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The application of the maximal entropy approach as a dynamical procedure to collisions when there is
incomplete resolution of the final states is discussed. The major objective is to provide a collision theoretic
foundation for the phenomenological procedure of surprisal analysis which is applied to heavy-ion induced
reactions in a companion paper. A reduced description where during the entire time evolution the degree of
detail is commensurate with that available for the analysis of the final state is introduced. An exact equation
of motion, in the form of a continuity equation, is derived for the reduced description. The most notable
feature of the equation is the inherent presence of a dissipative term. Because of the finite duration of the
collision, the final reduced distribution need not, however, be fully relaxed. It is shown it is possible to
characterize the deviance from the statistical limit in terms of time-dependent constants of the motion. The
post-collision measure of this deviance is the surprisal. The significance of the (time-independent)
constraints, identified by surprisal analysis of experimental results, is discussed and the use of sum rules as a
practical route to the identification of such constraints is noted. The formulation of the approach as a
sophisticated statistical theory capable of representing direct reactions is discussed in the appendix. The
variational character of the procedure of maximal entropy is also noted therein as a route to approximate
descriptions.

NUCLEAH HEACTIONS Statistical theories of heavy-ion reactions, surprisal
analysis of the deviation of the observed distribution from the statistical limit,
dynamical derivation of functional form of the surprisal, identification of con-
straints using sum rules, procedure of maximal entropy, equation of motion

for reduced description.

I. INTRODUCTION

Collision experiments using composite projec-
tiles often fail to fully resolve the possible final
states. Such is particularly the case at higher
energies where many internal states are acces-
sible. It is then appropriate to adopt a reduced
level of description where a coarser analysis suf-
fices. It is not necessary to account for the cross
sections into specific final quantum states but only
for the averaged behavior. Despite this loss of
detail a purely statistical theory is not necessarily
sufficient as a reduced description. Yet a conven-
tional [e.g., distorted wave Born approximation
(DWBA) j dynamical approach is both prohibitive
(because of the enormous number of final states
that need to be summed over) and wasteful (be-
cause of the considerable detail which gets aver-
aged over). The purpose of this article is to argue
that under such circumstances it makes sense to
provide a reduced characterization by the pro-
cedure of maximal entropy. ' '

The method can be applied in two modes. One is
analysis, where the procedure retains the sim-
plicity of a statistical theory, yet is applicable
to direct processes where there is often consid-
erable specificity in the distribution of final states.

The essential idea here is that in a purely statis-
tical theory all accessible final quantum states
are equally probable. Such a distribution can be
characterized as one of maximal entropy (subject
only to the conservation of the additive constants
of the motion, e.g. , energy, as these define the
range of accessible states). In a direct reaction
there are additional constraints that prevent the
final phase space from being uniformly populated.
The analysis assumes that the correct description
of the actual observed distribution in phase space
is one of maximal entropy subject to these addi-
tional constraints. It seeks to identify such con-
straints by an analysis of the data. The method
has been extensively employed for molecular col-
lisions, '*' ' where it is often the case that very
few constraints (one or two) of obvious physical
significance suffice to account for highly nonstatis-
tical reduced distributions of direct reactions.
Moreover, similar reactions are found to have
similar constraints. ' The analysis thus seeks to
codify, compact, and correlate the data. Applica-
tions to specific heavy-ion nuclear reactions are
reported in a companion paper" and elsewhere. "'"

The second mode of application and a central
topic of this paper is that of synthesis. Here one
attempts to address the two questions raised by the
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success of the analysis: (a) Why does the pro-
cedure of maximal entropy subject to constraints
workP, (b) As the constraints identified by the
analysis are not time-independent constants of the
motion (of the kind made familiar by statistical
theories or, in general, by equilibrium statistical
mechanics"), wha, t then is the physical significance
of these constraints and why is it that few con-
straints often suffice to account for the major fea-
tures of the data'? Ultimately, the purpose of the
synthesis is to provide a predictive route, where
one computes directly the reduced distribution of
interest.

This paper is roughly divided into two parts.
Sections II and III discuss the concept of a reduced
distribution and the procedure of maximal entropy
with special reference to reduced descriptions.
Section IV is the transition between the two parts.
It motivates the selection of the initial state be-
fore the collision as one of maximal entropy sub-
ject to constraints. It is then noted' "that such
an initial state evolves into a state that is of maxi-
mal entropy throughout the collision. In other
words, it is not necessary to invoke the procedure
at every time t of interest. Having invoked it
once, it remains valid throughout the collision.
The constraints during the collision are iden-
tified"" as time-dependent constants of the mo-
tion. These are functions which depend explicitly
on time, but owing to their dependence on addition-
al variables have time-independent expectation
values. The one concession to simplicity is the
use of classical mechanics. The intended appli-
cation is, however, to collisions where the den-
sity of internal states is high and the kinetic en-
ergy is plentiful so that the restriction is not
severe. Previously we have discussed'" the syn-
thesis for the full description of the collision using
both a quantal and a classical description of the in.-
ternal states and noted that the essential difference
is not in the identification of the constraints.
Rather it was that the quantal constraints, being
operators, may fail to commute.

The application to collisions where a reduced de-
scription is sufficient is discussed in the second
part. The two central technical results (Sec. V)
are (a) the derivation of an exact yet innocent look-
ing equation of motion for the reduced description
in the form of a continuity equation, and (b) the
proof that even for the reduced description the
deviance from the statistical limit remains a time-
dependent constant of the motion. It is this result
that points out the special role of the surprisal.
Section VI considers both phenomenological and
theoretical routes to the identification of the con-
Straints. The most important practical tool is the
use of sum rules, since these are often available

from diverse sources, including models. ""
There are two appendices. %e specifically recom-

mend an examination of Appendix A. It is argued
there that the compactness of the maximum en-
tropy description is achieved by its failing to com-
pute such details which get averaged out in the re-
duction. From the very start, the formalism cen-
ters attention only on those features which are
relevant at the reduced level of description. Bor-
rowing the terminology of the statistical theo-
ries, "it is convenient to introduce the idea of a
fluctuation term as follows. Two densities in
phase space which upon averaging yield the same
reduced density differ only in their fluctuating
parts. It is then shown that their common average
part is given by the maximum entropy formalism.
Finally, it is shown that the solution of the equa-
tion of motion ean be cast in a maximal entropy
form. One can also show" that the variational
procedure of maximal entropy converges to the
exact solution of the equation of motion. This com-
plementary point of view is suggested as a prac-
tical route to approximations motivated by phy-
sical considerations. Appendix B demonstrates
how the irrelevant details (which get averaged
out upon reduction) can be removed by the use of
a projection operator.

