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Optical model analysis for 0+ Pb: Evidence for dynamic shape or density changes
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For the reaction ' 0 + 'Pb, experimental data are available for cross sections for complete fusion and all
reactions from 80-102 MeV and for elastic scattering from 80 to 313 MeV. Most of these data can be
adequately described by an energy-independent spherical optical potential with the proximity formulation for
the real part and a %oods-Saxon form for the imaginary part. Three parameters have been varied, radius
and surface width in the proximity potential and radius in the imaginary potential. The sum of the equivalent
sharp radii of the interacting nuclei must be enlarged significantly in order to fit the fusion and scattering
data. As a consequence, the sum of the "best fit central radii" for "0 and ' 'Pb is -0.8 fm larger than the
sum of the independently measured radii. If the proximity formulation is correct this implies dynamical shape
or density adjustments during the collision.

NUCLEAR REACTIONS Optical model analysis for the reaction system ' 0
+ Pb: fusion and reaction cross sections {80-102MeV) and elastic scattering

cross sections (80-313 MeV).

I. INTRODUCTION

In a series of papers we have discussed the
combination of constraints imposed on a conserva-
tive potential (between complex nuclei} by experi-
mental data on reaction, fusion, and scattering
cross sections. ' ' We have proposed the following
sequence of steps' to delimit the ion-ion potential:
(1) From the complete fusion cross sections (tt„)
at low energies adjust the maximum in the real
s-wave barrier' (Coulomb plus nuclear potential).
(2) From the quarter points for elastic scattering
(e,«) adjust the tail of the nuclear potential' (with
the barrier height fixed). (3) From the reaction
cross sections and the detailed shapes of the elas-
tic scattering data adjust the imaginary potential
and refine the shape of the real potential. ' We
have applied the first step above to excitation func-
tions for complete fusion for 48 reaction'systems.
Also, for the one system "0+'O'Pb we applied the
first two steps and made a start on the third. ' In
this paper wq return to the same reaction system
and make a more detailed study with higher stan-
dards for the fits to experimental data o'n elastic
scattering over a wide energy range (80-313 MeV).

For the real potential we use the proximity po-
tential formulation of Blocki et a).' Several stud-
ies have demonstrated that the trends of this po-
tential are in qualitative agreement with data for

heavy ion collisions. ' " In addition, however,
certain quantitative difficulties have been pointed
out.""Our calculations are made largely in the
context of the quantum mechanical optical model
with an imaginary potential of the Woods-Saxon
form. This imaginary potential provides the ab-
sorption or reaction processes and is our only
simulator of frictional effects. ' Birkelund et al.
have made calculations of fusion cross sections
with explicit comparisons of a friction-free"
model to a model including one-body friction. " At
near-barrier energies their calculated results
with the two models are very similar. In both
their calculations and ours, the criterion for com-
plete fusion is the traversal of the real potential
maximum. ' "' After such traversal the collision
partners are assumed to fuse; there is no low-$
cutoff in these models at present. "

We have sought to fit the experimental data with
three free parameters, the equivalent sharp radius
(8) and surface width (b) of the real potential and
the radius (Rt} of the imaginary potential (depth
and diffuseness of the imaginary potential have
been held constant). ' In the optical model calcu-
lations with the unadjusted proximity potential, we
have not been able to fit most data. After small
adjustments to the parameters, 8 and b in the real
potential, we have obtained very good fits to the
data, with significant deviations only at the lowest
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; II. THE OPTICAL MODEL POTENTIAL, ITS PARAMETERS,

AND THE MECHANICS OF THE CALCULATIONS

The optical model potential we use has the stan-
dard form defined as follows:

v(r) = v, (~)+ v„(r) fw, (r),
where"

V,(r) =Z, Zpe'/r, yaR,
= (Z, Zpe'/2R, )(3 —r'/R, '), y ~ R,

R —1.3(A + A )

