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Heavy-ion transfer reactions to highly excited states are examined in terms of surprisal analysis-a
constrained statistical approach motivated by information-theoretic considerations. The practical use of the
procedure is discussed and illustrated by application to the available data from a variety of reactions. The
experimentally measured energy spectra for multinucleon transfer are found to be well described by a
distribution of maximal entropy subject to constraints. These constraints are shown to imply that the
distribution of single nucleon occupation numbers in the heavy residual nucleus is fully relaxed but that the
two-particle (and higher) correlation functions are not. For few-nucleon transfers the energy spectra contain
a second, smaller, component which is more strongly damped. The dynamical origin of the constraints is
discussed in terms of sum rules derived from models for the transfer process. A simple model for grazing
collisions which includes the effects of tangential friction (with the same damping constant for all exit
channels) provides a qualitative and a quantitative account of the variation of the optimal Q value with the
number of transferred nucleons.

NUCL&Alt REACTIONS Heavy iona, Th(t O, X), X tt, 16, t5N ts, tt, ts, ttC
3.1 . B Be E =105 MeV Mo( N ~ X= 0 C 8 Pe Li E =97

MeV. ~MO( N E) X'= 3C i28, A =100, 98, 97, 96, 95, 94, 92, E=97 MeV.
»Cr(~4N, ~), ~=i3g, «g, Sge, @=90 MeV. »2Th(i5N, ~ ~=l4 ~2C i3 «P,
tLi, E =145 MBV 232Th(22Ne X) X 26Na 18ItsO 1tN 16 ~ 15C E ] 74
tstAu(t O„X), X=tsN tB sBe, E =218 and 250 Mev. Ni( SO t C)Zn, E =96 MeV
Energy and nucleon occupation numbers in the ejectiles. Models for optimal Q

values. Tangential friction.

I. INTRODUCTION

Heavy-ion transfer reactions at energies above
the Coulomb barrier have been studied in consid-
erable detail. ' ' For a large number of reactions,
double-differential (angle-energy) cross sections
for the different final arrangement channels have
been determined. We consider a method for corre-
lating and compacting such data that centers at-
tention on the relevant dynamical variables which
constrain the evolution of the system. The descrip-
tion of the temporal dev'elopment of such dynamical
variables as charge and mass transfer during
heavy-ion collisions has indeed profited from an
approach based on transport equations. ' Such an
approach confirms, however, the implications
evident from the raw distributions: despite the
large number of accessible final states the distri-
butions are not statistical. There is definite spe-
cificity in the population of the phase space after
the collision.

The large value of the Sommerfeld parameter

ti, (ti=D/2A. , the distance of closest approach di-
vided by twice the de Broglie wave length) allows
an essentially classical description of the orbit
during such collisions. ' Simple models for the
transfer processes can thereby be developed. ' "
These identify constraints, often termed "match-
ing conditions, " which need to be satisfied if the
transfer is to be efficient, and hence preclude any
entirely statistical distribution of final states.

The large value of D/A, the high density of final
states, and the specificity of energy disposal are
also characteristic of molecular collisions. "
There a procedure, surprisal analysis, which al-
lows the incorporation of dynamical constraints in-
to an otherwise statistical theory has been devel-
oped. " In a companion paper" the formal develop-
ment of this analysis is discussed with special ref-
erence to collision processes (such as will be dis-
cussed below), where there is only partial resolu-
tion of the final states. Elsewhere, "it was shown
how such a procedure can be used to provide solu-
tions of the time-dependent Schrodinger equation.
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Here we discuss the explicit application to experi-
mental data and provide a surprisal analysis of the
energy disposal in a variety of heavy-ion induced
transfer reactions to highly excited states in the
residual nucleus. The remarkably accurate des-
cription" of the experimentally measured energy
distributions in terms of a small number of con-
straints demonstrates the considerable effective-
ness of the present approach. The systematic
variation of the surprisal parameter(s) shows the
further correlation that can be achieved.

Section II discusses the essential elements of
surprisal analysis and the procedure of maximal

/

entropy. Particular attention is given to the sur-
prisal plot, its interpretation and its sensitivity to
systematic trends in the data. The application to
specific heavy-ion transfer reactions is made in
Sec. III. 'The representation of high quality data"
on a surprisal plot enabled us to discern the pres-
ence of damped multistep processes for channels
adjacent to the incident one. The implications of
the observed constraints for the distribution of ex-
citation energy in the residual nucleus are dis-
cussed in Sec. IV. The dynamical origin of the
constraints in terms of sum rules is considered
in Sec. V. By making a simple assumption on the
form of the energy dissipation it is found possi-
ble to offer a quantitative sum rule for the mean
final excitation energy (or for the Q value), using
only a single damping constant for all exit chan-
nels. The concluding remarks in Sec. VI include a
speculation on the possible future directions.

II. SURPRISAL ANALYSIS

In a strictly statistical theory those final quan-
tum states that are allowed by the conservation
laws are equally probable. The probability of any
group of final states is then proportional to the
number of states which belong to the group. The
experimental results need not, however, conform
to a uniform population of the accessible phase
space. To examine the deviance of the observed
distribution from that expected on purely statisti-
cal grounds it proves advantageous to introduce the
concept of the surprisal. Let P„' be the probability
of the group of final states y, determined as the
fraction of accessible final states which belong to
the group y. For an observed probability P„ the
surprisal is ln(P„/Po). The su-rprisal is, there-
fore, a local measure of deviance from a purely
statistical distribution. It can be computed for
each group of final states and equals zero only for
those groups for which P„=P„'.

In a companion paper" and elsewhere' the con-
nection of the surprisal to dynamical theories is '

examined. Here we comment briefly on the infor-
mation-theoretic origin of the surprisal. Consid-

er the following situation: Let there be No equally
probable alternatives. When a definite, particular
alternative is selected one has received lnN, units
of information. " Say, however, that instead of a
definite particular alternative, a group consisting
of N alternatives is selected. The amount of in-
formation received is now lower than lnNO and

equals lnN, —lnN (since lnN units of information
will be provided by selecting a particular alterna-
tive from the group of N) Thi. s argument leads to
the following generalization: Before the selection
each alternative had the probability P'= 1/N, . Af-
ter the selection the probability has been changed
to P=1/N. Hence the information received when
the probability of an event y is changed from P„' to
P„ is" ln(P„/P„'). For an entire distribution the
amount of information provided is

DS [P~P'] = QP„—ln(P„/P„') . (2.1)
r

Equation (2.1) provides an integral measure of the
deviance of the actual from the prior probabilities.

The phenomenological application of the surpris-
al depends on the observation that it often has a
simpler structure than the raw data. Figure 1
shows an application to the distribution of excita-
tion energy in the

160y 232Th .$2C+ 236U

reaction. " The group y is here the group of final
quantum states when the translational energy is in
the range E&, Ez+ &Ez [cf. (2.15) below]. The ex-
citation energy is related to the final kinetic ener-
gy by energy balance (E*=E E&). The pr—ior dis-
tribution (discussed in detail in part C below) is
monotonic and is a rapidly increasing function of
the excitation energy. The observed distribution
has an asymmetric bell shape. Yet the surprisal
of the experimental results" is very nearly a li-
near function of the excitation energy. If one as-
sumes that the surprisa. l is exactly linear [cf. Eq.
(3.1) below] one obtains a distribution of excitation
energies which is compared with the experimental
histogram in the bottom panel of Fig. 1.

In a dynamical approach the cross section of any
group z of final states is givenby Z ~T.&~'p& where
the summation is restricted to those final states
in the group y and p& is the translational density of
states. Since the prior or statistical cross sec-
tion is proportional to Z p& one can write

T]y pg= ~] pg . (2.2)~ pg

The results in Fig. 1 can thus be regarded as a
purely empirical finding: that the averaged ~T,.z~'

element [the first factor on the right in (2.2)] has
an exponential dependence on the excitation energy.
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50-

252Th(160 12C ) different groups are given, we assign equal pro-
bability to all the states f within any particular
group. The probability of any one quantum state
within the group y is thus given by

50-

IO- .

P& =P„/g„

and hence
N

S = —P (P„/g„) ln(P„/g„)

(2.4)
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P„»P„g„.
The prior distribution is defined as the one of
maximal entropy,

~Oy
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EXCITATlON ENERGY

(Mev) so that

(2.5)

FIG. 1. The histogram of the distribution of final exci-
tation energy in the Th( O, ~ C) 6U channel (bottom
panel) and its surprisal (dots, top panel) vs the excitation
energy E*. (E*=E -Ef, where E is the total available
energy: E =E; +Q~~. Q« is the ground state to ground
state Q value. ) Experimental results for d2o/dMdQ at
70 and 105 MeV laboratory energy are from Ref. 21.
The left ordinate shows the number of counts per channel.
The surprisal of the experimental results (dots) is well
approximated by a straight line. The distribution whose
surprisal is exactly linear is shown as a continuous
curve in the bottom panel and is in accord with the ex-

/

perimental histogram. The slope of the surprisal plot
will be interpreted in Sec. IV as the inverse excitation
temperature T~~ of the heavy residual nucleus.

In this fashion one has forged a link to paramet-
rized versions" of distorted wave Born approxi-
mation (DWBA). However, it is clearly of inter-
est to seek a more fundamental interpretation" of
the functional form of the surprisal.