.II. THE REDUCED DESCRIPTION

Consider for simplicity a classical system. A
complete description of a single isolated classical
collision is given by the trajectory in phase space,
where a-point along the trajectory is specified
by the coordinates and momenta of the colliding
partners. A single trajectory evolves into a par-
ticular final classical state. In the sense of the
correspondence principle, a quantal system can
be represented as an entire set of trajectories
and this is true even when the system is initially
in a pure quantum state. At any time, the collision
is specified by a density function p(p, q) in phase
space. The time evolution of p is given by Liou-
ville's theorem" dp/dt= 0 or

sp/st+2 f(sp/sv;)~(+(sp/spI)i; j = o

Here sp/et is evaluated at a given point in phase
space and the dots denote the time derivative.
The density in phase space is thus a constant of
the motion despite the fact that it is explicitly time
dependent. It follows from Liouville's theorem
that any function of p, and in particular the entropy
S(p), where

S(p) = -tr(p»p),
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P (a; t) = tr[p(P, q; f)6(A (P, q) —a)] . (2 3)

If there is more than one variable A, there will
be a product of 5 functions in (2.3), one for each
A„, which can be written in the compact notation

p(a; t) =tr[p(P, q; t)~(A(P q) -a)l (2.4)

p(a; t) provides a complete reduced description.
Average values can be computed directly from
p(a; t) as follows:

(A& =tr [A(j q)p(f»q't)]

daa tr p p, q;t 5 p, q -a

daap a; t, (2.5)

and similarly for functions of A.
The purpose of this paper is to characterize di-

rectly the reduced distribution p(a; t). The mo-
tivation is that such a characterization may in
some sense be simpler for p(a; t) than for p(p, q; t)
because the latter carries considerably more de-
tail which is not really relevant as it only gets in-
tegrated over during the reduction. A more tech-
nical discussion of this point of view is given in
Appendix A. In this connection, it is useful to
point out a complementary interpretation of (2.3).
As it now stands, the final reduced distribution is
determined by coarse graining the final detailed

are constants of the motion. The notation trace,
as in (2.2), denotes integration over the acces-
sible regions in phase space. Thus, for a sys-
tem with a sharp value of the energy, the inte-
gration is restricted to the energy shell. In gen-
eral, we shall use the term "energy shell" for the
range of states that are allowed by conservation
laws. We also stipulate that the area element
dPdq in phase space is measured in units of h, so
that the density p is dimensionless.

The reduced description which is of direct ex-
perimental interest centers attention on the values
of one, sayA, or a few, A„A„.. . ,A„, dynami-
cal variables. These do not suffice to identify a
point in phase space as there is an entire shell
of points A(P, q) =a which correspond to A having
the given value a. The measured distribution is
P(a) [or P('K) =P(a„.. . , a„)] such that P(a)da is
the frequency for A to have a value in the range
a to a+da.

The reduced distribution at the time t can be
computed20 from p(p, q; f) by summing over all
points which are on the shellA(p, q) =a,

density in phase space over all the irrelevant de-
tails. One can, however, transform (2.3) to a
form where the reduction is over all the details
of the initial state which are irrelevant. This
transformation corresponds to the change from
the Schrodinger to the Heisenberg pictures in

quantum mechanics,

P(&'f) =trl p(P q)6(A(p, q;t) -~)]. (2.6)

Here p(p, q) is the initial distribution in phase
space and A(P, q; f) is the solution of the equation
of motion for phase functions, which reflects the
evolution of p and q with time

(2.7)

III. PROCEDURE OF MAXIMAL ENTROPY

The concept of entropy can be introduced in an
axiomatic fashion" as a measure of "uncertainty"
or "missing information, " when what is known is
only a probability distribution. Adopting this point
of view, one is no longer restricted to systems
with very many degrees of freedom, nor to sys-
tems at equilibrium. In a collision of composite
projectiles there is typically more than just one
accessible final state. When many independent
binary collisions are considered, there will be ob-
-served a distribution of final states and one can
consider the entropy of that distribution. Indeed,
one can even consider a particular state and talk
of its "surprisal, " which is the amount of infor-
mation provided when the probability of that final
state is determined. " The only question then is
whether it is useful to do so. That is, whether
one can establish links between these abstract
concepts and quantities which are not defined with-
in the axiomatic structure but which are relevant
to the dynamics of the collision.

As an example, consider the initial state before
the collision. On practical grounds one requires
that it does not change in the absence of collisions,
so that any modifications in the distribution of
states reflect the interaction during the collision.
One can thus characterize the initial state by the
values of those quantities which are conserved in
the absence of collisions. If only a finite number
of such quantities are invoked, there may be other
states which lead to identical values for the con-
served quantities. One can, however, show (for
both classical~ and quantal" systems) that among
all those states, the stationary state is the one
of maximal entropy. The purpose of this paper is
to discuss and interpret a similar characterization
of the final, post-collision state. As an inter-
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mediate stage we shall demonstrate the same type
of characterization throughout the collision.

In phase space, on the energy shell, the entropy
can be interpreted as the effective area covered
by the distribution. The higher the entropy, the
less localized (or more "chaotic") is the distri-
bution. It is shown below to be maximal for the
uniform distribution (on the energy shell). Any
other normalized distribution has a lower entropy.
The uniform distribution (70(p, q) = 1/tr(1) is not,
however, a very interesting initial state for col-
lision problems. The reason is that for any Ham-
iltonian such an initial state evolves into a final,
post-collision state which is also uniform. '~ Scat-
tering experiments using such an initial state do
not serve to probe the dynamics. A more useful
initial state is one where the entropy is maximized
not over all distributions but only over some more
limited class. We prove below (Sec. IV B) that such
an initial state will also evolve into a final state
of maximal entropy, but one which does provide-
insight into the dynamics. Before that, we need
to consider the class of distributions over which
entropy is to be maximized. We have previously'"
discussed the general case, but here we make a
specific requirement: All the information used to
specify the class of initial states should be in the