(2)

is the nuclear part for which we use the ideali-
zation of frozen nuclear spheres. This potential
is controlled by three parameters', b, the surface
width; R, the equivalent sharp radius of the matter
distribution; and y, the surface energy coefficient.
Recommended values of these parameters' are as
follows with our additions of &b, and &R".

b = 1.0+ &b (fm),

R= 1.28A"' —0.76+ 0.8A '~'+ bR (fm)

(3)

(4)

r = 0.9517(1—1.7826[(N —Z)/A]'j (MeV/fm'),

(5)

where N, Z, and A refer to the combined system
of the two separate interacting nuclei.

In the proximity force representation, the po-
tential V„ is defined by

energies. These adjustments in the real potential
are very significant and important", for fixed
distance between the charge centers, the real nu-
clear potential must be almost doubled as com-
pared to the parametrization suggested by Blocki
et al.' This strengthening of the real potential has
been achieved by enlarging the radii of the collision
partners. The best fit" value of the sum of equiv-
alent sharp radii for "0 and ' 'Pb is =0.8 fm larger
than that inferred from electron and proton scat-
tering. The imaginary potential we use is weaker
than the real one for the sensitive regions (i.e.,
11 &r &13 fm or 1 &/ &3.5), but nevertheless pro-
vides strong absorption for the more penetrating
trajectories. At higher energies most features
of the elastic scattering are dominated by the real
potential. 4 At lower energies the elastic scattering
is very sensitive to the imaginary potential. ' The
total reaction cross section is clearly sensitive to
the imaginary potential at all energies, but the
sensitivity is especially great near the barrier. 3

4(f)= -0 5.(f —2.54)' —0.0852(f —2.54)', 0 ~ 12511
= -3.437 exp( —g/0. 75), g ~ 1.2511 (7)

with surface separation f
K=(~- C, —C,)/b,

and central radius C

C —R(1 b2/R2)

(7a)

(7b}

[The small differences between 4(l') from Eq. (7)
and the tabulated values in Ref. 6 are discussed in
Appendix B.]

The imaginary absorptive potential is of the
volume type, with Saxon-Woods form factor and
depth W, (fixed at 10 MeV) and diffuseness a, (fixed
at 0.5 fm).

W, (r) = Wof1 + exp[(r —Rz)/ai]j ',
R, =~,(A, '~'+A '~') .

(8)

The radius parameter z, is the only variable of the
imaginary potential. In the optical model friction-
al effects are implicitly simulated by the imaginary
potential.

The potential, V„(f), Eq. (6) is a universal func-
tion of f, the distance between the nuclear sur-
faces measured in units of b. Therefore, an ad-
justment of ~b or ~R causes a change of this dis-
tance scale in Eq. (7) and affects the magnitude of
the potential in Eq. (6).' As the Coulomb potential
is a function of the distance between the nuclear
centers, these shifts or contractions of the pa-
rametrized surface distances alter the relative
strength of Coulomb repulsion and nuclear attrac-
tion. Even very small changes in b and R lead to
significant changes in the proximity force."'

The calculations we present have been made with
the optical-model code A-3 of Auerbach. " Refer-
ence 3 shows the major qualitative effects for sys-
tematic variations of imaginary radius with all
other parameters fixed. We have found that a
rather large value of z, can describe the boundary
between elastic scattering and all reactions in the
usual way. But in addition one can simulate the
divisions between complete fusion and all other
exit channels by a rather small value of z,.' In
this approach the dissipation of energy and angular
momentum from relative to intrinsic motions is
not explicitly addressed. This procedure differs
from Ref. 10 where energy dissipation is directly
addressed; at near-barrier energies large fric-
tional effects are not expected. A more simple
semiclassical calculation of the fusion cross sec-
tion has also been made with the equation' '"

