
choosing "best" values of B, and B,, those given in
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scattering data for 232ph and 2%%U. See the caption for

Table I, we took those which minimized the total x2 value,
taken to be the sum of x3,, x5., and x5 (we omit x%,
because B¢ deformations were not included). An example
of the y? values as functions of B, and B4 for 238U is
shown in Fig. 8. In the case of '7¢Yb, however, x%. and
x2 4» but not X2 4+ Will minimize at very nearly the same
value of B,. Minimizing x%, with respect tog, will
typically cause increases of 20%-30% in x%, and x%,
from the values minimized with respect to B 2. In this
case the best B, value is taken as that for which x%, and
X 2+ @re at a minimum, and B, is that value for which
X"4+ is minimized.

The inclusion of 86 was investigated (these calculations
could only be done without the spin-orbit interaction, but
the 8% state and eoupliggs to L =10 were included).
However, the fits of the 6 angular distributions remained
poor for those values of Bg(|Bg| = 0.015) which would
help minimize the total x? (here, x%, was included). We
cannot then conclude anything definite about B, values
for those nuclei. Such small values of Bg do not affect
within uncertainties the quadrupole and hexadecapole
moments that we report.

The statistical uncertainties in By and B4 were
obtained by gradient searches using the automatic
searching routine of ECIS. These uncertainties are
derived from the inverse of the matrix of second
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derivatives of x? with respect to the varied deformation
parameters, and account for correlations between these
parameters.

1IvV. DISCUSSION

It is clear that the deformation parameters By obtained
from a DOMP analysis of inelastic hadron scattering are
subject to the same ambiguities of interpretation as the
more ordinary optical model parameters. For one thing,
since 'the inelastie seattering cross sections depend on B8)
only through the product RBj (where R is the potential
radius), the value of B) is entirely dependent on the
choice of R. Hence, it is clear that the "deformation
length" 8y = RBy, is. a more fundamental quantity, and it
is common to compare the results of different
experiments by comparing the deduced §,. However, this
procedure ignores the correlations between the 8, and the
remaining optical model parameters and is completely
inadequate for comparing hadron scattering with Coulomb
measurements, since unlike the hadron-scattering cross
sections, the Coulomb cross sections do not depend simply
on the 8. As a result, Hendrie'® has suggested a simple
geometrical construction for relating potential and matter
distributions. = To achieve this, he assumed that the
projectile is a hard sphere, that the nuclear surface is
sharp, that the projectile does not penetrate the nuclear
surface, and that the difference between the potential and
matter distributions is entirely due to the size of the
projectile. However, the significance of this model is
open to question, since it ignores not only the nuclear and
projectile diffuseness and interpenetration, but also the
finite range of the nucleon-nucleon interaction and the
difference  between its isoscalar and isovector
components.

In order to avoid such problems resulting from direct
comparisons of deformation parameters, deformation
lengths, or geometrically scaled parameters, we have
followed the suggestion of Mackintosh® and computed the
potential multipole moments qy¢

+2
K[Ve-REN Y, (0)de dr

[V(e-R©)rldedr

sign and magnitude of 8, for Yb.
Table I. Optical model parameters for coupled channels calculations.
a b c
v e wd 3 vso B2 B4
(MeV) (£m) (MeV) (fm) . (MeV)
154
Sm a 50.70 0.729 5.113 0.686 6.330 0.269 (3) 0.072 (3)
49.80 0.667 8.392 0.604 0.273 (5) 0.066 (5)
176Yb d 52.45 0.705 4.204 0.738 6.430 0.275 (4) -0.055 (4)
49.67 0.652 7.745 0.653 0.277 (7) -0.066 (6)
232Th da 52.72 0.716 5.086 0.788 5.513 0.210 (3) 0.069 (3)
51.70 0.707 7.085 ) 0.759 0.211 (4) 0.071 (3)
2380 4 53.59 0.732 4.331 0.810 6.776 0.232 (3) 0.042 (3)
52.15 0.653 6.121 0.789 0.233 (4) 0.049 (5)
3The real radius was kept fixed at r, = 1.17 fm.
bThe imaginary radius was kept fixed at r, = 1.32 fm.
cThe spin-orbit geometry parameters were kept fixed at Teo = 1.01 fm and Ao = 0.705 £m.
dThese parameters resulted from best-fits for calculations which included the spin-orbit interaction.
e

These parameters resulted from best-fits for calculations not employing a spin-orbit interaction.
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distribution data vs. a) B, and b) B4 for 238y
(spin-orbit interaction +included in the calcula-
tions). Note that the 6 data is not minimized at
consistant values of B, andB, as the other data are.
In these calculations B, = 0 but the situation is
only little improved by any other value.

where V(r-R(9)) is the real part of the DOMP and K is a
normalization constant. Mackintosh has shown?® using a
theorem due to Satchler!” that for a folding-model
potential in which the underlying nucleon-nucleon inter-
action is assumed to depend only on the magnitude of the
distance between the nucleons in the projectile and target
(reformulated optical model) the multipole moments of
the potential (q;) are proportional to those of the nuclear
density. Thus, to the extent that our DOMP is equivalent
to such a reformulated optical-model potential, the q, we
calculate should be proportional to the nuclear density
moments. In particular, if the neutron and proton
‘distributions are the same and the normalization constant
K is chosen to be equal to Z, the atomic number, the ay
we measure should be equal to the charge moments
measured by Coulomb techniques. Therefore, to facilitate
comparison with Coulomb measurements, we have chosen
K = Z so that the q) may be considered to be the "charge-
component” moments of the potential.