A. space. The degree of control exercised in
selecting the initial state should be comparable to
that available for the analysis of the final state.
If that is not the ease, one should use the more
general formalism. '

A. Constraints

The purpose of the maximal entropy procedure
is to select a unique particular distribution, say
o, from an entire class of distributions {p], where
all members are consistent with a given reduced
data. An example is to choose 0 from all the den-
sities which are consistent with a given reduced
initial density p(a). The unique solution is (cf.
Sec. IIIC)

((',) = f da c, (a)p (a), r = 0, (, . . . , jw (3.3)

By taking Co(a) =1, the condition that the density
is normalized is included in (3.3). These M+1
constraining conditions can be rewritten, using
(2.3), as conditions on the density in phase space

(C„)= tr[p(p, q)C„(A)], r= 0, 1, . . . , M (3.4)

where A =-A (p, q).
If all that is specified is that the distribution is

normalized, then M= 0. As I increases, the
range of densities p(a) which satisfy (3.3) is more
and more limited. In the limit M- ~ [say, by
using for C„(a) a complete basis set] these con-
ditions specify p(a) uniquely.

P(a) = tr[o(P, q)5(A(p, q) -a)]
N

= Q(a) exp —Q X„C„(a) (3.6)

The reduced distribution corresponding to
o (p, q), the uniform distribution (which is sub-
ject only to the normalization constraint), is Po(a),

P'(a) = Q(a) exp(-1(.,)

B. Distribution of maximal entropy

The constraints (3.3) provide, therefore, the
means for stating the available data on the A space.
It is from the class of functions consistent with the
constraints that one selects g as the one of mmi-
mal entropy. The result is' ' (cf. Sec. III C)

N

o (p, q) = exp —Q x„c„(A), (3.5)
r=o

where, as usual, A —=A(p, q). The M+1 (Lagrange)
parameters in (3.5) are to be determined by the
M+1 implicit equations (3.4). An efficient com-
puter program has been described" and is avail-
able upon request.

The reduced distribution p(a) corresponding to
o(f), q) is

o(P, q) =P(a)/Q(a), (3.1)
= Q(a da Q(a) . (3 7)

so that all points where a =A (p, q) have the same
value of o and Q(a),

The constraints are reflected in the deviance of
p(a) from p'(a).

Q(a) = tr[5(A (P, q) —a)], (3.2) C. Entropy and entropy deficiency

is the density of states on the a=A(p, q) shell.
For every value of g (i.e., on theA shell), o, as
given by (3.1), is a uniform distribution, but its
value differs for different shells.

The density p(a) is the most detailed possible
reduced initial input. Less detailed reduced in-
puts are those where the expectation values (C„)
of M functions, C„(a) are specified

Given two normalized distributions, it is con-
venient to consider the following measure:

DS[p~o]= tr(p lnp —p Ino) . (3.3)

Et is non-negative and equals zero if and only if
p=o. If p and g are consistent with the same set
of constraints [e.g., both satisfy the M+1 con-
ditions (3.4)] and o is of maximal entropy, i.e. ,
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of the form (3.5), I(.) = -I [q(.)/p'(. )]. (4.1)

tr( p Ing) = tr ((x lna)

and then, using (3.9) in {3.8),

Ds[ pl&] = s[&]—s[p] o.

(3.9)

(3.10)

For any p which satisfies the constraints, but is
not equal to p, DS is positive and hence p is the
unique state of maximal entropy.

Since all densities of interest are normalized,
Ds[p la ] is always the difference between the ac-
tual and unconstrained maximal values of the en-
tropy

Ds[ pl o'] = s[o'j -s[p]. (3.11)

It is therefore referred to" "as the entropy de-
ficiency.

When the constraints are only on theA space,
(o/&r') will be only a function of a and hence the
entropy deficiency can be expressed in terms of
p(a) itself:

ss(ala']= f sap(a) ( ((a)S/ a( )S]a

= s[ p'] —s[p]
=Ds[plp'],

where

s)S] = f saS(a))a—]S(a)/a(a)],

S[P'1= —
~l d.P'(.) h [P'( )/Q( )]

(3.12)

(3.13)

=ln
Jt

daQ(a) (3.14)

The result (3.13) identifies the correct expres-
sion for the entropy in the A space. With this ex-
pression one can derive (3.6) directly as the dis-
tribution of maximal entropy subject to the con-
straints (3.3), or identify po(a) a:Q(a) as the dis-
tribution of maximal entropy subject only to nor-
malization.

IV. COLLISION PROCESSES

In the absence of constraints, the distribution in
phase space after the collision will be uniform (on
the energy shell). The corresponding reduced
distribution is po(a). It need not be uniform and
may depend on a, but such dependence is that im-
plied by the density of states [cf. (3.2)] Q(a). An
observed (or computed) reduced final state distri-
bution q(a) need not agree with p'(a). The entropy
deficiency DS[qlp'] provides an integral measure
of the deviance. The local measure is provided by
the surprisal~ I(a), where

In information-theoretic terms, "-I(a) is the in-
formation received from a message which stated
that the event a has the probability q(a), if before
the message the probability of a was taken to be
po(a). As expected, the total information in such
a message, given by Ds[qlp'] [cf. (3.12)], is non-
negative. In dynamical terms, the surprisal will
be characterized by the constraints. In other
words, our purpose is to identify a set of functions
C„(a) such that q(a) is given as a distribution of
maximal entropy subject to these functions as
constraints

-ln[q(a)/p'(a)] = g ]].„C„(a).
r=o

(4.2)

This section examines briefly the surprisal of
p(p, q; t) both during and after the collision. The
applications to the reduced distributions are made
in Secs. V and VI.

tr{p(p, q; t) [(sI„/aq) q+ (BI /sp) p+ sI„/s~)]}
= tr[ p( p, q; t) (dI„/dt) ] = o. (4.4)

Since the definition (4.3) should hold for any den-
sity function, a time-dependent constant of the
motion is formally defined by

dI,(P, q; I)/df = O. (4.5)

I„(p,q; t) satisfies the same equation as the den-
sity p(P, q; t) itself. (This, incidentally, will no
longer be true in the reduced description. ) I„ is
a conserved quantity because its p and q depen-
dence is such that it balances its explicit time
dependence, as is evident in {4.4).

Given the initial p and q dependence of I„, e.g. ,
C„(P,q}, then

tr[o(p, q)C„(p, 'q)]= tr[(T(pi q; t)I, (p, q; t)], (4.6)

and the equation of motion (4.5) determines
I„(p,q; t) uniquely.