V (L)=4vr[C, C,/(C, + C,)]b@(k),
where, 4(f) is the universal function,

(6)
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The f-dependent real potential fnuclear plus Cou-
lomb plus l(t+ 1)R'/2p, r'] is approximated near its
maximum (energy E,„and distance R, ) by a pa-
rabola of curvature 0+, . Transmission coeffi-
cients T,(E) for each partial wave are then written

T,(E)= (1+exp[(2tr/K~, )(E, —E)]}', (10)
5' d'y(t, f) 'f~

k
&m

Lm

We will compare the results of these two methods
in Appendix A. For the energy span explored in

,this paper for complete fusion (80—102 MeV) these
methods are expected to be equivalent. We as-
sume there is no low-E cutoff to fusion at these
low energies. "

In the attempt to achieve a fit to the large body of
data available, ""we have proceeded as follows:
(1) We alter the s-wave barrier maximum by
changes in ~R until we obtain a best fit" to the
complete fusion cross sections. ' (2) We adjust the

tail of the real potential (with fixed barrier maxi-
mum) by combined changes in &b and &R until we
obtain a best fit" to o/os„at B,«(E). 3 4 (3) We ad-
just the imaginary potential via r, and further re-
fine b,b and &R (maintaining the fixed s-wave bar-
rier) to get a best fit" to the total reaction cross
sections and to the detailed shapes of the elastic
scattering cross sections. "

III. RESULTS OF THE CALCULATIONS

As a first step we present, in Fig. 1, a repre-
sentation of calculations that result from the un-
altered proximity potential (i.e., &b = &R =0).'
Firstly, as shown before, it is evident that the
complete fusion cross sections are underestimated
or that the g-wave barrier height is overesti-
mated. ' '" Secondly, if we select the value of
y, of 1.35 fm to fit the reaction cross sections,
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R = (NR„+ ZRi)/A . (12)

One can also introduce the root-mean-square ra-
dius (r')'~' and illustrate the consequences of the
preceding statement

(13a)

(13b)

(13c)

Only a few of the variables used in these equations
are determined experimentally; they are
Cz, b~, (r~')'~', (r~')'~' There. fore, to deduce
the effective quantities R, C, b needed here, theo-
retical models and experimental data become
quite interwoven. Each aspect of this problem
has been addressed by the droplet model. The
formalism and the associated equations can be
found in Refs. 22-25. The various coefficients
that enter into calculation of the droplet model
quantities have been recently re-evaluated with
newer data on nuclear masses, fission barriers
and radii. ' The formula proposed by Bloeki et a$.
for R [Eqs. (3) and (4)] is a polynomial fit to ear-
lier values of R and b from the droplet model.
This fit was made before the most recent coeffi-
cients were proposed. This could explain some of
the small differences in R between Ref. 6 and the
newer droplet model (Table I). Furthermore, the
authors of Ref. 6 assumed a single value of b (b
= 1 fm) for proton and neutron density distribu-
tions. This also leads to differences in the values

discussed in Refs. 3, 5, and 12 we feel that such
large changes in the net nuclear potential make it
dangerous to assume that the frozen sphere ideal-
ization and/or the recommended parametrization
of the proximity force' are satisfactory for quanti-
tative calculations. However, if we assume that
the basic features of the proximity force formula-
tion are correct then we may search for an ex-
planation for the discrepancy via two avenues: (1)
deviations in the values of R and b for "0 and/or
'O'Pb from those of Eqs. (3}and (4),""or (2) the
occurrence of dynamical shape or density changes.