A. Procedure of maximal entropy

The entropy of a distribution of outcomes is
given by"

S = — Pf lnPf . (2.3)
f=a

It is non-negative and reaches its maximal value
(In') for a uniform distribution when all outcomes
are equally probable. It has the interpretation"
of the amount of missing information when all we
know are the probabilities. If the states f are
grouped together such that there are g„states in
the group z and only the probabilities P„of the

S = Ing —g P„ln(P„/P„')

=S .„-DS[P~PO]. (2.6)

(A„)= Q A„(y)P„. (2 7)

Here lnN is the maximal value of the entropy.
Ds[P~P'] has been identified [cf. (2.1)] as the infor-
matiori provided when the distribution P„has been
determined. It is seen here to be the difference
between the maximal value of the entropy and its
value for the distribution P„and is hence referred
to as the entropy deficiency. " The inequality
lnx ~ 1-1/x with equality if and only if x = 1 im
plies that DS is nonnegative and vanishes if and
only if P„=P„for all y. Given any distribution P„
one can compute Ds[P~P']. The larger it is (the
more information is conveyed by P„), the more,
on the average, P„deviates from the prior dis-
tribution and the lower is its entropy.

The statistical distribution where all final quan-
tum states (on the energy shell) are equally pro-
bable is the one of maximal entropy. Say the ob-
served distribution is not statistical. One can
still inquire whether it might be possible to char-
acterize the observed distribution via a variational
property of the entropy. In the companion paper"
and elsewhere" it was argued that it makes sense
to represent P as a distribution of maximal en-
tropy subject to constraints. In other words, the
distribution P deviates from the prior (or statis-
tical) limit because it is subjected to constraints
imposed by the dynamics of the collision. Apart
from the need to accord with the value of the
constraints the distribution P is as statistical as
possible (i.e. , of maximal entropy). In technical
terms we can represent the value of the con-
straint A„ for the distribution P„by



1792 ALHASSID, LEVINE, KARP, AND STEADMAN
I

20

g = -S+ X,(1)+g ~„(A„).
r=l

Here (1) is the normalization condition

(2.8)

Pr, (2.9)

and we have included n additional constraints in
(2.8). The multiplier s X„,r = 0, 1, . . . , n are Lagr ange
parameters. The resulting distribution of maxi-
mal entropy is"

tf

PM'=P„'exp -X,—g X„A„(y)
/=1 ~sl

and the values of the n+ 1 Lagrange parameters
are determined by the values of the normalization
(1) and of the other additional constraints. One
can readily show that the result (2.10}is not just
an extremum but yields the (unique"'") maximum
of the entropy (subject to the constraints). In
other words, all distributions P„which are con-
sistent with the values of the constraints either
are identical to (2.10) or have a lower entropy.

By construction, the distribution (2.10) is one of
minimal information content. Any other distribu-
tion which is consistent with the constraints pro-
vides more information. 'This is the information-
theoretic motivation for this prescription. ~ One
should choose that distribution which is consistent
with the constraints and is otherwise least infor-
mative. It represents the least biased (or maxi-
mally conservative} inference that can be made.
The dynamical origin of the constraints has been
discussed, in general, in the companion paper and
is taken up again in Sec. IV.

(2.10)

Here A„(y) is the value of the constraint for the
group y. Since there are many groups z, the val-
ue (A„) of one constraint (or even a few values of
different constraints) does not suffice to uniquely
specify the values of the probabilities Pr. The
algorithm is thus: Among all the distributions P„
which yield the same value of the constraint select
Pr as the one of maximal entropy. Bather than
seeking the constrained maximum of the entropy
one can seek the unconstrained extremum of the
Lagrangian

r n Pr r +~o+ ~~+r

Here, however, the distribution P„ is given and
the minimum of 2 is to be determined by varying
the Lagrange parameters. " Using (2.10), (2.11)
can be written as

(2.11)

P„ln Pr P„

or, in other words, each term in the square brack-
ets in (2.11) is the difference between the predic-
ted and the actual value of the surprisal. 'The in-
equality lnx ~x-1 implies" that 2 is nonnegative
and that a perfect fit obtains if and only if each
term in (2.11) is identically zero. & = 0 if and only
if for each measured probability Pr

232T h{ l6P llN)

50-
CQ

K
Q X)

V) IO-

—ln(P„/P„') = &,+ g &„A„(y). {2.12)
1 =j.

Otherwise, the optimal fit is when is minimal. "
It should be noted, however, that the difference
between the actual and predicted values of the sur-
prisal contributes to in proportion to P„. Hence
the distribution of maximal entropy is not the one
where the difference between the left- and right-
hand sides in (2.12) is uniformly minimal. Rather,
the high probability points are more heavily weight-
ed in such a fit. For example, say only one con-
straint is imposed. The theoretical surprisal is
then linear in A(y). In plotting —ln(P„/P„') vs A(y),
one should not, therefore, aim for the best (in the
sense of least squares) straight line. Rather, each
point y should be weighted as in (2.11). A compu-
ter program for such an analysis has been des-
cribed" and is available upon request. Figure 2

is an example of the best linear surprisal fit to
the energy spectrum in the "'Th("0, "N) 23'I?a re-

B. Practical surprisal analysis

In part A we determined [cf. Eq. (2.10)] the dis-
tribution of maximal entropy subject to a given set
of constraints. Here we consider the complemen-
tary problem: Given an experimental distribution
Pr, how do we choose a set of constraints that ac-
counts well for the observation? Consider the
Lagrangian &, Eq. (2.8),

0 IO 20 30 40
EXCITATION ENERGY

(Mov)

FIG 2. Surprisal plot for the distribution of excitation
energy jn the Th( 80, ~ N) Pa reaction. The surprisal
of the experimental results (Ref. 21) (dots) is compared
to the optimal linear surprisal [cf. Eq. (3.1) belowl. A
least square optimal straight line would lead to an even
distribution of the deviances from the line.



20 INFORNIATION-THEORETIC ANALYSIS OF ENERGY DISPOSAL. . . 1793

action. " One could draw a line which appears to
better represent the surprisal of the experimental
data, ln(-P„/P„'). But the line shown is the one
which minimizes . In Sec. III we shall have more
to say about the small but systematic deviations
from a linear surprisal noted at high excitation
energies for few-nucleon transfer processes.

In practice the Lagrange parameters are deter-
mined~ by minimizing the (everywhere concave)
function 2 (&„.. . , X„). One can, however, show"
that this procedure is equivalent to the n+ 1 im-
plicit equations

g A„(y)P„=g A„(y)PME, v = 0, 1, . . . , n (2.13)

minZ= P„ln P„P„ (2.14)
y

where P„ is the experimental distribution while

P„ is that distribution of maximal entropy which
satisfies (2.13) [i.e. , P„"z has the functional form
(2.10) with optimal values for the Lagrange para-
meters]. Hence (2.14) has the interpretation of
the amount of information in the data not accounted
for by the theory. Indeed, one can verify that

min~=

= DS [P~P'] DS [P ~P'] . - (2.14')

Because of the inevitable experimental scatter, it
is not to be expected that a minimal Z = 0 will ac-
tually be reached. A fit which is within the experi-
mental uncertainty has been obtained once the
minimal value of 8 is about equal to the average
square fractional error in the experimental dis-
tribution. "

with A, (y) = 1. In other words, the values of the
Lagrange parameters are chosen such that the
mean values of the constraints are the same for
the observed and the theoretical [cf. (2.10)]distri-
butions.

The overall quality of the fit is given by the value
of the Lagrangian~ at the minimum. One can
readily show that at that point

P(E~) = (d'v/dE~dQ)/(do /dQ) . (2.15)

The prior distribution is then the (normalized)
density of final states

(2.16)

Here p(E&)AE& is the number of final quantum
states at a given total energy with the translational
energy in the range E&, E&+ 4E&.

It should be noted that while the surprisal is de-
fined as In[P(E&)/-P (E&)], it is sufficient for most
purposes to examine In[(d'o/d-EfdQ)/p(E&)]. The
reason is that these two differ only in In[(do/dQ)/
JdE&p(E&)] which is independent of E&. Hence un-
less one needs the value of the normalization pa-
rameter X, [cf. (2.10)] it is not necessary to nor-
malize the energy spectrum.

The total energy is the sum of the translational
and internal energies. Hence p(E&) is a product of
the densities of the translational and internal
states. A given internal energy can be partitioned
between the two ejectiles, Hence the density of in-
ternal states is given as a convolution of the level
densities of the two final nuclei.

In the region of higher internal energies one ex-
pects the nuclear level density to be roughly given
by the degenerate Fermi-gas model, "which for a
nucleus with rotational energy E„, takes the form
[Eq. (2.57) of Ref. 31]

pz(E*) CC U 'exp[2(aU)'~']. (2.17)

Here U is the internal energy E*. adjusted for rota-
tional energy and pairing effects:

U —E* (2.18)

of the final kinetic energy in heavy-ion induced
reactions at incident energies above the Coulomb
barrier. In this energy range the internal energy
states of the excited heavy ejectile are either dense
enough to be treated as a continuum or, for excita-
tion energies above about 6 MeV, are actually in
the continuum. Hence, the measured distribution is
the fraction of collisions P(Ez)&Ez where the final
kinetic energy is in the range E&, Ef+ +Ef ..

C. The prior distribution for he'avy-ion collisions

The prior distribution is computed on the basis
of the fundamental assumption that all final quan-
tum states that are allowed by the conservation
laws are equally probable. Hence we take all the
states allowed by energy conservation to be equal-
ly probab1e. 'The conservation of.total angular
momentum is imposed in an approximate but real-
istic fashion as is discussed below.