That constants of motion with the stipulated
properties do exist follows from the following sim-

A. Time-dependent constants of motion

To show that 3n initial state of a maximal en-
tropy retains this characterization throughout the
collision, it is convenient to employ the concept
of a time-dependent constant of the motion.
A phase function which depends explicitly on time,
but whose average value (computed over the den-
sity at time t) is independent of time,

d{tr[p(p, q; t)I„(p, q; t)]}/dt = 0,
is a time-dependent constant of the motion. It fol-
lows from the Liouville equation (2.1) that (4.3)
can be rewritten as
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pie consideration": The equations of motion de-
fine uniquely. the present values p and q in terms
of their initial values po=p(t= 0) and q' as fol-
lows:

p= p(p

q= Q(p', q', I).
(4.7)

Since the time evolution is reversible, one can
take the present values as initial values and re-
cover p' and q'. Explicitly

O'=P(P q'-t)
(4.8)

q'=Q(P, q;-t).
For a system with N degrees of freedom, the 2N
functions P and Q are a set of constants of the
motion, with the initial values

P=I'(P q 0)

q= Q(P, q; o).
(4.9)

Another time-dependent constant of the motion,
such as I„(P,q; t), can be expressed in terms of
P and Q. Since the initial value of I„ is
I„(p,q; t = 0) = C„(p, q), it follows that

I,(P, q; I) = C,[P(P, q; -I), Q(P, q; -t) l (4.10)

To prove (4.10), note that at t= 0 it satisfies the
boundary condition [cf. (4.6)], and that since it is
a function of constants of the motion, it satisfies
the equation of motion dI„/dt= 0.

The construction that led to the constants of mo-
tion (4.8) is valid in general. To see this, con-
sider the phase function C„(p, q; t), whose initial
value is C, (p, q). Its time evolution is given by
(2.7). On comparing (2.7) and (4.4) it is evident
that an alternative expression for I„ is I„(p,q; t)
=c,(p, q; -t)

B. Once is enough

For a given collision process it is sufficient
to apply the procedure of maximal entropy once."'
Say the initial state o(p, q) has been' so specified
and is of the form (3.5). It follows from the de-
finition of I,(p, q; t) as a time-dependent constant
of the motion that the exact solution of the Liouville
equation for the given initial state is

N

0(p, q; t) = exp —Q X„I,(p, q; t) . (4.11)
r=O

The reasoning is immediate. Any function of a
constant of motion is itself a constant of motion.
Hence, 0(p, q; t) is a solution of the Liouville
equation. It also satisfies the boundary conditions
[i.e., for t- 0 it reduces to o(p, q)] and is there-
fore the required solution.

Among all possible densities p(p, q; t) the par-

= trt p(p, q; t)I, (P, q; t)} (4.12)

The functional form (4.11) is that of maximal en-
tropy subject to the M+ I constraints I„(p, q; t).
But any alternative density p(p, q; t) satisfies the
very same constraints. Hence, o(p, q;t) has a
higher entropy than any other density that one
might consider.

V. THE EQUATION OF CONTINUITY

An equation of motion for the reduced density
p(a; t) is derived and discussed in this section.
Like the Liouville equation for the detailed den-
sity p(p, q; t), here too the equation of motion
has the interpretation of a continuity equation
(in A space). The formal advantage, of course,
is that while p is defined in a 2N dimensional
phase space, where' is the number of degrees
of freedom (for an isolated collision), the dimen-
sion of A space can be much lower (e.g. , one, if
A is a single phase function). The conceptual ad-
vantage is that all irrelevant details have been
eliminated from the very start. This elimination
of detail is reflected in the observation that, as
opposed to the full Liouville equation, the entropy
of p(a; t) is not a constant of the motion.

Transport equations for reduced distributions
have been previously discussed. "" However,
the present equation is exact and, because of its
form as a continuity equation, is easily inter-
preted and manipulated. The entire complexity
of the dynamics is contained in the velocities (as
defined below). One can show that the leading ap-
proximation to the equation of continuity is the
Fokker-Planck equation, which is extensively used
as an equation of motion for reduced descriptions.

A. The velocity field

The reduced distribution p(a; t) is the average,
over the initial density, of G(a; t) = 6[A(t) -a],
where A(t) =A(p, q; t) [cf (2.6)]. Using a dot to
denote time derivative, A(t) is given by (2.7) and

sG(a; t)/st = 5(A (t) -a)A(t)

6(A(t) -a)A(t).
SAN

(5.1)

ticular result (4.11) is the one of maximal entropy.
The proof is based on showing that all the alter-
native densities satisfy the same constraints as
o(p, q; t). Let p(p, q) be the initial state that
evolved to p(p, q; t). Such an initial state must
be consistent with the same constraints as o(p, q).
Then, using (4.6) and (3.4),

&c„&=tgv(p, q)c„(p, q)} = tg p(p, q)c, (p, q)}
= tg~(p, q; t)I„(p, q; t)]
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and

Bp(a, t)/st = -~(v(a; t) p(a; t)]/sa. (5.3)

sp(a; t)/st is obtained by averaging (5.1) over the
initial state. To write the final result in a com-
pact fashion, it is useful to introduce a velocity
field in A space, as follows. From the basic de-
finitions of the reduction, the average rate of
change of A. (t) on the A(p, q; t) = a shell is given by
v(a', t), where

tr[ p(p, q) 5(A (t) -a)A (t)]
tr[ p( p, q) 5(A (t) -a) ]

= tr[p(p, q)&(A(t) a)A-(t)]/p(a; t) (5 2)

Using (2.6), (5.1), and (5.2)

age value over P(a; t) is time independent:

d dap(a; t)I„(a; t) t= 0. (5.7)

Using the equation of motion (5.5) and integration
of (5.7) by parts, we obtain the equation of mo-
tion of I„(a;t),

sf„(a; t) /s t = -v gradf„(a; t)
n

vjeI„a; t Baj, (5.8)

or dI„(a; t)/dt= 0.
The equation of motion (5.8) is to be contrasted

with the equation of continuity (5.5), which can be
written as

&A) = t ua a&p(a; t)/&t or

dp(a; t)/dt = -p (a; t) divv (5.9)

p a;t e a;t da = v . (5.4)

sp(a; t)/st = -div[vp(a; t)]
n

= —Q s[v,.p(a; t)]/sa,
j=l

Here v&(a; t) is given by (5.2) with A,. (t) replacing
A(t).