I et us turn to the newer data from electron and
proton scattering and mu mesic atoms to explore
the first possibility. '"" The different radii we
use in the framework of the proximity potential
are effective radii in the sense that they result
from the folding of two density distributions (pro-
ton and neutron). Each quantity (R or C) is then
a combination of the distribution of protons (sub-
script &}and of neutrons (subscript N) as, for
example,

of C obtained as compared to the droplet model.
In Table I, the results obtained by these two mod-
els, are compared to the quantities deduced from
our analysis for ' 0+ Pb and the independently
measured experimental radii. "" For "0we as-
sume the measured charge radii are equal to the
central neutron radii. In this case, if we take the
experimental value of b for both distributions (b,„,
=0.930) we can get R via Eqs. (7b), (13a). For
"'Pb, we cannot deduce the effective values of 8
and C from the experimental data because we have
no measurement of C„. On the contrary, we can
obtain the value of R effective [Eqs. (13a), (13b),
(12)] from the experimental data and then deduce
C using Eq. (7b) with effective values for R and b.
We have estimated R and C with two different 5
values. In the first place, we have assumed the
same experimental value of b for both distribu-
tions. In the second place, as in Ref. 25 we de-
crease the experimental value of b~ by 9/0 to ob-
tain b„and b effective. This reduction is supposed
to account for Coulomb effects on the charge den-
sity as described by Myers and Von Groote. In
any event, the resulting effect on R and C is less
than 1%.

This comparison is shown in Table I. First, we
observe that the experimental values of b are very
close to those from the droplet model but signifi-
cantly different from our best-fit value. " Second,
all the values of the root mean square radii are
rather similar. However, the sum of the equiva-
lent sharp radii R and central radii C obtained
from our apparent best fit values" are respec-
tively about 0.7 and 0.8 fm larger than those ob-
tained from the experimental values. The experi-
mental values are, in turn, very close to those
from the droplet model and from Eqs. (3) and (4).
Therefore, the major aspect of the discrepancy
seems not to be in the original parametrization of
the values of 8 and h. Rather, the implication is
that dynamic shape or density changes have oc-
curred and the nuclear surfaces have reached out
to try to touch one another. The larger values of
C for projectile and target obtained in our analysis
increase the nuclear potential by 18%%uo due to the in-
crease of the mean radius of curvature of the Gap
function 0 = C~C, /(C~+ C,). However, our reduc-
tion of the value of b (from 1.00 to 0.81) essentially
cancels this effect [see Eq. (6)]. Thus the major
effect of these parameter changes is the change in
the surface distance g with respect to the distance
between the charge centers.

If dynamic deformation is indeed occurring for
these closed-shell nuclei, it has profound impli-
cations for the use of potential models for the
analysis of many experiments. Presumably the
potential energy should be formulated in more
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TABLE I. TheoreticaI. values of radii and surface widths in fm. (The values in parentheses are assumed values. )

1/2

z
. 2

bN

1/2
2

~+N ~

Droplet
model

Ref. 6
This work

2.529

2.424
2.956

0.886

1.00
0.81

2.717

2.851
2.852

2.542

2.424
2,956

160

0.854

1,00
0,81

2,674

2.851
2.852

2.805

2.783
3.163

2.535

2.424
2.956

0.870

1.00
0.81

tndependently measured values for 160

Electron
s catter ing~

Muonic
atom"

2.608 ~

2.4428'

0.930 ~

(0.930)
(0.949)

2 707

2.61
2.71

(0.930)
(0.930)

208Pb

2.906
2.691
2.768
2.507
2.697

2.608
2.370
2.443
2.162
2.376

0.930
(0.930)
(0.949)
(0.930)
(0.930)

Droplet
model

Ref. 6
This work

6.570

6.626
7.062

1.00

1.00
0.810

5.49

5.533
5.719

7.006

6,938
7.371

0.91

1.00
0,810

5.742

5.757
5.948

6.963

6.959
7.339

6,829

6.774
7,250

0.966

1.00
0.810

Independently measured values for Pb

Electron
scattering~

Proton
scattering~

Muonic
atomb

6,712

(0.873)

0.873

5 502h

5.443

5.4978

(0.873)
(0.794)

5.625
5.625

6.893
6.922 ~

6.782
6.821

(0.873)
(0.838)

~ Data from Ref. 26, p. 489 for ' 0 and p. 494 for Pb.
"Data from Ref. 26, p. 522 and 551 for 0 and p. 548 and 581 for Pb.' Results obtained with a three-parameter Fermi distribution.
~ Average value. The standard deviation is 0.029 fm.

