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The role of spin-unsaturated subshells in calculations of optical-model spin-orbit potentials is,investigated

using a realistic nucleon-nucleon interaction. For projectiles of moderate bombarding energies the ope-body
spin-orbit potential is predicted to be quenched relative to that for nearby nuclei having only spin-saturated
shells. The source of this quenching is the same as that discussed by Scheerbaum in an investigation of the
quenching of spin-orbit splittings in bound states. A simple physical picture is given which permits a
qualitative understanding of this quenching in terms of the components of the nucleon-nucleon interaction.
An estimate of the efFect on polarization-like observables is made, and a general problem with currently used

tensor forces is reemphasized. The relationship of this problem to a number of other structure and scattering
problems is stressed,

P+

NUCLEAR REACTIONS, NUCLEAR STRUCTURE Calculation of contributions
to the optical-model spin-orbit potential from spin-unsaturated subshells.

I. INTRODUCTION

The general problem of establishing a micro-
scopic basis for the nucleon-nucleus spin-orbit
potential is an old one. ' Most of the work on this
problem has been done for bound nucleons pri-
marily within the Hartree-Fock framework. '
More recently Scheerbaum' ' has investigated the
microscopic origin of the spin-orbit splitting and
finds' reasonably good agreement between theory
and experiment for splittings in nuclei in which
both j =l + ~ and j =l ——,

' subshells are filled [ spin-
saturated (SS) shells J. Although the analogous
problem for nucleon scattering states has received
considerably less attention, ""the results are
quite promising. For scattering states the observ-
able most closely parallel to spin-orbit splitting
is the induced asymmetry or polarization. For
inelastic scattering, the optical-model spin-orbit
potential is known" to play a dominant role in
describing both asymmetries and spin-flip proba-
bilities.

Although the spin-orbit splitting is reasonably
well understood for nuclei having SS shells, the
situation is quite different' ' ' for those nuclei
having one or more spin-unsaturated subshells
(SUS), that is, for those nuclei in which the j =f
+-,' subshell is filled but the j =l ——,

' subshell is
empty. A typical example is 'Ca in which the

f,&, neutron shell is full and the f,&2 neutron shell
is empty. Theoretical calculations using realistic
nucleon-nucleon (N N) forces invar-iably predict' ' '
too small a splitting of the j& and j& levels. This
predicted reduction in the spin-orbit splitting has
been traced directly to the central and tensor
forces which in lowest order contribute' "to the

spin-orbit splitting only through the SUS due to
their dependence on the Product of the two partici-
pating spins. For SS shells spin averaging ex-
cludes the participation of the central and tensor
forces in first order leaving the one-body spin-
orbit potential dependent primarily on the nuclear
geometry and the N-N spin-orbit intera. ction. -

A number of workers have investigated the SUS
problem (which is still unsolved) in an effort to
either solve it or to understand its origin and im-
plications. Wong' first clearly pointed out the.
SUS problem within a Brueckner-Hartree-Fock
(BHF) context and in addition discussed its origin.
Davies and co-workers' have made a series of
progressively more sophisticated BHF calculations
in SUS nuclei but the spin-orbit splitting remains
underestimated. Using the Skyrme force supple-
mented by a "realistic" tensor force, Stancu et
al. ,"on the basis of calculations of spin-orbit
splittings in SUS nuclei, conclude that there must
be something wrong with the tensor force. Good-
man and Borysowicz' have very recently invoked
the SUS phenomenon to explain the mass dependence
of the l =5 proton spin-orbit splitting. The recent
work of Scheerbaum has been especially helpful in
illuminating the relative roles of the central and
tensor parts of the N-N force for spin-orbit split-
tings in SUS nuclei.

The purpose of this work is to explore the role
of SUS in the calculation of optical-model spin-
orbit potentials for scattering states and to fur-
ther' ' elucidate the roles of SUS and the various
components of the internucleon interaction in
bound-state problems. In particular, using a
realistic N-N interaction we examine the altera-
tion of the optical-model spin-orbit potential ex-
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peeted to arise from specifically SUS effects.
The changes in the polarization observables
which should attend such an alteration of the spin-
orbit potential are studied and compared with ex-
perimental data sensitive to such effects. While
we anticipate the anomaly persisting to positive
energy states, we feel it important to see if its
effects there are detectable. If they are, the
scattering ease may afford a wider variety of ex-
periments in which the anomaly can be studied.
Since higher-order corrections to the spin-orbit
potential may be calculated rather differently for
positive and negative energy states, additional in-
sight into the overall problem may be suggested.