As consistency checks, note the following: (a)
If as the n variables A,- we take the 2N variables
p and q, then p(a; t) is the actual detailed density
p(p, q; t). It is readily verified that in this case
(5.5) is just the Liouville equation

2N

&p/&t = —g [8 (q;p)/&q; + &(p,p)/&p;].

(5.5)

(5.6)

The dimension of the A space is determined by
the number of different variables A, , j = 1, . . . , n
that are of interest. The variable a is thus, in
general, an n dimensional vector (cf. Sec. II). To
explicitly exhibit this point, one can rewrite the
equation of motion (5.3) as

d lnp (a,; t)/dt = -divv. (5.10)

When the A space is the entire phase space, it
follows from Hamilton's equations that divv= 0,
so that the density is a time-dependent constant
of the motion, and the equation of continuity repre-
sents the motion of an incompressible "fluid. "
In the reduced description, p(a; t) is not necessar-
ily a constant of the motion. In a thermodynamic-
like language, an isolated system cannot "relax"
because its entropy is a constant of the motion,
but a subsystem can. Its entropy is not a constant
of the motion, and the coupling between the A space
and the other degrees of freedom may cause p(a; t)
to approach a statistical distribution but may also
drive it further away from equilibrium. ""

C. Dissipation

That the equation of motion (5.5) for the reduced
distribution does allow for a dissipative time evol-
ution also follows from considering a volume ele-
ment

(b) Say that for some particular j, j=k, v~(a; t) =0.
p(a„t) is given, as always, by integrating p(a, ;t)
over all the a,. 's for jck. Then it follows from
(5.5) (by integration by parts) that if v, = 0, then
p(a„' t) does not change with time. Hence, there is
no reason why time-independent constants of the
motion (i.e., such observables thatA. „=0) should
not be included in the set(A, .]. It simply means
that the corresponding term will be missing in the
right-hand side of (5.5).

B. Time4ependent coristants of the reduced motion

A time-dependent constant of the motion in A
space is a phase function 1„(a;t) such that its aver-

da =, daj (5.11)

InA space. At the time t'=t+7, where y is in-
finitesimal, a,'. = aj +7vj and hence the volume ele-
ment is

da' = (1+7 divv) d a. (5.12)

%hen divvy 0, a volume element in A space is no
longer invariant.

Our primary interest is in the t- ~ limit of
P(a; t) and so we do not consider in detail the dis-
sipative evolution of p(a; t) in this article. It is of
interest, however, to note that despite the dissipa-
tion one can still employ the concepts of invari-
ants. To see this, consider the "velocity" vector
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u of n+1 components such that u, =1 and the other
n components are the v,. 's. Then p(a; t) satisfies
the equation

evolves to the prior distribution

(5.14)

div(up) = 0, (5.13)
Here p, (a; t) satisfies the same equation of motion
as j(a;t),

where ao=t. The motion of such a fluid is shown
schematically in Fig. 1. sp,(a; I)/st+ div(vs, ) = 0, (5.15)

D. .The surprisal

The prior distribution is uniform in phase space
(on the energy shell). It represents the limit of a
fully relaxed distribution, where conservation of
energy (and other good quantum numbers) is the
only constraint, Owing to the finite duration of the
collision, the final reduced distribution need not,
however, accord with the prior reduced distribu-
tion p'(a). The surprisal is the (logarithmic) mea-
sure of the deviance between the two. In phase
space the prior distribution is uniform and the
surprisal is just the asymptotic limit of
-ln[p(P, q; t)] and hence can be expressed in terms
of the time-dependent constants of the motion
(Sec. IVB).

To interpret the surprisal for the reduced dis-
tribution we factor out of p(a; t) the term that

but with the boundary condition that after the col-
lision it equals the prior distribution p'(a). The
surprisal is thus the asymptotic limit of I(a; t)
= -Jncu(a; t).

The equation of motion for tu(a; f) is obtained by
inserting the resolution (5.14) in the equation of
motion (5.5) of p(a; t) and using (5.15) so that

ate(a; t)/st+ v grad(&u) = 0,
aI(a; t)/st+ v grad(I) = 0.

(5.16)

(5.1&)

VI. THE CONSTRAINTS OF THE REDUCED
DISTRIBUTION

A complete formal account of the time evolution
in a space is now available: The distribution at
any time t (and also after the collision) is of the
for m

tu(a; f) and I(a; t) are therefore time-dependent con-
stants of the reduced motion (cf. Sec. VB). De-
spite the dissipation, the surprisal identifies the
(asymptotic limit of the) time-dependent constants
of the motion.

P(a; t) =P, (a; f) exp[-I(a; t)]. (6.1)

FIG. 1. The evolution of the initial p (a) to the final
q(g) reduced distribution as a motion of an incom-
pressible fluid, div Pup(a;t) J= 0, where time is one of
the coordinates. Shown are the streamlines, where
the velocity vector u= {1,v) is the tangent to the line.
Before (or after) the collision u= (1,0), the stream-
lines are parallel to the time axis, and there is no dis-
sipation. The nonconservation of the volume element
da, Eq. (5.11) is also shown. Note, however, that
fp(a;t)dg=oonst where the integral is between two
streamlines. (The conservation of this integral is shown
as the invariance of the dashed area. ) The possibility
that the entropy first decreases and then increases during
the collision (reflected by the narrowing and widening
of the cross section between streamlines) has been noted
in both analytic solutions (Ref. 33) and computational
studies (Bef. 34) of model systems.

Here p, (a; t) is the distribution at the time f which
becomes, after the collision, the prior distribu-
tion po(a) (a uniform distribution in phase space
or, in quantum mechanics, a uniform distribution
over all accessible final quantum states).

The surprisal is the post-collision g dependence
of the time-dependent constant of the motion I(a.; f).
The average value of I(a; t) is constant throughout
the collision. If after the collision we expand the
surprisal

(6.2)

and recall that the Lagrange parameters A.„are
themselves functions of the average values (C„(a)),
it follows that the values of the averages (C„(a))
constrain the distribution from being fully relaxed.
This dynamical interpretation is, of course, the
same as that provided directly by the procedure
of maximal entropy. Indeed the average value of
I(a) is just the entropy deficiency [cf. (3.12)] which
vanishes if (and only if) p(a) = p (a). This section
examines some dynamic considerations which
guide the determination of the functions C„(a) in
the expansion (6.2) for the surprisal. The infor-
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mation-theoretic approach (which can be derived
from a variational principle" ) is discussed in Sec.
C of Appendix A.