The distributions analymed in this paper are those

To compute the rotational energy E„,we have as-
sumed a spheroidal rigid body moment of inertia
and an angular momentum given by Rutherford orbit
matching at the grazing angle. This estimate yields
an E, which is quite small' compared to E*
(e.g. , 0.57 MeV for the "C channel in the "O+ "'Th
reaction shown in Fig. 1). Hence we allowed for
conservation of total angular momentum in an ap-
proximate fashion by computing p(U) using the
mean value of the rotational energy. The pairing
energy was estimated as" Eppf 5+/ where
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5 = 0, 1, or 2 for an odd-odd, even-odd, or even-
even nucleus, respectively, and 4&= 12/A'~' MeV
where A is the mass number. 'The level density
parameter in the Fermi gas was chosen to have the
value" a=A/8. The implications of this choice are
further discussed in Sec. IV. The excitation energy
E* is related to the Q value (final minus initial
kinetic energy in the center-of-mass system) of
the reaction E*=@ -Q, where Q« is the ground
state to ground state Q value. For all the reactions
analyzed the Q values are from mass tables. "
If a summation over a statistical distribution of
final rotational states is ca,rried out, (2.17) sums
to

p&(E*)~ (E*) exp(24 a E*). (2.19)

In practice the exponential energy dependence
overwhelms that of the preexponential factor.

For the reactions analyzed in this paper one
final nucleus is always very much heavier than the
other and hence has a far higher level density.
Hence in convoluting the two level densities the
heavier ejectile makes the dominant contribu-
tion. We have thus replaced the density of final
internal states by the level density of the heavy
ejectile. One can indeed argue analytically" that
upon convoluting two level densities of the Fermi-
gas type, the result is well approximated by the
same functional form with a level density para-
meter which is the sum of the two. In other words,
one expects the available excitation energy to be
partitioned between the two products according to
their mass. We have thus neglected the contribu-
tion to the energy due to the excitation of the light-
er ejectile.

The density of translational states varies as"'"
Ef' '. For alL values of E *=E—EI& except those
just below E, this variation is small compared
to the rapid exponential variation of the density of
internal states.

The strong variation of the prior distribution with
energy has caused some concern among those who
have not previously used surprisal analysis. It
should therefore be explicitly stated that dividing
P(E&) by the rapidly varying P'(E&) fans out the
experimental data and hence tends to amplify rath-
er than to mask any systematic differences be-
tween the actual values of ln(P„/P„') and th-e the-
oretical fit. Figure 2 which shows the surprisal
for "'Th("0, "N}23'Pa channel is one illustration
of this enhanced sensitivity. Deviations which are
distinctly evident in a surprisal plot are just too
small when a plot of P(Er) is' examined. Similarly,
Fig. 3 shows the sensitivity to the value of the
level density parameter a, using the 2s'Th("0, "B}
"'Np channel as an example.

III. RESULTS

Surprisal analysis of the existing data for heavy-
ion transfer reactions to highly excited states has
been carried out. The particular reactions"'" "
examined are listed in Table I. Among these, the
105 MeV ' P+ '"Th data" wiLL be considered in
greater detail because of their considerably higher
statistical accuracy. Only representative results
for the other reactions will be reported. The con-
clusions, however, are based on an analysis of all
the measured final channels in the reactions listed
in Table I. The 96 MeV "0+Ni data" are obtained
at a scattering angle well beyond the grazing angle
and result from a deep-inelastic scattering pro-
cess. They are included here to document the ap-
plicability of the analysis to such a process. All
other data are obtained at or near the grazing
angle. However, and as will be discussed in de-
tail below, for channels adjacent to the incident
one, the distributions can be resolved into a
quasielastic and a smaller but more strongly
damped component. The program used in the ana-
lysis has been discussed" and a user's copy with

RMTh( ISO l28)

IO-

IO-
Co

IO'-.

D
O
& l800-

I200-

600-

0 IO 20 50 40
EXCITATION ENERGY

(Mev)
- FIG. 3. Histogram of the excitation energy distribution
in the Th( O 2P) Np reaction (ref. 21), on a linear
(bottom) and logarithmic (top) scale. The continuous
solid line is the best fit assuming an exactly linear sur-
prisal [cf. Eq. (3.1)j and using a =A/8 for the level
density parameter. The logarithmic plot serves to show
the quality of the fit for the tail of the histogram. The
width of the distribution (for a given most probable en-
ergy) is roughly proportional to a [cf. Eq. (3.12) be-
low]. The dashed lines are fits using a higher (a~~
=2.66) and lower (a =1.76) value of the level density
parameter a (a 4 =2.33).
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TABLE I. Heavy ion induced reactions. ~

Projectile Target E& (MeV) E; (MeV) ~ (MeV) Exit channels measured Ref.

18p

N

12(

232Th

98Mo

92Mo

105

97

98.2

84.7

79.6

40.4

35.6

70 70

25 28

20 26

17-15N 15-12C 13-11B 10Be 21
16 15P '13 12C 12-10B 10 9 7Be 7 8Li 4He 34

B '9'?Be '6Li

90Zr 75 66.2 34,0 30 31 13 12C 11

14N

14N

N

Ne

Mo

53( r
232Th

232Th

90

145

174

71.2
136.2

158.9

26.2

70.2

96.6

85.1—84.2 40.0-40.8 . 25 28

16 18

40 38

40 42

13C 12B

13 12C 11 10B 10, 9, 7Be 7 8Li 4He

16-13C 15-11B 124Be 11,9-?L 8, 6He1,
27-24~ s 27 -22~Ta 25-20 ~T 23-18 T, 22-15~

20-14N 18-12C '14-10B 12-9 7Be 94 Li

N

16p

16p

16p

16p

16p

109Ag

208pb

197A

19?Au

Ni

78

140

315

218

250

69.1

130.0

292.5

201.6

231.2

75.4

44 0

74.6

74.6

72.8

72.8

33.6

44 43 ""C
40 39 17 13N 15-iiC 13-10B 10& 9Be

15 13N 14 11C 12 10B 10 9 ?B 7 8L.e~ 1

25 21 N, C, B, Be, ' Ji
20 18 N C, B, Be, ' Li

40 23 "C

40

39

The projectile, target, laboratory, and center-of-mass bombarding energies, entrance channel Coulomb barrier,
{assuming V = Z&Z&e2/[ro{A&t ~3+ At~ ~3)] with ro= 1.5 fm and Z and A the charge snd mass), laboratory scattering angle,
laboratory grazing angle (assuming distance of closest approach on Rutherford orbit is [rp(A1 3+ A2 3)+ 1.5 fm], with
r0=1.45 fm), arrangement channels measured and reference for the experimental results.

instructions is available upon request. For the
purpose of the analysis those experimental results
that are reported in the laboratory system have
been transformed to the center-of-mass system.
The transformation is based on the invariance of
d'o/dp (where p is the momentum of the ejectile).

We proceed now to discuss each reaction listed
in Table I. The section concludes with a summary
of the results. Section IV considers the implication
of the findings to the excitation energy disposal in
the residual nucleus. A discussion of the dynami-
cal origin of the constraints is provided in Sec. V.

plot of the energy spectrum are quite evident in
the surprisal (Fig. 2). The strongest exit channel
is the 1p transfer ("0,"N) reaction (which will be
examined in detail in Fig. 6 below), followed in
strength by the 2p transfer ("0,"C) reaction.
Even for one of the weaker channels ("0,"N) the
counting statistics suffice to take advantage of the
sensitivity (cf. Fig. 2).

Figure 4 is a surprisal analysis of the ("0,"N),
("0,"C), and ("0,"B)channels. The dashed
straight lines in the top part show a fit to a linear
form of the surprisal, i.e. ,

A. '60+ 232 Th at 105 MeV

These data obtained by the MIT group" at the
Brookhaven tandem Van de Graaff facility span a
total of 11 exit channels, namely ""N, ""C,

'B, and ' Be ejectiles. The angular distribu-
tions are all bell shaped and centered at the graz-
ing angle of 70'. The energy spectra are asym-
metrically bell shaped. For most exit channels
the counting statistics are excellent over a broad
energy range (cf. bottom parts of Fig. 1), so that
the statistical uncertainty in the data points is
very small. Such data show to advantage the con-
siderable sensitivity of the surprisal plot. Sys-
tematic effects that are barely evident in a linear

-ln[P s(Eq)/P'(Eg)]= &,+ &E*.

Here E* is the internal excitation energy

(3.1)

E"=Q -Q=@ +E.-E (3.2)

and the level density parameter a [cf. (2.17)] was
chosen as A/8 MeV. The fit shown is a one para-
meter fit since ~, is a function of X determined by
the condition that the exit energy distribution
P(E&) is normalized. We reiterate that the magni-
tude of X is determined by the condition of maximal
entropy [minimal information content, cf. (2.6)].
For the form (3.1) this means that PMs (E&) and the
experimental (normalized) energy spectrum P(E&)
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have the same mean energy [cf. (2.13)]:

E~P E~ dE~= E~P E~ dE~.
C

(3.3)

Using (3.1) the condition (3.3) provides an implicit
and nonlinear equation for X:

P'(E/)exp( )E*-)dE&

EgP E~ dE~, 3.4

where the right-hand side is available from the
measured d'oldE&dQ [cf. (2.15)]. An etluivalent27

and more practical route to the determination of
A, is to minimize the Lagrangian 2 [cf. (2.11)], and

this is the procedure recommended in practice,
particularly if more than one constraint is em-
ployed.

The linear surprisal line with a slope X implied
by the condition (3.3) is shown in the top panels of
Fig. 4. Our earlier comment [cf. the discussion of
(2.11)]that the optimal surprisal line is not the
least square line through the data points is evident.