We first outline a derivation of the optical-model
spin-orbit potential for nucleons scattering from
spherical nuclei having SUS. Although the major
results can be obtained by using straightforward
angular momentum recoupling techniques, the
projection-operator technique suggested by
Scheerbaum' is used here since it is especially
convenient for combining and unifying the central
and tensor force contributions. The resulting non-
local potential is then approximated by a local po-
tential (in closed form) which is shown to exhibit
quite clearly the qualitative features discussed
earlier' for the bound-state problem. A discussion
similar to that of Scheerbaum (for spin-orbit
splittkgs) is given for the roles of the central and
tensor parts of the N-N interaction in the optical-
model spin-orbit Potentia/, . Applications are made
for nucleons scattering from 'Sj., Ca, and ' C.
Finally, the relationship between the SUS problem
and a number of other important problems in nu-
clear structure and nuclear reactions is dis-
cussed.

II. FORMALISM FOR THE SUS CONTRIBUTION

TO THE OPTICAL-MODEL SPIN-ORBIT POTENTIAL

With the exception of the N-N spin-orbit poten-
tial, we restrict ourselves to a static N-N effec-
tive interaction given by

V(1, 2) = V,(r)+V, (r)(y, o, + V~~(r)L 5

+ Vr(r)S„.
The role of nonstatic forces will become clearer
as the formalism unfolds. The above V's. should
be regarded as matrices in isospin space. To
first order in the N-N interaction the scattering
wave function satisfies

,v' +U( r)+ U( r)-E X(r,)+U„X(r,)=0, (2)
2p

where
A

XX,(x.) = d X(O, () 4)

—P„=P"bsE+Q —X,o- QJ, (6)

where P" is the space exchange operator and A.sE,
for example, is a projection operator onto the
singlet-even subspace of nucleons 1 and 2. Conse-
quently, if V is decomposed into its odd and even
parts we can rewrite Eq. (5) as

(x2(x,) = Z f d'x (A (2) I )'(2, 2) I 4'(x, o, x))
j=oee

X(r22&22 r2) ~

We use the bold parentheses to indicate integration
over only the spin and isospin coordinates, and
V indicates the N-N interaction which is operative
for the exchange term From E. qs. (6) and (7),
we get V from V by simply changing the sign of
the odd-state parts of the force. From Eq. (7)
we define

U„(r„r,) = g ()1)~(r„o,) I V(1, 2) [(1),(r„a2)), (8)

where we suppress isospin labels for brevity.
Equation (1) indicates two types of terms. V, and
that part of V» containing o, can only contribute
to the spin-independent part of the optical potential.

A

D,X(x ) =(4' -Q X(0,1)P; 2(l A))X(2) (4)
j=l

Here 0' is the spherical (I=0) ground-state wave
function of the target which is fully antisymme-
trized and U„and U„are defined as the direct and
exchange "potentials, " respectively. P;, denotes
the exchange operator for all of the coordinates
(r, o, r) having the labels (i, 0). For the direct
term only V, and V» will contribute independent
of the state of spin saturation when I =O. This
arises directly from parity conservation' and our
assumption of static forces. Only the V» compo-
nent of the N-N interaction contributes to the di-
rect part of the optical-model spin-orbit potential
(U, ). (For nuclei with SUS, V~~ will contribute
a small correction to the spin-independent part of
the optical potential. ) Since we are interested
here in those contributions to the spin-orbit part
of the optical potential peculiar to SUS, we focus
our attention on the (nonlocal) exchange potential.

If the ground state is assumed to consist of a
single Slater determinant (composed of the single-
particle states (I);), the action of the exchange po-
tential may be expressed as

(ix(r, ) = g fd2(4, (2) I
—v((, 2)P„I4;(2))x(1), (2)

4-Dce

where an "integration" over the coordinates
labeled by 2 is implied. We next note using P»
=P"P'P' that
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Vy Vp and that part of VL ~ containing p., can only
contribute to the spin-orbit part of the optical po-
tential. Since that part of V~~ which contains g,
does not act on the spin or the target, it contri-

butes whether SUS are present or not. Consequent-
ly, the contribution to the spin-orbit optical poten-
tial which is peculiar to a SUS of angular momentum
j is given. .by

nUq~'(r„r, ) =Q(g„, „(r„o,) I V,o, o, +VrS„I&„, „(r„o,)).