Result from a fit to the data assuming a two-parameter Fermi distribution with "best fit value» of b= 0.949 fm. See
Ref. 26.
Data from Ref. 27.

I Results obtained with a two-parameter Fermi distribution.
"Average value. The standard deviation is 0.012 fm.
' The deduced neutron skin thickness is 0.25 fm compared to 0.31 fm from Ref. 6 and 0.40 fm from the droplet model.

In this case, the neutron skin thickness is 0.29 fm. See footnote i.

complex terms than simply the distance between
the centers of mass. One such possibilit;y would
be to reformulate the proximity potential so as to
allow dynamical adjustments of the surface width
b as the two nuclei approach. Such a reformula-
tion clearly steps outside the frozen sphere ideali-
zation and would probably call for a completely
different potential parametrization from that we
have deduced. (In particular the negative value of
&b runs contrary to physical intuition. ) Our major
'point in this paper is simply that dynamic shape or
density adjustments seem to be called for. If this
conclusion stands the test of time, it will have
far-reaching implications for the use of potential
models in heavy ion reactions. Therefore, we are

confident that this result will be looked at from
many angles before such complex formulations of
the potential energy are attempted. In the mean-
while, one might take the position that the frozen-
sphere potential parametrization presented here
is interesting in its own right. It is energy inde-
pendent and accounts for a larger data base than,
for example, the energy dependent parametriza-
tions of Ref. 17. In this context it is interesting
to look at its properties as in Refs. 3, 4, 15, 28,
and 29.

One of the most important aspects of any conser-
vative potential representation is the relative
strength of absorption and refraction in the nuclear
surface. For the proximity potential as modified
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FIG. 5. Lower: Calculated {line) and measured values
for the elastic quarter points 8qy4 (points) (, Ref. 16;
&, Ref. 15; g, Refs. 17, 18). The A8~y4 values are
differences between 8 &y4 values calculated with the opti-
cal model with wz=1.27 fm, and r&=1.33, and proximity
potential parameters of Fig. 2. Upper: Calculated values
of 5 and classical approach distance R for half absorp-
tion {subscript 2) and rainbow (subscript x). The criti-
cal distances for complete fusion R~ are explained in
the text. To expand the radius scale we plot R-10
fm. The width of the smooth cutoff in T& values, cal-
culated with the optical model (see caption of Fig. 2)
is given by (l &y&0

—l eyjo)/E ~g2, where the subscript
indicates the value of T&.

here we show some of these features in terms of
classical deflection angles and distances of ap-
proach and quantum mechanical transmission co-
efficients for the corresponding partial waves. In
the upper parts of Fig. 4 the deflection functions
are shown on three scales for two incident ener-
gies." Both curves have the same scales of radial
distance and surface separation for the closest ap-
proach of each classical trajectory (characterized
by an impact parameter or orbital angular momen-
tum lh). The separate scales for I at each energy
are also indicated. The transmission coefficients
obtained from the optical model calculations are
also shown on the same scales. Arrows indicate
the l values of the classical rainbow (l,)"and
those for T, =—,

'
(l,&,). We see that at low energy

(88 MeV) l, &,&l, and the reverse at high energy
(129.6 MeV). This suggests that the absorptive
part of the potential is cutting off the elastic scat-
tering at low energies while the refractive part is

IO l2 l4
RADIAL DISTANCE (fm)

I

l6

FIG. 6. Lower: Modified real and imaginary poten-
tials (for parameters, see Figs. 2 and 3) on two scales
as also shown in Fig. 4. The range of fusion radii is al-
so indicated by the arrows. (R«=R for E=O; R
=R~ for E ~ as in Ref. 5.) Upper: The ratio of imagin-
ary to real potentials Wz/VN on the same two scales;
same potential parameters as in the lower part. The
range of rainbow radii is also indicated by the arrows.

dominating at high energies. "More details are
given in the Appendices.