-ln[P (E )/P (E )]=X + A. E*+XP*' (3 5)
I

The magnitudes of the Lagrange parameters are
those implied by (3.3) and the corresponding con-
dition on E*' ',

fE+1/2PME(E )dE Eel/2P(E )dEf f f f (3.6)

As a practical point one should note that with the

The shown surprisal 1&ne clearly demonstrates the
higher weight given to minimizing the deviance be-
tween the data. P(E/) and the fit PMs(E/) at the mor&

probable data points.
The linear surprisal provides a satisfactory but

not spectacular account of the data. It correctly
positions the peak of the distribution, and accounts
for the asymmetry of the distribution (when plotted
vs E*), but fails to precisely determine the width.
There is still enough statistical accuracy in the
data to warrant the introduction of another con-
straint. Figure 4 also shows a fit to a two con-
straint form,
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FIG. 4. Surprisal analysis of the ( 0, N), (~80,~ C), and( 0, B) channels showing the improved fit obtained by the
introduction of the second constraint. Solid lines: a fit based on the two-constraint form, Eq. (3.5). Dashed lines: a
fit based on the one;constraint. form, Eq. (3.1). For ttB, Q &0 so that the introduction of the second constraint serves
to narrow down the distribution (or the surprisal vs &* is concave). For ttN and t4C, Q & 0, the introduction of the secon
constraint serves to widen the distribution (or the surprisal plot vs &'* is convex). The interpretationof the second constrain)
interms of the excitondistribution in the heavy residual nucleus is discussed in Sec.IV. In particular, it is shown there
that the slope of the linear surprisal fit (dashed line in the top panels) retains its interpretation as the (inverse) excita-
tion temperature of the residual nucleus even when the experimental surprisal is not linear.
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TABLE II. Analysis of the 60+ Th reaction at 105 MeV. '

Ejectile (E*) (MeV) a =A/8 (MeV t) X& (MeV ) At (MeV t/t) T, (MeV) (a*/a)t/ DS(P)P l DS(P[IPM j

ivN

i6N

i5g
i5C

"c
i3g
i2g
i3g
i2g
ii g
"Be

9.5
7.9
6.6

13.1
16.4
16.1
17.9
12.6
15.1
19.0
24.5

28.88
29.00
29.13
29.13
29.25
29.38
29.50
29.38
29.50
29.63
29.75

0.79
0.78
1.0
0.95
0.90
1.0
1.1
0.94
1.3
1.6
2.7

5.4
5.4
5.3
3.5

2.5
1.6
4.1
0.61

-3.4
-16

0.60
0.57
0.49
0.70
0.75
0.76
0.78
0.66
0.74
0.81
0.88

0.50
0.50

. 0.51
0.67
0.68
0.78
0.86
0.63
0.94
1.3
2.4

23
25
15
23
24
23
22
14
18
16
13

2x10 '
8 x10
3 x10
2 x10
2 x10
4x10 3

8 x10
2x10 2

7 x10
4x10 3

4x10 3

' (E*) is tbe measured centroid of the energy distribution. )b. t and A, 2 are the Lagrange parameters for a two-constraint
fit. a" /i=at/ -At/2, wherea is the level density parameter. For a good fit, DS(PIPMsj «DS(P~P j, cf. Eq. (2.14').
The excitation temperature T~ =1/A. , where ~ is the Lagrange parameter for a one-constraint fit.

functional form (3.5), the equation (3.4) for A., no
longer holds [even though (3.8) remains valid].
Hence upon the introduction of a second constraint
both X, and &, need be redetermined.

'The fit using two constraints essentially ex-
hausts the information content of the data
[i.e. , cf. (2.14), min&= 0]. The precise figures
are given in 'Table II.

The choice of E*' ' as the second constraint was
motivated by theoretical arguments examined in
Sec. IV below and by the empirical finding that the
surprisal plots for other exit channels (and other
reactions) also sometimes show the same curva-
ture at higher excitation energies which is seen in
Fig. 4. We have, therefore, included the second
constraint for all exit channels in the reaction,
with the results shown in Fig. 5, and summarized
in Table II. The sign of &, reflects the curvature
of the surprisal plot vs E*. A positive value im-
plies a downward trend as in the ("0,"N) channel,
Fig. 4, while a negative value corresponds to an
upward trend as in the ' Be or "Bchannels. In
terms of the energy spectrum, if we keep the
most probable value of E* constant, increasing
the width corresponds to increasing the value of
X, (cf. the discussion of Fig. 7 below).

In connection with the introduction of a second
constraint, it is important to stress the following
point: Because of the variational character of the
maximum entropy formalism, "there is no possi-
bility of adding "too many" constraints. If we in-
clude in the distribution P a constraint which is
not warranted, its (Lagrange) parameter will be
found to be zero (or, in practice, owing to lack of
absolute precision, very small). Such a constraint

is sometimes termed "noninformative, " which re-
flects the theoretical relation"

(3.7)

232T h l60

50- IOB

50- I3

IO-.

v) 50-

30-

IO-

0 10 20 30 40 0 10 20 50 40 0 10 20 50 40
EXCITATION ENERGY (MeV)

FIG. 5. Surprisal plot of final arrangement channels
in the 0 + Th rea, ction. The experimental results
(Ref. 21) are compared with a two-constraint [Eq. '(3.5)]
fit (continuous line). For channels down to
the surprisal is convex (Q &0) and below these-it is con-
cave (Q &0). The results for X& and Q are collected in
Table II.
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PME(E )~PPME(E ) (I P)PME(E ) (3.8)

with the results shown in Fig. 6. The results for
X, and X, in Table II refer to the dominant, quasi-
elastic component of the spectrum. As a valida-
tion of this fit we have determined the surprisal
parameter of the heavily damped, strongly re-
laxed P„(Ez) component as follows: The quasi-
elastic component P," is characterized by a low
value of (E*}and hence by a high value of &,. The
major contribution to the tail (high E*) end of the
experimental spectrum is thus from the relaxed
P„component. We have thus performed a sur-
prisal analysis using'only the high energy tail.
(It is not necessary to have a normalized distribu-
tion to carry out a surprisal analysis. The La-
grange parameter Xo is a function of the other La-
grange parameters and need not be independently
determined). The distribution PMs (Ez) which was
determined in this fashion was then subtracted
from the experimental P(E&) distribution. The dif-

If X„=0, then the mean value of the constraint does
not change the information content of the distribu-
tion. If one is so inclined and the precision in the
data warrants, one can include several con-
straints, and the surprisal analysis will weed out
the noninformative ones.

A close examination of the 1p transfer channel
("0,"N) in Fig. 6 shows a systematic deviance at
the upper end of the excitation spectrum. Figure 6
shows that this high end is well fitted by a linear
surprisal but with a reduced slope typical of the
more relaxed channels such as "C. A simple in-
terpretation of the surprisal plot for the ("0,"N)
channel is that the observed spectrum is composed
of two components: a major peak with a low value
of (E*}which we interpret as a one-proton trans-
fer reaction and a much smaller component with a
higher value of (E*) which is comparable to that of
the ("0,"C) channel. We suggest that the second
component results from a three-nucleon transfer
mechanism, as in the ("0,"C) channel, except
that in the ("0,"N) channel two nucleons are
transferred from projectile to target. Such bidi-
rectional nucleon transfer has been previously dis-
cussed, "but the present results provide an exper-
imental indication of this mechanism. Additional
examples suggesting that one- or two-nucleon
transfer processes can occur either via a direct,
quasielastic or a bidirectional and more damped
route will be discussed below for the other trans-
fer reactions.

Assuming that the observed energy spectrum is
the sum of two components, we have attempted a
fit of the type

&&&T P( ~60 ~5N)

50-

IO'-

IO-

IO-

lo-

IO- I

I

o 75000

50000-

25000-

0 I 0 20 50 40 0 IO 20 30 40
EXCITATION ENERGY (MeV)

FIG. 6. The two component analysis [cf. Eq. (3.8)1
of the (~60, ~~M} channel. Left the resolution of the
experimental results (Bef. 21) (dots) into the quasi-
elastic (major) and the nearly relaxed (minor) com-
ponents. The solid line is the sum of the two. The
excellent counting statistics are reflected in the accu-
rate fit of the high energy tail as is evident in the log-
arithmic plot. Past E* &20 MeV the nearly relaxed
process is the dominant contribution. Hence the slope
of the surprisal plot past 20 MeV is the A,

&
parameter

of the relaxed process. It is essentially the same slope
as that of the ( 0, 3C) channel. The surprisal of the
quasielastic process (dot-dashed) has a higher slope.
Bight: surprisal analysis of the quasielastic component.
(The distribution of energies for this component is ob-
tained by subtracting the contribution of the more re-
laxed component, as is discussed in the text. )

ference was then subjected to surprisal analysis to
determine the parameters of P, . Using either
(3.8) or the peeling procedure gave the same re-
sults. A similar peeling procedure has also been
employed in molecular collisions" to determine
the presence of two components in the spectrum.

In conclusion, a fitted energy spectrum of the
form

P" (E&)=P'(E&)exp(-Ao-A. ,E*. X E~l™) (3 9)

with a prior distribution computed using the de-
generate Fermi-gas density of levels [cf. (2.1V),
a=A j8] is found to account for the data. A quick
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estimate of the two parameters (X, and X,) can be
made by requiring that the functional form (3.9)
accounts exactly for the value of the most pro-
bable excitation energy (E*,) and for the full width
at half maximum (FWHM) of the experimental
spectrum. Such an estimate will not yield precise
values but is sufficient for most purposes. Using
the form (2.17) for the level density we can re-
write (3.9) as

P"'(E*)~E*-'exp[2(aE*)' '-~ E+-~ E+' ']

estimate of the two unknowns (X, and X,) andhence
of the entire spectrum.

Overall, we have demonstrated an excellent cor-
respondence between the kinetic energy spectra at
the grazing angle in the exit channels of the
"0+"'Th reaction and the distributions deter-
mined by the procedure of maximal entropy sub-
ject to constraintp. The significance and origin of
these two constraints will be discussed below fol-
lowing the analysis of other reactions.