One possible query may arise concerning the
functional form (6.1). After all, one can set
p(a;t) =p, (a; t)v(a; t), where co(a; t) is also [cf.
(5.16)] a time-dependent constant of the motion.
Why not analyze &u(a; t) instead of I(a; t). Well,
one can, and it is shown in Appendix B that this
is strictly equivalent to the analysis of I(a; t), ex-
cept that the structure of I(a;t) is simpler.

(c,) fa c(a=)) (a), , (6 3)

and let t),(CP be the change in the mean value of
C„(a) between the initial and the final state. It is
often the case that the following "sum rule" is
satisfied:

(6.4)

A. Sum rules

The most practical route to the identification of
the constraints [the functions C„(a) in (6.2)] that
govern the final-state distribution is the use of so-
called "sum rules. " This route has been exten-
sively used, ""on the basis of information-the-
oretic considerations. Here we consider the dy-
namical interpretation. The application to heavy-
ion reactions" is discussed in the companion
paper u

Let (C„) be the initial mean value of a function
c„(a),

q(a) =P'(a) exp —g X„C„(a)
r=O

(6.8)

where the values of the A.„'s are determined from
the sum rules. The reason is, of course, that to
obtain the distribution the model builder often
needs to introduce additional assumptions which
are not germane to the central idea. A more ob-
jective route is to limit the model to relations
between average values and let the maximum en-
tropy pcrocedure provide the least biased route
from these averages to the actual distribution.

of the particular initial state is thus guaranteed
to be an asymptotic value of a constant of motion
and hence is to be used as a constraint.

Sum rules need not be purely of phenomeno-
logical origin. In Sec. VIC we shall derive exact
sum rules for such systems where the Hamilton-
ian is known. A very important practical source
of sum rules is models. It is often possible to
summarize a model in the form of a sum rule
such as (6.5), and an actual case is discussed in
the companion paper. " Sum rules which derive
from models identify, of course, the constraint
implied by the model, which need not be the com-
pletely correct constraint. Even so, if the model
is any good, the constraint is likely to be quite
reasonable. Indeed, one can argue' that models
should be used primarily for the identification of
the constants of the motion and that the actual fi-
nal reduced distribution )I(a) be obtained using the
procedure of maximal entropy as

That is, that the change in (C„) is a linear com-
bination of the initial values of several functions
C,(a). One can rewrite (6.4) as

(c„)'=g z „&c,), (6.5)

I (a) =g F„C,(a), (6.6)

and whose final form is

where the prime refers to the final value. If the
numerical coefficients I' „are independent of the
initial state, it follows that there is a time-depen-
dent constant of motion whose initial form (i.e.,
for t -~) is

B. The time-dependent constraints

The traditional route to the solution of a partial
differential equation such as (5.17) is the separa-
tion of variables. Hence, to solve for I(a;t) we
try the ansatz

I(a;t) =g ~„(t)C„(a), (6.9)
r=O

Q C, (a)ax, (t)/st=- Q x„(t)v gradC„(a).

where the linearly independent functions C„(a) do
not depend on time, and the expansion (6.9) is to
be valid for all times throughout the collision. In-
serting (6.9) in the equation of motion (5.17), we
have

I,„,(a) =C„(a) . (6 7) s=O r=O

Taking the expectation value of I;„(a) over the in-
itial state and equating it to the expectation value
of I,„,(a) in the final state [remember (5.7)], we
recover (6.5).

An observable that satisfies a sum rule of the
form (6.5) with coefficients E that are independent

(6.10)

Since the functions C, (a) are linearly independent,
one can equate the coefficients of C, (a) on both
sides of (6.10). It follows that (6.9) is an exact
expansion if (and only if) the functions C,(a) are
closed under the operation v grad. Explicitly,
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-v. grade„(a) = Q g„c,(a) . (6.11)

n

v,.(a;t) = Q g„(t)a, . .
k= 1

In this case, all the moments, r =ry

(6.13)

C; )=; a», (6.14)

up to any given order gr, =R,. form a closed set.
If the A space is one dimensional, then C, (a) =a"
are the ordinary moments.

The closure condition (6.11) is, of course, close-
ly related to the closure condition discussed in
connection with the detailed solution in phase
space. ' There one required a set which is closed
under the operation Ig, }, j.e. , that of taking the
Poisson bracket with the Hamiltonian. Indeed,
the form (6.13) does obtain if the A's themselves
are closed, "

(6.15)

Recalling that A,.= (H, A, }on-e obtai. ns (6.13) from
(6.15) upon averaging on the A (p, q) =a shell. It
is also possible" to extend such considerations
to rearrangement collisions, where different sets
of constraints may be useful in different arrange-
ment channels.

C. Sum rules for time-independent constraints

When a set of functions C„(a), closed in the sense
of (6.11), can be determined, then one has an ex-
pansion for the surprisal with a fixed set of time-
independent constraints, which is valid throughout
the collision. Such a set will also satisfy sum
rules (Sec. VIA) at any time t and also after the
collision. To show this, consider the equation of
motion for &C„&(t):

a&c„&(t)/at= J) uc„(a)ap(a; f) jaf

Using (6.11) in (6.10) we obtain the equation of mo-
tion for the expansion coefficients

a~, (t)/af = p g „~„(f) (6.12)
r=O

A closed set of functions that satisfies (6.11) ob-
tains, for example, when the velocities are linear
in a,

The equation of motion (6.16) for the mean values
of the constraints is the counterpart of the equa-
tion of motion (6.12) for the Lagrange parameters.
Either equation can be formally integrated by the
introduction of a matrix F(t),

-aF/at= F' g, (6.1I)

with F. = I. Then

&C,&(f) = g F.(t)&C,&,
S

and the matrix F of (6.5) is simply F.„,, the
asymptotic limit of F(t)

Consider, finally, different collision process-
es which do, however, satisfy the same type of
sum rules, i.e.,

(6.18)

a&C„& = g (Z., -5.,)&C,&, (6.19)

where, of course, the elements of the matrix F
may have different values for different processes.
Here too, the functional form of the surprisal will
be the same for all the different processes, pro-
vided that the initial states are specified by the
same set of constraints. It is indeed possible' to
argue that similar reactions have similar con-
straints.