The q, and. q, calculated in this manner from the
DOMP parameters given in Table I are shown in Table II.
Also shown are the moments deduced from (aa")
studies®?'®°'® and charge moments from Coulomb
excitation (Ref.1 and references cited therein) and
electron scattering measurements. In the electron
scattering measurements of Cooper et al.® the quadrupole
moment (q,) is not determined but instead is taken from
Coulomb excitation B(E2) measurements. Thus, the g,
values used in (e,e') are not shown in Table II. In addition,
as indicated in Table II, only the magnitude and not the
sign of the hexadecapole moments (q4) could be obtained
from these (e,e') measurements. It should also be noted
that for the case of 238U the value of B(E2)
(1..70(15)e2b?) used by Cooper et al. is a more preliminary
value of the one measured by Bemis et al.l?
(12.30(15)e2b?). -

A comparison of the results shown in Table II indicates
that the potential moments derived from our fits
generally agree better with the charge moments from
Coulomb excitation and electron-scattering measurements
than with (a,0") results. In fact, our moments and the
electromagnetic moments are consistently smaller than
the (a,a") moments with the one exception of the 238U
measurement of David et al.'!® (It is also worth noting
that there is a significant difference between the two
(o) results quoted for 2%8U.) The discrepancy between
moments from a-particle scattering and those from
Coulomb measurements has been noted also by
Mackintosh® and may indicate that the o-scattering
potentials used are not derivable from reformulated

154 176, 232

Table II. E2 and E4 moments in Sm, Yb, Th,
: 238
and u.
Nuclide Method a, * a, °
' (b) or (eb) (b%) or (eb?)
154
Sm (pep") 2.06 (3) 0.54 (2)
at 35 Mev®
Coulomb exci(:al:ionc 2.094 (4) 0.588 (29)
,\d
(e,e') [0.47| (1)
(a,0) 2.38 0.61
at 50 Mev®
176
Yb (p,p") 2.29 (5) -0.09 (3)
at 35 Mev?
c . . C 11
oulomb excitation  2.325 (18) 0.28 (20)
(eren? |0.10]
(o0 1 2.76 -0.17
at 50 Mev®
232
Th (p/p") 2.93 (6) . 0.98 (5)
at 35 MeVb
Coulomb ef:xcit:ation“'= 3.03 (1) 1.22 (15)
.. d
(e,e") [1.08] (2)
(o,0") 2.97 (21) 1.06 (20)
at 50 Mev9d
238 ,
U (p,p") 3.30 (6) 0.81 (6)
at 35 Mev® '
Coulomb excit:ati.onf 3.51 (2) 0.83 (22)
4
(e,e") |1.10] (3)
(@,0) 2.98 (12) 0.74.(8)
at 50 Mevd
(@,a’) 3.75 (22) 1.42 (27)
at 50 Mev" :

a, .

The units for the charge component moments are b>‘,
A =2 or 4. . The units for the electromagnetic
moments are eb”.

bPresent work using the values of the parameters in
Table I with spin-orbit interaction. Calculations
without spin-orbit interaction yield the following
changes in gq.,: -0.01, —0.03, +0.01, and —0.01 b,
and in q .05, —0.04, +0.02, +0.03 b? for !S“sm,
176yp, 232 Th, and 238U, respectively.

Srhe Coulomb excitation values for q, and q, are
results of the survey of Ref. 1.

dRef. 6. "||" denotes the absolute value of the
enclosed number.

eRef. 5.
fRef. 12.
9Ref. 18.

hRef . 16.
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Table III. Quadrupole and hexadecapole moments from

' the density dependent Hartree-Fock
calculations by Negele and Rinker.
Moments for both the proton (p) and
neutron (n) densities are given.

£

< q, A g

(b) (b) (b%) (b2)
154Sm 2.02 1.96 - 0.41 0.45
176Yb 2.49 2.46 0.057 0.049
232Th 2.63 2.78 0.84 0.92
238U 3.29 3.38 1.01 1.02

aTo make comparisons with our results the results of
Negele and 1 5(1'.nkr:!rl9 are multiplied by
[(2)\ + l)/l61T] / for bhoth proton and neutron
moments, and the neutron moments are further
multiplied by Z/N.

optical-model potentials so that these (a,a') results may
not be useful measurements of the nuclear deformations.