= E+ 2exp[2(g+E+)~/ —y E+]

with a*= (a'/'- A.,/2)', and so we obtain for X,

X, = (a*/E*,)'/'-2/E*, , (3.10)

where all quantities are in MeV units. The second
term in (3.10) is quite small compared to the first
(typically less than 0.2 MeV '). The two half max-
imum points occur at

(E0 )1/2 (E4 )1/2g [(E4 /gg)1/21n2]i/2

giving

FWHM =3.33 E' 'a* ' '.
my

(3.11)

(3.12)

The spectrum is thus asymmetric even when
&,= 0 (so that a*=+), and the dependence of the
asymmetry on &, is quite weak [since it is only
(a*)' '= (a' '- A.,/2)' ' which governs the F|/VHM].
Nevertheless, for data with good statistics the

' values of X, and X, determined from (3.10) and

(3.11) are quite reliable. Figure 7 compares the
experimental values of E~» to those predicted by
(3.9). It also serves to show the asymmetry of
the distribution.

Precise determinations of the three energies
E*, and E*, , suffice, therefore, to offer an over-

B. ' C and ' N on Mo, Zr, and Cr at energies

above the Coulomb barrier

A large number of heavy-ion transfer reactions
at energies up to three times the Coulomb barrier
in the entrance channel have been studied" "at
the cyclotron facility of the Institute of Physical
and Chemical Research, Saitama, Japan. The
energy spectra show the same qualitative features
as in the previous example except that the pres-
ence of a second component for few-nucleon
transfer reactions is somewhat more manifest.
All the reported"'" energy distributions for the
reactions listed in Table I have been analyzed but
only representative results will be shown. In ex-
amining the results one should note that since the
cross sections are lower than in the "O+ "'Th
reaction the counting statistics are poorer. For
many reactions (not listed in Table I) only the
most probable Q values and Q, , [cf. (3.11)]values
were reported. " We have verified that these three
values could usually be accounted for [using the
estimates (3.10) and (3.11)]by two parameters,
&, and a*.

Figures 8 and 9 show the results of surprisal
analysis for the "N+ "Mo reaction" at a labora-

a

Q)

pp ON

Qp

-gp - 17N 16N 16N

rt
4)

C)

-4p-

- 0-
1$C 14G 15G 120

j)

"s "s "s
10S6

FIG. 7. The most probable (Q,~t) (dots) and half maximum (Q& &) (x) Q values for the different final channels of the
~80+ Th reaction (Ref. 21) at 105 MeV. The solid bar connects the Q& &

values determined via the distribution of maxi-
mal entropy subject to two constraints, Eq. (3.9).
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FIG. 8. Surprisal analysis of several multinucleon transfer processes in the N+96Mo reaction (Ref. 34) at 97 MeV,
using the functional form (3.5). The parameters (cf. Sec. IV) given in the figure are T, =(a*/a)I/2AI (in MeV), where
a+ =(aI/ —~/2)2 and the ratio (a/a")I/2 [the ratio of the actual variance to that of a nucleus at thermal equilibrium at the
temperature &~, cf. Eq. (4.16)j. The logarithmic plot (bottom panels) of the experimental distribution serves to empha-
size the asymmetry of the histogram.

tory energy of 97 MeV at 25'. The strongest exit
channel is the (lp, ln) transfer ("N, "C) reaction
followed by the (1P) transfer ("N, "C) and then by
("N, "B). All other channels are lower by at
least an order of magnitude from the dominant pro-
cess and the counts per energy channel are less
than 100. The spectra at all channels are peaked
at energies above the exit Coulomb barrier (the
Coulomb repulsion of touching spheres, cf. Table
I) and thus cannot be characterized as fully re-
laxed. Figure 8 shows the results for multinucleon
transfers "Mo("N,X) for X="B, 'Be, 'Li. The
functional form (3.9), as used for the "0+"'Th
analysis (cf. Fig. 5), accounts for the results.
The parameters are listed in the figure. For few-
nucleon transfers, Fig. 9, and, in particular, for
the ("N, "0) and the ("N, "C) channels the need to
allow for a second, more fully relaxed component
is quite evident. The fit was performed using
Eq. (3.8) and the parameters reported in the figure
are for the quasielastic component. Similar re-
sults were obtained for the "C+ Mo reaction'
at 90 MeV, for the "N+ "Zr reaction at 75 MeV,
and for the "N+ '"Ag reaction (measured by the
Orsay group4') at 78 MeV.

Figure 10 shows results for the same transfer
process, "Mo("N, "B)""Ru, for different Mo
isotopes. " A= 100, 98, 97, 96, 95, 94, 92.

1P

"Mo ( "N, 'O)

cr P-
V3

CL
cr - 1 p—
V3

I I I I
I

I I I I
I

I I I I

6p—

20—

I I I I
I

I I I I'I I I I I

1Po I I I I
I

I I I I
I

I I I
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EXCITRTICIN ENERGY (Me'I/')

FIG. 9. Surprisal analysis of the one-nucleon transfer
N 5Q) channel in the N+ Mo reaction (ref. 34) at

97 MeV. The fit is obtained using Eq. (3.8}. A similar
resolution eras found possible for the other one-nucleon

N, ~ C) transfer process.
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FIG. 10. Surprisal analysis of the +Mo(~4N ~2B)++~Ru channels (Ref. 34) forA. =100, 98, 97, 96, 95, 94, and 92 at 97
MeV. The two parameter fit, Eq. (3.5), is employed with the parameters 7.', and (a/a*) (cf. Fig. 8) shown in the draw-
ing. For the one-nucleon transfer Mo( N, C)++~Tc reactions there is evidence for a second, more strongly damped
component.

E~ = 97 MeV at 25'. For a single nucleon trans-
fer,""Mo("N, "C)""Tc, the analysis shows the
presence of a second, strongly damped, compo-
nent.

Energies up to three times higher than the
Coulomb barrier have been studied" using targets

of medium mass number. Figure 11 shows an

analysis of the "N+ "Cr reaction at a laboratory
energy of 90 MeV at 16'. The functional form
(3.9) accounts well for the data. For one- or
two-nucleon transfers we find clearcut evidence
for a second and nearly fully relaxed component.
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F1G. 11. Surprisal analysis of the Cr( N C) Mn, 5 Cr( N, ~ B) 8Fe, and Cr( N, Be) Co reactions (Ref. 35) at
an incident energy (90 MeV) which is 2.5 times the Coulomb barrier in the entrance channel. For the 'one-nucleon trans-
fer (~4N, ~3C) there is a second, nearly relaxed component. The parameters shown for this channel are for the quasi-
elastic component.
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C. ~ ~Th('~N, X) at 145 MeV ~ Th( Ne, X) at $74 MeV
10-

252 + l5

Multinucleon transfer reactions have been ex-
tensively studied by the Dubna group. ""'"An
analysis of several channels in the "N+ "'Th col-
lision at 40' is shown in Fig. 12. To within the
error bars, the two-parameter fit of Eq. (3.9)
accounts well for the results. At the higher energy
"Ne+ "'Th collision, several exit channels show
what appears as a second process at energies be-
low the Coulomb barrier in the exit channel. Ex-
cept for this feature (which is not present in most
of the channels), the functional form (3.9) is, in
general, Fig. 13, in accord with the data.

The systematic trends of the isotope production
cross sections ' were first discussed by the
Dubna group. '3' lt remains to be shown that
the constraints identified in the present study
suffice to account for these branching ratios. 44'4'

D. Pb(' O, X) and Au(' O, X)
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The data obtained using the "0beam produced
by the 88-inch cyclotron at the Lawrence Berkeley
Laboratory is at a somewhat higher energy. ' ' 9'

Figure 14 shows an analysis of two channels,
"'Au("0, "B)"'Pb and "'Au("0, 'Be)"'Bi, at the

energies of 218 and 250 MeV at about 25 and 20',
respectively. We have not found it necessary to
appeal to a fragmentation model, 3+'39 and the two-
body point of view adopted in this paper suffices
to fit the results and to account for the asymme-
try of the energy distribution. As in the other
reactions, a one-nucleon transfer process, e.g. ,
'~'Au('~O, "N)'98Hg, does show the presence of a
smaller and strongly damped contribution, Fig.
15.

E. Ni(' 0 ' C)Zn at 96 MeV

The previous examples would not usually be
described as deep-inelastic or as strongly
damped collisions. Their angular distributions
were peaked about the grazing angle and the op-
timal Q values of the, energy spectrum were not

fully relaxed. Here we consider an example
where the angular distribution is forward peaked4'
and analyze the energy spectrum at an angle of
40' (lab), well behind the grazing angle of 35'
(lab). Reaction products at this large angle are
usually thought to arrive from osculating or "neg-
ative angle" collisions. 46 The energy spectrum is
thus expected to be peaked about a Q value cor-
responding to fully relaxed collisions.

There are limited data available where the ejec-
tiles have been separated by isotopes for such
deep-inelastic collisions. For the "0+Ni re-
action the Heidelberg group has determined4' that
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the dominant exit channel of mass 12 is ' C. The
reaction Q values for the "Ni and "Ni isotopes,
comprising 94%%uq of the natural target, differ by
only 0.6 MeV, so that the measured4' d o/dgdA
for the natural target can be analyzed. The re-
sults, using (3.9), are shown in Fig. 16.

The results shown in Fig. 16 provide a direct
demonstration that the same constraints used to
analyze the quasielastic energy spectrum also
account for the strongly-damped, deep-inelastic
processes. The analysis of the minor, strongly
damped, component in one-or two-nucleon trans-
fers has indeed suggested that this might be the
case, but here one has a more direct test.