VII. CONCLUDING REMARKS

Surprisal analysis has typically been applied to
only partially resolved final state distributions.
A statistical dynamics formulation which provides
the theoretical foundation for such phenomenologi-
cal applications has been presented. The central
result, in this respect, is the proof that even for
a reduced description the surprisal remains a
time-dependent constant of the motion. This en-
ables one to expand the surprisal, both during and
after the collision, in a set of time-independent
constraints. During the collision the expansion
coefficients will be time dependent. The identifica-
tion of these constraints can be made on theoreti-
cal grounds. A much more practical method is the
use of sum rules which state that a change in the
mean value of some observable (e.g. , the kinetic
energy) during the collision is linearly dependent
on the initial values of one or more observables.
Observables related in this fashion are the re-
quired constraints.

da C„a div vp a; I;

gap a;t vgradC„a

= —g a„&c.&(t).
S

(6.16)
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APPENDIX A: PROCEDURE OF MAXIMAL ENTROPY
IN A SPACE

Critics of the maximal entropy point of view tend
to argue that it violates the principle of conserva-
tion of effort. The proper answer is that it does
not; all that is avoided is the unnecessary effort.
This is achieved by restricting attention to those
variables that are relevant (i.e. , that constrain)
the density of interest. The description of the col-
lision in the reduced A space can be used as an ex-
plicit illustration of this claim. In particular, we
show how such a point of view can be naturally ac-
commodated in the framework of statistical theo-
ries." The removal of irrelevant details by pro-
jection operator techniques is discussed in Appen-
dix. B.

A. The detailed vs the reduced solution

It is indeed possible to make an effort to "bal-
ance" and identify the origin of the savings. A
person mho is only concerned with a reduced de-
scription will not be able to use his results once
scattering experiments at higher resolution are
performed. This is not the case for the person
with a complete .solution. To see this, consider
first a fully detailed solution of the scattering prob-
lem. This means the ability to compute the final
state for any initial state of interest. In classical
mechanics this requires computing classical tra-
jectories for a dense mesh of initial values of p
and q. Every such trajectory specifies the density
that evolved from an initial 5 function, i.e. ,

(A1)

The density that corresponds to any desired initial
state is obtained by averaging (Al) over the initial
distribution of p and q as in (2.6).

For the person of more practical nature, who
is only able to specify the initial state in A space,
the general solution (Al) is sufficient but not really
necessary. The reason is that he is unable to re-
solve different initial states which correspond to
the same reduced initial distribution p(a). He can,
of course, introduce some ansatz for his initial
p(p, q) density and use (2.6). In so doing he will
have to average over all those initial p, q values
that are on the A(p, q) =a shell. All the effort
that ment into calculating the different trajectories
that originate from distinct p, q points on the A.

shell is thereby lost. For example, if the initial
state is specified by the M constraints (3.3), then
it is, in principle, sufficient to solve the equation
of motion [Eq. (5.8)] M times. The effort is con-
siderably reduced, and the price is that such a
description would only suffice for an initial state
specified by the M constraints C„(a),r = 1,2, . . . ,M.

(Note, however, that changes in the values
(C„) of the constraints canbe accommodated without
solving again the equations of motion. ) However,
when the initial state is changed in such a manner
that it can no longer be specified by the M con-
straints, one needs to redetermine new constants
of the motion. This is not so for the person with
the fully detailed solution. If his tape with all the
trajectories has not been erased in the meantime,
he can accommodate any modifications in the in-
itial state.

Finally, one reaches the limit of a uniform ini-
tiai state. There is only one constraint (M = 0),
namely, that the initial density is normalized. , The
integration of the equation of motion is immediate:
A normalized initial state remains normalized.
The final state density is thus available (i.e., it is
uniform) without any numerical integrations of tra-
jectories. To be sure, if one did determine the
trajectories and used those to compute the final
state for a uniform initial state, one would reach
the same conclusion. Homever, there is clearly no
objection to using the intertwining theorem" in
order to bypass this laborious task and to proceed
directly to the conclusion that a uniform initial
state is invariant. The maximum entropy pro-
cedure seeks to point out that this line of reason-
ing can be usefully extended, that there are ad-
ditional invariants that can be used, at least in
principle, to determine the functional form of the
final state for more detailed initial states.

B. Statistical theories and the fluctuation term

Statistical .theories" often seek to resolve the
cross section (and the 8 matrix) into a "direct"
and a "fluctuation" term. This is typically done
by considering an "average" over initial states,
such that the direct contribution is the average
value and the fluctuation is the deviance from the
average. Except when the average is over the
initial energy, the precise nature of the averaging
is seldom specified. Here we point out that the
procedure of maximal entropy provides a well
defined framemork for the introduction and im-
plementation of these ideas.

The average is here defined by specifying which
quantities are held constant. All other quantities
are allowed to vary and one seeks the greatest
possible latitude for such variations. In other
words, the result should be maximally noncommit-
ted with respect to the unconstrained variables.
This desideratum is precisely provided by the
procedure of maximal entropy. Qne determines
the density which is consistent with the values of
the specified quantities and is otherwise least
biased. In a quantal treatment it can be applied
to the S matrix itself.
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The simplest example of such averaging is when
only the time-independent constants of the motion
are constrained to their values. Then the average
density is the uniform one (on the energy shell)
and every deviance represents a fluctuation.
Another example is the person with resolution only
in' space. For him, any density in phase space
can be resolved as

p(P, q; t) =o(P, q; t) + 5p(P, q; t) . (A2)

Here o(p, q; t) is the density of maximal entropy
as discussed in Sec. IV [i,e., (4.11)]. The fluc-
tuation term 5p(p, q; t) cannot be observed by such
a person, for, by construction, both p and g yield
identical values for those variables that such a
person can measure. Only by refining the mea-
surement procedure, i.e., by resolving different
states on the A(p, q) =a shell can one discern the
fluctuation term.

The considerations above also illustrate once
more the sense in which the maximal entropy pro-
cedure foregoes the computation of irrelevant de-
tails; e.g. , why should one determine 6p(p, q; t),
if it has no observable consequences on the level
of detail which is required? An explicit form for
the average part is derived in Appendix B, where
a projection operator technique is employed to pro-
ject out the fluctuating part. There we also dis-
cuss a similar resolution for, observables.