Although our potential moments generally agree quite
well with the measured charge moments, the values are
systematically lower. For the quadrupole moments this
difference is only statistically significant for 232Th and
238 U, becoming as large as 6% in the case of 238U, The
largest discrepancy in the hexadecapole moments is for
176 Yb, in this case the Coulomb values are quite
uncertain and our values are problematic as well, due to
the difficulties experienced in fitting described in Sec. III.
For 2387y, it is difficult to assess the apparent
discrepancy between the value of ¢ deduced in our work
and the value from electron scattering because of the
value of B(E2) chosen in Ref. 6 mentioned above. Despite
such considerations, the systematic nature of the
discrepancies (proton-scattering results always smaller
than Coulomb results) for all cases is perhaps significant.

If these discrepancies are taken seriously, they mean
that in the cases we have studied the neutron moments
are smaller than the proton moments. Microscopic
calculations of neutron and proton moments for heavy
nuclides have recently been performed by Negele and
Rinker !® using the density-dependent Hartree-Fock
formalism with a "realistic" nucleon-nucleon interaction
(Reid soft-core potential). Their results for the nuclides
studied in this work are shown in Table III and indicate
that differences as large as 5% between proton and neutron
quadrupole moments are predicted. However, in the cases
of 232Th and 238U, for example, our differences are of
the opposite sign to those listed in Table III.

It must be emphasized, however, that at present our
analysis is phenomenological. We have tried to minimize
the effects of this by our multipole-moment treatment of
the results. However, the validity of this treatment
presupposes that our DOMP's are derivable from
reformulated optical-model potentials. As indicated
above, it is likely that the a—particle potentials that have
been used probably do not satisfy this condition because of
the large discrepancy seen between the moments derived
from such potentials and the proton and Coulomb
moments. It is also possible that the remaining
discrepancy between the proton and Coulomb moments is
also due to this fact. Some support for this gossibility has
been given by Hamilton and Mackintosh,?? who have

pointed out that density-dependent effects may be
important. However, calculations they have performed 2°
indicate that for equal neutron and proton deformations
the inclusion of such effects would tend to make the
potential moments larger than the charge moments, an
effect opposite to our observations. Clearly, further
investigations of these effects are needed.

Another "uncertainty concerns the effect of the
imaginary part of the DOMP. As mentioned in Sec. IIl, we
have for simplicity set the deformation parameters equal
for all parts of the potential. However, as indicated
above, it is the product R8) = &) which determines the
scattering cross sections. If R is significantly different
between the real and imaginary parts of the potential, it
might be a better ecriterion to keep the &) equal?!
between the real and ima%inary parts of the DOMP.
Anothér possible condition®? is that the multipole
moments of the real and imaginary parts be kept equal.
The effect on the results of such alternative conditions
needs to be considered before any final conelusions can be
drawn from our results.

An additional consideration which affects not only our
results but also the Coulomb measurements is the validity
of the striect rotational model in determining the
transitional probabilities. It is possible, for example, that
a breakdown in this model accounts for the difficulties we
experienced in fitting the !78Yb cross sections. This may
be related to similar problems observed in electron
scattering. Cooper et al.® found it impossible to fit their
'76Yb cross sections unless they adjusted the
deformation parameters for different transitions. They
interpreted this in terms of radius-dependent defor-
mations in the charge density, although it would seem that
deformations which change as the rotational angular
momentum is increased might be an equally valid
interpretation.  But, Coulomb excitation studies?? of
176 Yb with heavy ions, to spin 18", show the moments-of-
inertia to be smoothly varying with spin, and the lifetimes
of the states to 14 are in agreement with rotational
model predictions.

V. SUMMARY

We have measured cross sections for proton inelastic
scattering on !%*Sm, !'76Yb, 232Th, and 2%8 U and have
fit them using a parametrized DOMP. The results have
been interpreted in terms of a multipole-moment analysis,
a procedure which we believe to be more fundamental
than the usual one of comparing deformation parameters,
deformation lengths, or geometrically scaled parameters.
We found that in contrast to the a-scattering results,
there is reasonable agreement with the Coulomb
measurements, except that the proton moments are
systematically (<6%) lower. If this is a significant
discrepancy, it would imply systematically smaller
neutron than proton moments in disagreement with
Hartree-Fock calculations. !°

However, it is probably more likely that the differences
between our measured proton-scaling moments and the
charge - distribution moments result from the
phenomenological aspects of our analysis and could be due
to such things, discussed in Sec. IV, as density-dependent
effects in the optical-model potential, uncertainties in the
treatment of the imaginary part, and breakdown of the
simple rotational model for determining the transition
probabilities. It is interesting that if the first of these
effects is important, the calculations of Hamilton and
Mackintosh 2° indicate that its influence on the potential
moments would lead to a discrepancy with the charge
moments opposite to that which we observe.

All of these effects need to be examined more closely
before definite conclusions can be drawn. Nevertheless,
the present results indicate that proton scattering is
indeed a useful hadronic probe of nuclear deformations
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and demonstrate the advantages of the multipole-moment
method for interpreting the results.
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