This feature is explored further in Figs. 5 and
6. In the lower part of Fig. 5 we show measured
and calculated values of 0, &4

from the elastic scat-
tering. The dashed curve for 40,&4

shows the dif-
ferences between calculated values of ez/4 for y,
=1.27 and y, = 1.33 fm. These values of &0,

&4
de-

crease very rapidly with increasing energy re-
flecting a diminishing sensitivity of ~,&4

to the
imaginary potential. In Hefs. 3 and 4 we showed that
calculated values of 8»4 retain their sensitivity to
the real potential at high energies. In terms of the
classical trajectories this might be said to be re-
lated to the relative magnitudes of I„and &,&, (upper
Fig. 5) or R„and R», (mid Fig. 5).

The curves for l„and ),&, cross at =90 MeV with
refraction becoming dominant for higher energies
(see also the Appendices). The associated dis-
tances of closest approach R„and R», have, of
course, the same trend but it is also interesting
to compare them to the critical distances R„for
complete fusion. . The values of R„decrease with
increasing energy and are less than R,&, by 1 fm
or more. These quantities (R„) refer to the max-
ima in the l-dependent potentials for the value of
l„at each energy. ' '
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E= V(R„,l„),
(14)dV(r, l,)

dy' 8

In this model there is no fusion for /&l„as those
values of l have no pocket in the real potential.
Thus for higher energies R„ is constant at the
value R

Figure 6 shows the radial and f -dependences of
the real and imaginary potentials and their ratio.
Arrows indicate the span of the rainbow radii"
and the fusion radii and thus give some feeling for
the zone of exploration of each type of measure-
ment. For the most important range for the elas-
tic scattering W, /V„ is 0.5 to 0.4; these values
are somewhat larger than we indicated before4 and
smaller than those given in Refs. 15 and 29.

IV. CONCLUSIONS

We have used the form of the proximity potential
in an attempt to account for many experimental
studies of the reaction system "0+'"Pb. With
three free parameters 5 and R (proximity poten-
tial) and rz (imaginary potential) we can describe
most of the features of complete fusion, reaction,
and elastic scattering cross sections. The modi-
fied proximity potential that emerges is very
strong, and surface refraction dominates the elas-
tic scattering except for energies near to the bar-
rier (&90 MeV, lab). The best-fit values of the
modified parameters R and b differ significantly
from independently measured values. If the prox-
imity force formulation is correct, then dynamic

shape or density changes are implied, and the nu-
clear surfaces seemingly reach out toward one
another.
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APPENDIX A' SOME PROPERTIES OF THE S MATRIX-
VARIOUS I VALUES, AND SEVERAL WAYS TO CALCULATE

FUSION CROSS SECTIONS

It has been shown in Refs. 3 and 4 that for the
system "0+"'Pb at energies ~90 MeV, the Cou-'

lomb rainbow distance R„ is less than the strong
absorption distance Ry/2 By contrast, for ener-
gies &90 MeV, the Coulomb rainbow radius R„ is
greater than the strong absorption radius Rg/2.
These effects are clearly highlighted in Table II
and Fig. 7, where we have plotted the reflection
coefficient, IS, I, versus the partial wave L." The
S matrix is calcula, ted with the optical model with
the same potential parameters as in Fig. 2. In

- TABLE G. The various important angular momenta, classical distances, and complete
fus ion cross sections.