C. Surprisal synthesis as an inductive inference

Sections V and VI provided a dynamical inter-
pretation of the surprisal of the exact reduced den-
sity and a determination of a set of constraints
which specifies an exact solution of the equation
of motion. Once those objectives are realized, it
is possible to formulate approximations to these
exact results. It is useful, however, to note that
the point of view discussed in the introduction to
this appendix provides an alternative method. The
difference is not one of technical detail, but one
of motivation. If a set of variables is deemed par-
ticularly relevant to a given system, then why not
determine the final distribution by maximizing the
entropy subject to the expectation values of these
variables? The result will not necessarily be
exact, but will be the most conservative inference
that can be made from the given data. Synthesis
is thus regarded as an inductive inference' in a
manner first discussed in connection with statis-
tical me'chanics. "~ In such an approach the con-
straints have the same interpretation as those
variables which are relevant to the particular
dynamics. Sum rules (Sec. VIA) are very useful
in this respect. Any irrelevant constraints are
identified as such by the procedure, since their
Lagrange parameters are found to'equal zero"

{or are very small). Moreover, the procedure
is backed by a var iational principle. " By including
more and more constraints, one is sure to con-
verge to the exact dynamical results. In practice,
when the constraints are sensibly chosen, the in-
clusion of one" or two" constraints results in very
close accord with exact numerical solutions of the
Schrodinger equation. It follows from the discus-
sion in Sec. III C that the measure of convergence
is" DS[p~o], where p is the exact result and o

is the maximum entropy inference. When 0 is a
good approximation, DS[p~o] is numerically equal
to the square of the fractional error in the distri-
bution function.

A. The reciprocal set

The discussion is based on the introduction of a
set of observables that is reciprocal [as defined
by (BS) below] to the set of constraints. Such a set
will offer a linear expansion for the density of
maximum entropy. Similarly, the constraints
themselves will be shown to offer a linear expan-
sion for the relevant part of an observable [as de-
fined in (B16)].

To simplify the notation, a scalar product of two
phase functions (X Y) is defined by

(X Y) = tr(X Y) . (B1)

Here tr is, as before, an integration over phase
space, the point being that the proofs obtain equal-
ly well for the quantal case where X and Y are
operators.

Let 0 be a distribution in phase space of maxi-
mal entropy subject to the constraints (C„), r = 0,
1, . . . , ~. Then the set of phase functions

B„=so/e(C„), r = 0, 1, . . . , M

is reciprocal (i.e. , biorthogonal) to the set of
constraints

(C„B,) = tr(c„eo/9(c, ))

(Bs)

APPENIDX B: PROJECTING ON THE MAXIMUM

ENTROPY PART

The use of a projection operator technique' for
separating a density into a term given by the pro-
cedure of maximum entropy and a fluctuating part
is discussed. The equivalence of a linear expan-
sion and the maximum entropy form is demon-
strated. As discussed in Appendix A, the fluc-
tuation part corresponds to the irrelevant details
which get averaged out in a specified level of de-
scription. The same details may of course be
quite relevant when a finer resolution is available.
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r=o
p.„B„+ (B4)

with p, „=(C„X). One can thus define two types
of projection operators. The first is a Robertson-
type' projector

PX= Q (C„.X)B„. (B5)
r=o

The last equality follows from the linear indepen-
dence ' of the constraints used to specify p. If p
is time dependent, then so will be the observables
B„of the reciprocal set.

B. The projectors

The set of constraints (C„] and the reciprocal set
(B„)are thus biorthogonal. Either set can be used
as a basis for a linear expansion, and the expan-
sion coefficients are the scalar products with the
corresponding members of the other set. For
example,

M

The proof is immediate, using the definition (BV)
and the biorthogonality property (BS).

C. Projecting out the irrelevant part

Consider a distribution p in phase space and let
o be the distribution of maximal entropy which is
consistent with p on the values of the constraints,

(c„p)= (c„o).
Then, using (B11), (B8), and (B5),

Pp= C„' p B„
r=o

= g (C„o)B„=Po=o .
r=o

(B11)

(B12)

P projects the average or direct part out of any
density in phase space. The

fluctuating

part is
(1 -P)p. It can also be shown that, for any small
variation 5p in p, P projects out its average part,

Here the basis functions are time dependent (if o
is). Using the general relation 50 =P5p. (B18)

(PX ~ I') = (X Pil'), (B6)
The proof is immediate, using (B12) and the chain
rule.

we obtain from (B5)

p'x=g (B„x)c„.
r=o

Here the basis functions are not necessarily time
dependent. The second (or Mori"-type) projector
is the adjoint of the first.

The two special properties of the projectors are
(a) o is invariant under P,

o =Pa'=g (C„o)B„. (B8)
r=o

r=o

= P (C„o)B„.
r=o

(B9)

This property is the promised linear expansion of
g. One can either expand lng in the C„'s or o in
their reciprocal B„'s, and the two expansions are
strictly equivalent. To prove (B8) note [e.g. , using
(4.11)]'that o=-ao/sX, and hence that s(C„)/sX,
= a(c„o)/eX, = -(C„o). Thus,

o = -so/e~, = —g (ao/s(c„))(a(C„&/s~, )

D. The fluctuating term for observables

The resolution into the average and fluctuating
terms can also be introduced for observables.
For any observable X, the adjoint operator P~
projects onto its average part. To see this, note
that

(x) = tr[xp(t)]
= tr[XPp(t)]+ tr[X(1 -P)p(t)]
= tr[Xo(t)]+ tr[X5p(t)]. (B14)

Using the definition (B6) of the adjoint, we have
shown in (B14) that X can be resolved as

(B15)x=x, (t) + 5X(t),

with X„(t)=P X. The identification of X~(t) as the
average part follows since

(B16)

(B17)

tr[X„(t)p (t)] = tr[Xo(t) ]= tr[X (t)o(t)],

whereas the fluctuating part 5X(t) = (1-P~)X has a
vanishing average over o(t),

tr[5X(t)o(t)] = 0.
(b) The constraints are invariant under P~:

PIC„=C„. (B10)
If X is one of the constraints, it follows from
(B10) that it has no fluctuating part.
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