If there is more than one SUS, we sum over the
relevant (n, l,j).

Consider first the contribution of the contral
force V, . Following the suggestion of Scheerbaum'
we introduce the projection operator

(l +1) +o, 'T,
2l +1

which projects onto the j =l + —,
' subspace and per-

mits the sum over j =l + —,
' as well as JU, . Only the

o, T, term survives and when combined with the
a, 02 factor and recoupled leads to

4'l(l +1)
&U~ ~(r„r,) =(-)'

( I)

xV, (r„)[y,(r, ) x 4,(r,)]' o,

= V, (r„)p,(r„r,) o, .

Here Q,„(r) =u„,(r)Y', (t), u„,(r) is the complete
radial part of the single-particle orbital (nlj), and
Eq. (11) defines the mixed spin density used in
Ref. 15. Equation (11) is also equivalent to Eq. (8)
of Scheerbaum. ' The structure of Eq. (11) should
be noted. &U is a scalar overall (and of even
parity) but is of rank 1 in coordinate and spin
space. If, as in the direct term r, =r„we see im-
mediately that parity considerations eliminate this
term If the j.=l —~ level were also full (and the
radial parts of the l + ~ wave functions were the
same) it would contribute a DU&& =- &U» as can
readily be seen by noting that the only contributing
part of P is the o, T, term which enters P (the
projection operator for j&) with the opposite sign.
Clearly s-state orbitals do not contribute to &U&.

It is interesting to note that &U~~ of Eq. (11) is
proportional to (and derivable from) the G», (r„r,)
defined in Ref. 16 for use in "inelastic" scattering
where the triad (110) denotes spin and orbital
angular momentum transfers of 1 with a net angu-
lar momentum transfer of J=0. Indeed, any
mechanism giving rise to a Gyyp will have the ge-
ometry appropriate to an effective spin-orbit po-
tential. This point will be pursued later.

We can now include the effects of the tensor
force very simply. Using the definition of S» we
see that to include the tensor force amounts to
making the replacement

2(oy' re)rig
1+1 T 2 +1

12
(12)

in Eq (11.). Clearly the second term (—Vr) con-
'tributes just as V, . Moreover, since r»= r, —r,
we must 'get a pseudoscalar constructed from
either r, or r, and [p, (1) x p, (2)]'. From parity
.considerations no pseudoscalar can be constructed
from these tensors. Therefore to include the ef-
fects of the tensor force we simply replace V, by
V, —Vr in Eq. (11).

Although Eq. (11) is in a, form suitable for solving
the nonlocal Schrodinger equation (and in fact this
will essentia, lly be used), we feel that the physics
is made much more, transparent by finding an ap-
proximate local potential. To derive a local po-
tential we assume that the interaction V, —$'r is
sufficiently short ranged so that only the leading
terms in an expansion of either the interaction or
the density need be retained. This is certainly of
dubious quantitative validity but will serve to de-
fine the simplest form of a "local" potential that
can emerge. The approximation may be carried
out within the current framework by making the
replacement

p, (r,)-[1+s V ]p (r,), s=r, -r, .

(14)

The subscript CT denotes the contributing part of
the N-N force,

OO

Z(A ) =4~ s'ds[V, (s) V,(s)] ~'
&I, (15)

j,(x) is the spherical Bessel function, and K is the
momentum variable (such as the local momentum
of the incident particle) about which the Fourier
transform of the N-N interaction is expanded and
in principle is chosen to minimize the importance
of higher-order terms in the expansion indicated
by Eq. (13). In practice the magnitude of J(E') is
calibrated by comparison with exact distorted-
wave Born approximation (DWBA) calculations

Using the gradient formula, a recoupling trans-
formation, Eq. (22a) of Ref. 18, and a short range-
expansion of the interaction we find a local but
approximate SUS correction to the spin-orbit po-
tential given by

J(ff ) g )
u„,'(r, )

2, m
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using E»I. (11) (see Sec. III). E»luation (14) may
also be obtained from E»I. (17) of Ref. 19 as a
special case of scattering in which the total and
orbital angular momentum transfers differ by one
unit. Using the somewhat more general result
from Ref. 19, &U~~ can be written as

where the projectile coordinates are denoted by
P. We also note from Ref. 19 that any source of
velocity dependence in the N-N force mhich can be
cast in the form of a Q»'g(x) +g(x)P»'Jo, o, inter-
action leads to a similar correction to the spin-
orbit potential.