F. Discussion

The primary conclusion of the suprisal analysis
is that the energy distributions are dominated by
a single constraint —the mean value of the final
excitation energy. A distribution which repro-
duces this mean value and is otherwise of max-
imal entropy accounts for most of the deviation
of the actual energy spectra from the purely
statistical (density of states) limit. [We use the

FIG. 12. Surprisal analysis for several final channels
in the ~SN+ Th reaction (Ref. 37) at 145 MeV. Bottom
scale: experimental (Ref. 37) distribution with the quoted
error bars and fit. Top scale: the surprisal. Note
that for several channels (such as ~~B and ~OBe) a*
=a (Q =0) so that the surprisal is quite linear. (The
energy scale has been corrected for the finite thickness
of the target.
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FIG. 13. Surprisal analysis of several final channels in the Ne+ Th reaction (Ref. 38) at 174 Mev. Bottom panel:
experimental distribution (with the quoted error bars). Note the quality of the fit at the low probability region which is
evident in the logarithmic plot. Top panel: the surprisal using the two parameter form, Eq. (3.5). The values of the
parameters T~ and (a*/a)I~I are given in the figure.

entropy deficiency, Eq. (2.1), as an integral
measure of deviance between two distributions. ]
To obtain a fully quantitative fit of the measured
spectra it was found necessary to introduce a
second constraint, i.e. , (E*)'~'. in Sec. IV we
show that the first constraint implies that the
single nucleon distribution function in the ejec-
tile is that expected at thermal equ~i ~rium. The
second constraint implies, howev r, that the
nucleon-nucleon correlations are not fully relaxed.
When the second constraint is not required (X,
=0 or a1'= a) all correlation functions have at-
tained .their thermal equilibrium value.

For such exit channels which are adjacent to
the incident one (i.e. , one- or two-nucleon trans-
fers), there is an additional effect: The energy

spectrum contains a smaller, second, component.
By its more negative optimal Q value and by the
fact that it is well described by a single con-
straint this component is nearly fully relaxed.
It probably results from a transfer of nucleons
in both directions such that the net transfer is
small.

IV. MICROSCOPIC INTERPRETATION
OF THE CONSTRAINTS

The presentation of the results in Sec. III was
purely phenomenological. In this section we be-
gin to explore the implications of the results. To
do so it is convenient to take advantage of the
thermodynamiclike character of the formalism.
Hence this section provides an analysis of the in-
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FIG. 15. Surprisal analysis of the one-nucleon trans-
fer reaction ~Au(%, 5N)issHg at 218 and 250 MeV. A
two component fit, Eq. (3.8), was employed. The rela-
tive contribution of the strongly damped component is
larger at the higher energy. Indeed, in general, the
higher the incident energy above the entrance Cou-
lomb barrier, the more significant is the contribution
of the nearly relaxed component. Also, at these higher
energies two- (or even three-) nucleon transfer reac-
tions also show the presence of the relaxed component.
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250 MeV. The two parameter fit, Eq. (3.5), was em-
ployed. Using a weighted Q«value, excellent agree-
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ternal energy distribution in the nucleus which is
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the collision are discussed in Sec. V.
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A. The Fermi-gas model

The experimental results refer to the fraction
P(E~)&E* of heavy ejectiles with internal ener-
gies in the range E*, E*+bE*. There are very
many (essentially a continuum of) quantum states
of the nucleus in any such energy range. To learn
something of the distribution of such states we
adopt the Fermi-gas (or single-particle) model. 1I
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FIG. 16. Surprisal analysis of the energy distribution
in the deep-inelastic Ni( 0, C)Zn collision at 96 MeV.
A two parameter fit [Eq. (3.5)l is employed. As ex-
pected for an osculating collision, the distribution is
strongly damped with a*&a (which is typical of multi-
nucleon transfer channels, cf. Table II).
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Each quantum state of the nucleus is then iden-
tified by a sequence of occupation numbers K
= (n„n„,n„~ ~ ), where n„(n„=0 or 1) is the
population of the single-particle level(.

„andean„

The excitation energy of the nucleus is E*,

(n„) = Q n„PI,

do have that dependence on &„:

(n„) = I/{I+ explP(e„—q~)]],

(4.6)

(4.7)

(4.1)Eo+ E+ = n„E„,
V

where Eo is the ground state energy (Eo:Z E„,
where the sum is over all levels below the Fermi
energy c~).

The number of quantum states when the exci-
tation energy is in the range E.*, W + hE*, is
p(E~)&E*, where p(M) is the density of levels
in the Fermi gas~' (cf. Sec. II C). The results
of Sec. III can thus be summarized: The proba-
bility of the quantum state n in the heavy residual
nucleus is [cf. (2.4), (2.16), and (3.9)]

p, = exp(-X, E+ —X,E+"')/Z(X„X,). (4.2)

All the microscopic states at the same excitation
energy are thus equally probable. Z ensures that

pl is normalized:

Z= g exp(-A. ,E~'/ )
jj

dE~p(E*) exp(-A. ,E+ —/(.,E+' '), (4 3)

Pq exp( —PE+) /Z(P,——a), (4.4)

Z(Pp) =f PEep, (E') enp( PE'), -(4.5)

where P& does factorize as a product of one-part-
icle distribution functions [cf. (4.1)]. The pres-
ence of the second constraint implies that the
actual distribution after the collision p, Eq.
(4.2), does not. The excitations in the heavy
residual nucleus are therefore correlated, ex-
cept if X2

——0. Despite this correlation we shall
find it possible to show that the mean occupation
numbers (n„),

where E (the total energy, = E, + Q, ) is the high-
est possible value of E*. In practice, X, is suf-
ficiently large to ensure that the integrand in
(4.3) is negligible at Ep = E so that the upper limit
can be extended to infinity. By analogy to statist-
ical mechanics Z will be termed "the partition
function. " For future use it is convenient to re-
gard Z as a function of X =—X, and of a*= (a'/
—x,/2}'.

It is of interest to compare the distribution
(4.2) to the canonical (or thermal equilibrium)
distribution in a Fermi gas:

characteristic of a degenerate Fermi gas in ther-
mal equilibrium. 47 It is only in the two-particle
((n„n„,)) and higher correlation functions that one
discerns the presence of the second constraint.
It should, however, be stressed that these con-
clusions do depend on the first constraint (E*)
being linear in the (n„)'s and on the second con-
straint (E~'/2) not being of this type, and are not
necessarily valid in general. Qf course, if only
the first constraint is required, then all correla-
tion functions have the dependence expected at
thermal equilibrium.

(n„)(E )= Qn„ll(ne+Ee -Q n„e„)/p(E"),

(4.8)
p(E") =$(5 E, + E - Q n e ),

V

the mean particle number at the energy E*, and
then average it over P(E(p). The first part is
standard, " if lengthy, leading to the (approximate)
result

(n„)(E~) = 1/{1+exp[(a/E~)' (f„—az)]j. (4.9)

We have verifiedthat the validity conditions on the
result of (4.9) [Ref. 31, @284, (2B-20) and (2B-
22}, in particular] are satisfied for the systems of
interest in the study. The second stage

(n„)=f EE (ng(E )p(ne)
, 0

(4.10)

is readily carried out by a change of variable
from E* to y = a*E~/a. This brings the integrand
to the same form as that of a Fermi gas in ther-
mal equilibrium. By extending the upper limit to
infinity one obtains the result (4.7) with

P=&(a/a*)' '.
As before, X=X, and a*-=(a'~' —X2/2)'.

(4.11)

C. The excitation temperature

For light sources the brightness temperature
has long been defined as the temperature of a
blackbody with the same mean number of photons

B. The mean occupation number

To compute the mean occupation number for the
distribution pl it is convenient to make use of the
observation that all states n at the same energy
are found to be equiprobable. Hence we can first
compute (n„)(E*),
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(n'„) = 1/[1+ exp(e'„/T)], (4.12)

in the same frequency range. (Different fre-
quencies from the same source may, of course,
have different brightness temperatures. ) We
propose to introduce a similar definition for fer-
mions and argue that the results of the analysis
of energy disposal demonstrate the utility of such
a definition. For simplicity we shall measure
the temperature in energy units. To convert to
degrees the results need be divided by Boltz-
mann's constant k (k = 8.6210 " MeV/deg).

In a Fermi gas at equilibrium only such nu-
cleons that are within T below the Fermi level
can be thermally excited. Hence, the temperature
is a measure of the number of excited nucleons.
Since a measures the density of single nucleon
states we can estimate the mean number of ex-
citons in a Fermi gas at thermal equilibrium as
aT. (An exciton is a hole below. the Fermi level
or a particle above it. ) The distribution of mean
exciton number at thermal equilibrium is"

D. The variance of the energy distribution

The variance of the distribution is the simplest
measure of the two-particle correlation function

&(«*)'&=- &(E*-(E'&)')

=g g e„e~((n„n„.& —(n„)(n„.)). (4 .15)

By an explicit computation of the average of
(E~ —(E~))' over the distribution P(W) one readily
verifies that

((«~) ) =(a/a~)' ((&E") )' (4.16)

Here ((a~)'&' is the variance of a canonical (i.e. ,
thermal) distribution at the temperature T, . If
a* &a (X, negative), the width of the observed dist-
ribution is narrower than the width for a nucleus
at equilibrium at the temperature T, and convers-
ely if a* & a.