Fusion cross sections (mb)

(MeV)
~ i/2
(fm)

R„
(fm)

R~
(fm) a

+exp
b

SC

80 8.7 12
83 19.2 13.9 17 13 12.58
88 29 3 27 4 26 25 1 12 52
90 32.5 31.2 29 28.5 12,50
96 40.5 40.7 37 36.9 12.45

102 47.2 48.1 44 43.6 12.41
104 49.2 50.2 46 45.6 12,40
129,6 69.9 73.5 66 65.6 12,28
138 5 75 7 80 1 72 71 1 12 25
191,9 103.7 112.1 98 12.11
216 6 114 1 122 6 108 12.06
312.6 147.5 161.1 140 11.94

12.09
12.30
12.34
12.47
12.53
12,53
12.71
12.75
12.84
12.84.
12.94

11.86
11.79
11.76
11.69
11.62
11.60
11.38
11.32

36+4
108+10
350 +40
377 + 50.

844 + 90

12 17
104 113
342 350
431 440
674 686
885 900
949 965,

1581 1601
1739 .1759
1714
1519
1052

~ Experiment Ref. 16.
" Semiclassical calculations with real potential as in Fig. 2 (Refs. 3,5).' Optical-model simulation with. the same real potential as in Fig. 2 but with W'0= 10 MeV;

al= 0.5 fm and yl= 1.12 fm.
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FIG. 7. Lower: reflection coefficient, iSI i vs l .
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of inflection in i SI ~

. Each curve is labeled by the lab-
oratory energy. Upper: Shape absorptive function vs l .
Notice the maximum which gives l for each energy.
The optical potential used in these calculations is that
used for Fig. 2.

Fig. 7 we have labeled /, &, (T...= a, optical mod-
el) with a cross; /„(corresponding to the classical
rainbow) is labeled // with an arrow; / (corre-
sponding to the maximum in the shape absorptive
function d IS, I/d/, from Fig. 7 upper) is indicated
by the solid point. W'e make the following obser-
vations from Fig. 7.

(i) For energies ~90 MeV, /„&/, &, (i.e., / for the
Coulomb rainbow (/, ) is less than that for strong
absorption /, &,). Also /„&/, &, for all energies &96
MeV. Their difference (/, —/, &,) increases with in-
creasing bombarding energy. We also note that
the absorption (1 —

l S, I') at /„ continuously. de-
creases with energy.

(ii) For all energies above 83 MeV (i.e., above
the s-wave fusion barrier), /„&/, &,. At energies
slightly above the fusion barrier (i.e., E,z 6 E& 88
MeV) /„ is even less than /„. Hence from the
curves in Fig. V we observe that the absorption
at the classical rainbow l„ is predicted to be even
greater than that at the strong absorption point,
l, &,. Therefore, as demonstrated in Refs. 3 and
4, this analysis emphasizes that surface absorp-
tion dominates the elastic scattering at near-bar-
rier energies and the reverse at much higher en-
ergies (&90 MeV).

(iii) Except for energies very close to the bar-
rier, / (which corresponds to the point of inflec-
tion of the reflection function (i.e., a maximum in
the shape absorptive function) is almost equal to
/„ [given by the classical orbiting condition, Eq.
(14)]. For fusing collisions [Eq. (10)] the trans-
mission of the critical partial wave is one half,
whereas the total transmission coefficient of the
partial wave l calculated by the optical model is
always greater than one half. Also it increases

with energy (from 0.4 at 83 MeV to above 0.9 at
313 MeV). The identification of / as a strong ab-
sorption $ for all reactions" would not seem to be
appropriate for this potential. However, possibly.
by accident, l seems to be essentially equal to
l„for energies «88 MeV.

It has been shown in Ref. 3 that the fusion cross
sections can be simulated by an optical potential
with an imaginary radius, R„much less than that
needed for the description of total-reaction and
elastic scattering cross sections. Complete fusion
cross sections calculated with this method' are
compared with the semiclassical model [Eqs. (9)-
(11)] in Table II. The results are very similar
for this energy range, and therefore we consider
them essentially equivalent (except, of course,
for energies well below the barrier).

APPENDIX B: SOME ASPECTS OF THE SENSITIVITY OF
THE DEDUCED POTENTIALS TO MEASURABLE

QUANTITIES

The first step of the sequence we follow is the
adjustment of the real potential barrier to that re-
quired to fit the complete fusion cross sections
(see Figs. 1 and 2). Then we vary the shape of
the real potential by combined changes in ~b and
&R of the proximity formulation. We show in Fig.
8 a family of modified proximity potentials that are
constrained to the same barrier height. We then
turn to the elastic scattering and reaction cross
sections to try to select among this family of real
potentials. For this selection we assume that
neither real nor imaginary potential changes signi-
ficantly with energy. This is a very demanding
constraint and makes it very difficult to obtain
completely satisfying fits.

What now is the nature of the constraints imposed
by scattering and reaction cross sections, and to
what extent are there ambiguities between the real
and the imaginary potentials? As we have only al-
lowed variations in &b, 4A, and y, there is not a
large range of possibilities, and we have not
searched in detail for alternatives. We have
sought reasonable -fits for each angular distribu-
tion over the whole range of energies. Neverthe-
less, from curves such as those in Figs. 8 and 9
we are convinced that a major change in the de-
duced real potential (11.8& r& 13 fm) would require
a major change in the assumptions. In Figs. 8 and
9 (upper) we show that the values of /I», as well as
the whole descent of v/os„are sensitive to the real
potential. Fig. 9 (lower) shows that at high ener-
gies the major sensitivity to the imaginary poten-
tial is in the region near the maximum in o/o„„
and at very large angles. Figure 1 shows the
special sensitivity to ~(r) for both elastic and
reaction cross sections at near barrier energies.
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TABLE III. Values of h, R and h, b that lead to equivalent nuclear potentials from the an-
alytic and the tabulated proximity functions 4 (f).

4R
(fm)

Analytic 4(f) ~

6b Eof Ro
(fm) (MeV) (fm)

h, R

(fm)

.Tabulated @(f)"
Ab Ef

(fm) (Me V)

R f
(fm)

0.0'
0.23'
0,38
0.11
0,59

0.0
0.0

-0,19
0.20

-0.40

79.25
75.25
75,27
75.27
75.26

11.09
11.73
11.90
11.56
12.06

-0.03
0.20
0.33 d

0.05
0.57

0.0
0.0

-0.17
0.25

-0.40

79.11
75,16
75.21
75.28
75.17

11.12
1].76
11.90
11.52
12.08

~ These nuclear potentials VN(w) are shown in Figs. 4 or 8.
" For each potential Vz(x) calculated from Eqs. (3)-(7) we made a least squares fit of Vz(w)

calculated from tabulated values of @(f) (Ref. 6). The resulting values of Q, R, 6b, E f, and-
R f are shown. The root-mean-square difference between fitting and fitted functions VN(y) is
=2%.' Least squares fit for these cases made between 11.0 and 12.5 fm as we are only interested
in the fusion barrier. Only hR was varied here.

This potential leads to calculated values of z/oz„ that are essentially the same as those
shown in Fig. 3. The values of g&(E) at low energies are also very similar to the cal.culated
curve in Fig. 2, except that E '" occurs at 122 MeV (c.m.).

We have made least-squares fits (11.3 ( r &13 fm)
of Vs(r) calculated from the tables of 4(f) to those
analytic functions for Vs(p) shown in Fig. 8. In
Table III we show the values of ~R and ~b required
to give essentially the same nuclear potentials.
For the region of f relevant to this study, the tabu-
lated values of 4(f) give a somewhat stronger nu-

clear potential than the analytic functions [Eq. (7)].
Therefore, the values of &R and ~b needed to
achieve a given real potential are somewhat small-
er. As shown in Table III, these values of &R and
~b are very similar; therefore the arguments pre-
sented do not depend substantially on this detail for
@(L)

*Permanent address: 'Centre d'Etudes Nuclelires de
Bordeaux-Gradignan, 33170 Gradignan, France.
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