An estimate of the width can be obtained from
the estimate

where e'„= ~e„—ez~. Summing (4.12) over all
states v one verifies that the mean number of ex-
citons is indeed aT. Hence we define the excita-
tion temperature by

((«~)')'= T2s(E+&'/s T,

2aT 3 2E 3/2/a1/2a e mp

Hence

(4.17)

T, = e„'/In((n„'& ' —1), (4.13) ((gEg) 2& 2E 3/2/ay1/2 (4.18)

T =(M /a) (4.14)

Such properties of the residual nucleus that de-
pend only on the one-particle distribution func-
tion (n„& can thus be computed as if the nucleus
is at thermal equilibrium at the temperature T,.
As we show next this is no longer the case for
such properties [e.g. , the width of the distribu-
tion P(E")]which depend on the two-particle (or
higher) correlation functions.

where (n'„) is the mean number of excitons of
energy &„ in the Fermi system. The definition
(4.13) holds whether the system is or is not in
thermal equilibrium. If it is, T, =—T and is, in-
dependent of &'„.

The results on energy disposal in the heavy-ion
transfer reactions analyzed in this paper can be
summarized: The residual nucleus has a constant
(i.e. , e'„-independent) excitation temperature
which is readily estimated [cf. (3.10) and (4.11)]
by

The result should be compared to the estimate
(3.12) for the FWHM.

In general, using the form (3.9) one readily
verifies that the nth central moment of P (E~)
is given by

((Ee (E4&)+&—( 1)N &s+. &(Ee&/sy& & (4.19)

This result is easily shown to be valid irrespec-
tive of the presence of additional constraints. If
we set P =1/T, then, using (4.11),

&(E*-(E*&)"&= (a/a*)'"""((E~—«~&)"&' (4.20)

Since [cf. (4.1)] successively higher energy mo-
ments correspond to successively higher order
nucleon correlation functions, the result (4.20) is
the formal summary of our results. For n=1,
(E*)=.(E~&' or the single nucleon occupation num-
bers are those at thermal equilibrium. For n &1,
the moments or the correlation functions in-
creasingly deviate from their canonical value, ex-
cept if a*=a.

E. The second constraint

The second constraint was shown to govern the width of the energy distribution. This raises the ques-
tion as to why it is (E*'/ ) rather than (E*') which is used as the second constraint. The answer provided
by the independent particle model used in this section is that it is the width of the exciton (particle-hole)
distribution rather than the width of the energy distribution that acts as the second constraint.
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An explicit computation of the variance of the exciton distribution for a degenerate Fermi gas at a. total
energy E shows that (Eq. 2B-33 of Ref. 31)

((n (n ~)')(Ei) = p [g' —(m„')(E )Pll (E —g ll'„e,
)V P

(Eo) —(~Eg) (/2 (4.21)

Upon averaging over the E* distribution one sees
that (E("~2& determines the variance of the ex-
citon distribution.

As in the exciton model, we argue that the
particle-hole distribution following the collision is
not fully equilibrated. Rather, it can be charac-
terized in terms of its mean and variance. The
average single nucleon occupation number is fully
characterized by the mean and hence has an equil-
ibrium dependence on the excitation energy &„.
The excitation temperature is, however, different
for the different exit channels. The nucleon-nu-
cleon correlation functions do not have an equil-
ibrium dependence on the excitation energy. The
mean and the variance of the exciton distribution
suffice, however, to determine the distribution

PI Icf. (4.2)] of all nucleons and hence to deter-
mine all correlation functions. Further support
for the choice of Wi/2 rather than E* as the sec-
ond constraint is provided by the observation that
(E~'~'& increases with increasing number of trans-
ferred nucleons. As in the exciton model ' one
can say that each transferred nucleon gives rise
to additional particle-hole excitations in the re-
sidual nucleons and hence increases the variance
of the exciton distribution.

V. SUM RULE FOR ENERGY DISPOSAL
'I

J

It is clearly of interest to provide a dynamical
interpretation of the constraints. Theory offers
the following line of reasoning: A constraint is a
reflection of a quantity which is conserved by the
dynamics. If a Ha, miltonian can be introduced then
such quantities can, in principle, be identified and

explicit examples have been worked out for simple
collision problems. The theory showsis, x9 that such
a conserved quantity is related to the constraints
by

f„(r)=g G„,&,(r),

where the coefficients 6„,have different values
before and after the collision. Since, however,
the value of (I„& is conserved it follows that the
final post-coQision values of the constrained vari-
ables must be linearly dependent on their initial
values. " Such a relation is referred to as a sum
rule. A physical interpretation of the constraint is
thus a model which explains the origin of the sum
rule.

For multinucleon transfers the dominant con-
straints are the kinetic energy and normalization
of the probabilities. The initial kinetic energy is
well defined and (1)=1. Hence the sum rule is

(E,&=sE,.+ p. (5.1)

Here (Ez& is the mean value of the final kinetic
energy in the center-of-mass system for a given
arrangement channel. (E&&=(Q&+E, wher. e Q is
the Q value of the reaction, and

The coefficients s and p are independent of the
initial kinetic energy but do depend on the arrange-
ment channel (i.e. , on the number and kind of nu

cleons transferred) and on the total energy. The
very same sum rule has been found valid for atom
transfer in molecular collisions. "'

The observation that the distribution of final ki-
netic energy in heavy-ion transfer reactions is
peaked has led to a number of models~' ' for
the most probable Q value. Their common charac-
teristic is that if the mean rather than the most
probable Q is employed they all conform to the
functional form (5.1). Here we examine a simple
model which with one additional approximation re-
duces to the Q-matching condition of Buttle and
Goldfarb' while under another approximation re-
duces to the kinematic constraints of Brink" and
of Siemens et al." The model remains simple
without either approximation. By introducing ex-
plicit account of tangential friction'" 4'" (with
a friction coefficient which is a function of the
total energy but not of the exit channel), we obtain
an essentially quantitative expression for (E*).

A. Q Matching
1

The transfer of nucleons is assumed to take place
at the distance of closest approach. In other
words, up to the transfer the trajectory corre-
sponds to (the first half of) an elastic trajectory in
the incident channel. Past the transfer the system
exits along an elastic trajectory in the final chan-
nel. For collisions at or about the grazing angle
these elastic trajectories are dominated by Cou-
lomb forces. Hence the distance of closest ap-
proach in the jth channel (j=i or f) is

() A / l~X' (5.2)

E~ is the c.m. kinetic energy and )~ = 2/(1+ 1/sine ).
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28& is the deflection angle of a Rutherford trajec-
tory at the energy E,. for ions of charges Z, and

Z„, respectively, e=e, +e,.
Owing to the mass transfer, the coordinate for

the relative motion is not quite the same in the in-
cident and exit channels. If, as an additional ap-
proximation, one neglects this recoil effect (and
sets 8, = 8&) then the orbit matching condition D&
= D, leads to the optimal Q value'.

Q.„=[(z,z, z.z„)/z.z„]E,, (5.3)

or p=0 and s=z,zs/Z, z„, where the reaction is
a+A- b+B. The neglect of recoil effects is re-
flected in that (5.3) predicts no kinetic energy loss
for a mass transfer which is not accompanied by
charge transfer. The final channels which corre-
spond to the different isotopes (same charge trans-
fer but different mass transfers) are thus pre-
dicted to have the same optimal Q value. The ex-
perimental results, Fig. 1V, indicate that mass
transfer does matter. It can be allowed for by re-
quiring matching in momentum (part B) and by in-
troducing a recoil correction" (part F).

2

cos p=(p. /p, ~) 1-———2 m n
a A

1-——— 1-——— (5.9)

cos'p is dimensionless and is between zero and
unity. The kinetic energy loss due to the transfer
3;S

kg = c~ —&,.= -(sin p)E; (5.10)

Q;,",= —(sin'P) [E,—V,.(D.,.)] . (5.12)

Usually the mass transfer is small compared to
the mass of the heavy nuclei. m/B and yg/A are thus
quite smalL The factor cos'P [cf. (5.9)] is then

For grazing collisions the kinetic energy at the
distance of closest approach is

g)=E) —Vy (D)), (5.11)

where Vc(D) is the Coulomb repulsion at the sepa-
ration D. Defining, as usual, Q,«as the Q value
corrected for Coulomb energies in the entrance
and exit channels, Q,« = Q+ EVc, one has from
(5.10) and (5.11) that the optimal Q,«value is given
by

B. Momentum transfer matching
2 = ncos P—1-———

pa b' (5.13)

$ = (m/a)P„P„= (n/A)jf„, (5.5)

and $, and $~ are the momenta of a and b, i.e. , the
relative inomenta (at the point of closest approach)
before and after the transfer. The corresponding
kinetic energies are

Rather than orbit matching one can consider
matching in momentum. ""In the reaction a+A-b+B let m nucleons be transferred from a to A
and n nucleons be transferred in the opposite di-
rection so that a —m = b —n. At the point of closest
approach the momentum is entirely in the tangen-
tial direction (since its radial component is, by
definition of closest approach, zero). The momen-
tum matching condition is

I

(5.4)

where p and p„ar e the mom enta of the transferred
nucleons:

sin'p= (m+ n)/p, (5.14)

The optimal Q,«value [cf, (5.12)] is thus propor-
tional to the total number of transferred nucleons.

g,.=E,.—V,. —A~, (5.15)

Here A~ is a proportionality constant and v is the
velocity. After the transfer

C. Tangential friction

The entire discussion has thus far failed to in-
clude frictional effects. ' " '" In general, one
expects the frictional force to be proportional to
the velocity. The energy loss estimated by multi-
plying the force by the effective path length will
thus be also proportional to the initial velocity. '
Hence one may expect that at higher velocities
(5.11) need be replaced by' "4'

6; =p /2p;, 6p=pp /2p y (5 5)

where p is the reduced mass. From (5.4) and
(5.5)

(5.7)

and

C
q~= E~- V~+A ~@~.

The matching condition (5.10) now reads

Q;qq = (E~ —V~) —(E) —V~ )

= -(sin'P) (E, —V, )

-Ar(vz+ v,.cos'p) .

(5.16)

(5.17)

gg= (cos'p)c, ,

where

(5.8)
This simple consideration suggests that the con-
sistently less negative values of Q,«predicted by
(5.12), cf. Fig. 17, may be due to the neglect of
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the duration of transfer is proportional to the num-
ber of nucleons transferred we have that during
the osculation the fractional loss of energy due to
tangential friction is [cf. (5.14)]

exp [-2y(tip)] = exp(-n sin'P), (5.19)

where e is independent of the exit channel. The
energy loss due to both the friction and the mo-
mentum transfer is [cf. (5.8)]

g'= g,. (cos'P) exp( ns—in'P).

The sum rule (5.12) now reads"

(5.20)

Qgg=—tg —t ~
Opt

=-[1—cos'P exp(-a sin'P)]e, . (5.21)

In the absence of friction (a = 0), (5.21) reduces to
(5.12).

D. Results

The comparison" of (5.12) and (5.21) with experi-
mental results is shown for several reactions in

Fig. 1V. The results for the "0+ Th reaction
are also given in Table III. The sum rule (5.21)
does, of course, allow a single adjustable param-
eter (i.e., a). However, for a given entrance
channel the value of a is common to all exit chan-
nels.

Previous attempts" to improve the agreement of
(5~ 12) with the data have retained the linear depen-
dence of Q;f,' on the number [(n+m) ~ sin'P] of nu-

cleons transfer-. ~~ but have modified the barrier
by the inclusion of an optical potential and by in-
cluding a (constant) energy loss. The empirical
evidence" is, however, quite clear: Q;fI is mono-
tonically but not necessarily linearly dependent on
n+m. Rather, the slope of QQ", vs (n+m) de-
creases as the number of transferred nucleons in-
creases.

The functional form (5.21) provides not only a
quantitative but also a qualitative account of the
systematics ot Q",",'",". For few-nucleon transfer
(sin'P low), the drop of Q;,", with yn+n is faster
than that expected on the basis of momentum trans-
fer, Eq. (5.12). [The initial slope in a plot vs
sin'P is —(1+n)c,. for (5.21) and only —&,. for
(5.12).] As more nucleons are transferred, sin'P
increases, the energy loss due to friction in-
creases [cf. (5.19)], and the dependence on sin'P
becomes more moderate. Ultimately, as sin'P
-1 the optimal effective Q value saturates, Q;~«'- -&,. or g&= ~&"—V&

-0, and the final optimal
kinetic energy ~s ~qual to the Coulomb barrier in
the exit channeL The higher a is, the sooner (in
terms of number of nucleons transferred) satura-
tion sets in.

E. The strongly damped component

The analysis in Sec. III has indicated that the
energy spectra for few-nucleon transfer processes
contain a second, smaller, more nearly relaxed
component. For the i 0+ Th reaction the excel-
lent counting statistics" enabled us to resolve the
two components and thereby assign a reliable
value to Q, ,'of the relaxed component.

TABLE III. Energetics of the 0+ Th reaction at 105 Me V.

@OPt

Ejectile Q«(MeV) m n sin P E& (MeV) V~ (MeV) &f =Ef —V~ Experiment Theory

16N

i5g
15C

«C
i3C
12C

iaB
i2B
iiB
ioB

-10.60
-10.92
-6.89

-16.-09
-10.47
-13.34
-11.74
—26.90
-26.09
-22.84
-28.07

2 0.20
1 1 013
1 0 0067
2 1 020
2 0 013
3 0 020
4 . 0 027
3 0 020
4 0 027
5 0 033
6 0 040

80.1
82.5
86.3
70.1
73.3
69.9
69.5
59.3
57;1
57.4
46.2

70.2
70.6
70.9
61.5
61.8
62.2
62.6
52.4
52.7
53.1
43.2

9.9
11.9
15.4
8.6

11.5
7.7
6.9
6.9

4.3
3.0

—8.6
-6.6
-3.1
-9.9
-7.0

-10.8
-11.6
-11.6
-14.1
—14,2
-15.5

-10;0
703

-4.2
-10.0

703
-10.0
—12.1
-10.0

12y1
-13.5
—14.8

Ef is the final most probable kinetic energy. The experimental value for Q', ff
' ~f

where ~; =E]-V]=18.45 MeV. The theoretical value for jeff is from (5.21) using Q,'=2.8.
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F. The recoil effect

When the distance of closest approach is com-
puted as the sum of the nuclear radii

D. = & (n~ ~ ~+ g'~ 3) (5.22)

We have suggested that the damped component is
due to a process where nucleons are transferred
in both directions such that, e.g. , the ("0, "C)
and the slow component in the ("0, "N) channels
correspond to the same number of nucleons trans-
ferred. As a check of this interpretation we have
verified that the Q;,", values of the damped compo-
nents are in accord with the values expected from
(5.21) for the actual number of transferred nucle-
ons, Table IV. The agreement is quite close,
particularly if recoil effects (part F) are taken in-
to account.

more nucleons are transferred. However, the
corrections to (5.12), while in the right direction
do not suffice to fully account for the fact that the
actual energy loss is systematically larger than
that predict'ed by (5.12). If the recoil correction
is applied to (5.21), the results are somewhat bet-
ter than those shown in Fig. 1V but the correction
is a small one.

G. Transport equations

We have discussed the use of models for deriv-
ing successively more accurate sum rules for the
optimal final kinetic energy. Theory shows'8 x'

that sum rules can be derived directly from the
fundamental equations of motion. Specifically, if
(C„), r=1, . . . , M are the M mean values required
to constrain the final distribution, then during the
collision these mean values satisfy a closed set of
coupled equations of motion [e.g. , Eq. (6.16) of
Ref. 18]:

one obtains (5.12) in the form discussed by Sie-
mens et al.' and by Brinks. " A somewhat better
approach is to use the actual distance of closest
approach. Since only the total deflection 8, + 8&

is known, it is necessary to provide another rela-
tion in order to be able to determine D, and D&

separately. fD depends on 8 via $, cf. (5.2).] A

simple relation assuming a collinear arrangement
during the transfer process is

5D= D& —D =m ——-— —nr ———,(5.23)R~ R2 i&R~ R2
a B (5 A

where R, and R, are the radii of the two cores.
The use of this relation leads to the physically
realistic conclusion that ~8,. —8& increases as

S(C„)(f)/st = g g,„(C,& (f) . (5.24)
e

Here the coefficients matrix g is independent of
the initial state and the sum rules are just the in-
tegrated form of (5.24).

The coupled equations (5.24) can, of course, be
obtained also from transport equations. 7 Indeed,
both early and very recent studies have tended to
center attention on the transport equations for the
mean values. The matrix g is then precisely the
transport coefficients matrix of such theories.
Hence we conclude by pointing out that a route to
the final distribution is to solve the transport
equations for the mean values of the constraints
and to determine the distribution by the procedure
of maximal entropy subject to the values of the
constraints. "

TABLE IV. Q«values of the quasielastic and the damped components.

Reaction
I

From fit

Quasielastic component
Q'~~ (MeV)

From (5.21) From fit

Damped component
g,'&,' (MeV)

From (5.21)

232Th (~6P ~~N)

105 MeV

53gr(14N 13C)

90 MeV

197Au(i6P i5N)

218 MeV

Au( 0, N)
250 MeV

-3.1

-4.5

-12

-4.2 -13.0

-29

-10.0

-19.1

The "fit" entry is from the surprisal analysis using (3.8). The result from (5.21) is.
computed using the actual number of transferred nucleons.
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Our conclusion (Sec. I'VE) that the constraints
are on the mean and the variance of the exciton
distribution rather than on the mean and the vari-
ance of the energy distribution has an obvious im-
plication for the choice of variables in the phenom-
enological application of transport equations to de-
scribe heavy- ion reactions. Our analysis definitely
supports an exciton model rather than an energy
transport point of view.

VI. CONCLUSIONS

The broad, asymmetric bell shaped, energy
'

distributions for heavy-ion induced transfer to
highly excited states can be well characterized as
distributions of maximal entropy (or minimal in-
formation content) subject to a constraint on the
excitation energy E* and a constraint on E*' ' and

using a Fermi-gas level density for the residual
nucleons. The interpretation of these constraints
in terms of single nucleon occupation numbers
has been discussed. It is suggested that the mean
single nucleon occupation numbers have relaxed
to a thermal distribution with an effective temper-
ature determined by the magnitude (E*)of the first
constraint. The nucleon-nucleon correlation func-
tions are, however, not thermal and the magnitude
of (&*' ') determines the extent of this deviance.
The dynamical origin of the first constraint has
been discussed in terms of sum rules. A simple
model, which relates (E*) to the energy trans-
ferred per transferred nucleon and to a tangential
friction term (which is proportional to the kinetic
energy at the point of closest approach) gives very
good agreement with experimental results. All
exit channels (at a given collision energy) can be
described in terms of a single damping constant

6 ~

There are many potential extensions of the pres-
ent approach. One problem, not discussed in this
paper, is the systematics of the branching ratios
for formation of the different isotopes. We have
also not discussed the arigular distributions nor
the systematics of the energy-angle disposal
plots. '4 The dependence of the results (and, in
particular, the excitation temperature) on the col-
lision energy should also be examined. This will
further strengthen the connection to the more
dynamical point of view. The transitions to dis-
crete final states at low excitation energies, which
can be described by a distorted wave approach, ""
can also be analyzed from the present point of
view. " At the other end, an analysis of the mass,
charge, energy, and angle distributions for deep-
inelastic collisions has barely begun. Work is in
progress on several of these topics.
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