A number of features of &U~~ may be noted.
The participating part of the N-N force may be
written

« (VSE+ VTo) + V»o, like nucleons
V —V~-

—,(VTE- Vq~+ V;o- VTo) + ~(V»o —V»E ), unlike nucleons
(17)

This result is in accord with that of Scheerbaum'
with the exception of a factor of —~ which in Ref.
9 is incorporated into the other factors. For
realistic forces both the central and tensor force
contributions to V, —Vr are positive (repulsive)
for both like and unlike interacting nucleons. This
observation together with E»ls. (14) and (15) serves
to establish the sign of &U~~. In particular, we
see from E»ls. (14) and (15) that the effect of all
BUS is opposite that of the usual empirical U

that n, Uc~~r makes the optical-model (or shell-mod-
el) potential more repulsive (attractive) for nu-
cleon projectiles having j~ =I~+2 (j~ =l~ —-', ).

A simple semiclassical picture may be used to
understand the qualitative aspects of the nature
of &U~~. In particular, consider a nucleon inci-
dent on a nucleus having a single (for simplicity)
SUS as in Fig. 1. A typical orbit for a bound nu-
cleon having j =l+~ is shown where the cross and
dot denote motion into and out of the figure, re-
spectively. The small arrow denotes spin up for
this orbital so that the spin and angular momentum
are primarily aligned. For definiteness we take
the direction of motion of the incident nucleon to
be into the figure and consider first the case in
which the projectile spin is up. Roughly speaking
two types of collisions mill occur which we mill
label as catch-up and head-on. Catch-up (head-
on) collisions will denote those in which the linear
momenta of the incident and bound nucleons are
primarily parallel (antiparallel). For the bound
orbital shown in Fig. 1, catch-up (hesd-on) colli-
sions occur when the projectile nucleon is incident
on the right (left) hemisphere. The exchange ma-
trix elements will be dominated by catch-up rather
than head-on collisions since for such collisions
a considerably smaller momentum transfer' is re-
quired of the N-N force. From this observation
and the fact that V, and —V~ are each repulsive
(greater than 0) when the projectile spin is paral-
lel to that of the bmnd nucleon we see that the
nuclear attraction in the right hemisphere (where

L~ o~&0) will be reduced by a relatively larger
amount than in the left hemisphere (where L~.c~
&0). Similarly, for incident nucleons with spin
down, o o~~0 on the average yielding a relative-
ly greater attraction for collisions in the right
hemisphere where L~ o~&0. Thus for either inci-
dent spin direction the net attraction for collisions
with L~ o~&0 is reduced relative to those collisions
described by L~ sr~ ~ 0 so that the effect of includ-
ing the new types of terms arising from SUS is to
quench the usual optical-model spin-orbit poten-
tial.

Compared with the central (o» o,) force the ten-
sor force is known to be much more effective"
for transferring relatively large amounts of mo-
mentum. As a result it should not be surprising
that the tensor force dominates" ' the quenching.
For example, for unlike nucleons, the ratio of
the tensor to central contributions to J(Jf' =0) in
E»I. (15) is roughly 5.0 for realistic forces."
Moreover, the exchange amplitudes are known to

FIG. 1. Schematic diagram of bound single-particle
orbital with) =&+g.



1642 W. G. LOVE 20

n, f

(18)

where N„» is the ground-state expectation value
of the number operator for the state (nlj). In
this approximation we see that &U~~ will peak in-
side the peak in the density of the SUS nucleons
any may be somewhat masked by the absorptive
part of the optical potential.

It is interesting to compare the explicit expres-
sion (Eq. (18)J for the central and tensor force
contribution to 4 U~ ~ with that arising from the
two-body spin-orbit (TBSO) potential (VLd) for the
same orbits. Using the short-range limit for
the TBSO force as discussed in Ref. 11 we find

where

mls, ~dd 1

' ~

2 . ~xu„, (rd)L~. o~, (19)

J'"' '—= 4m x dr V' (20)

and VLdzd is the odd-state part of VLz in Eq. (1).
For a single SUS having n =n;„=1we see that
this contribution to the one-body spin-orbit poten-
tial will change sign at that radius corresponding
to the peak value of u„,'(r). Since -J,"~d) 0, in-
side this radius 4U~$ will have the same sign as
&U~~; outside this radius the two terms tend to
cancel.

It is also instructive to consider the spin-orbit
splitting of some doublet j' =E' +-,' induced by a
single SUS. This can be calculated relatively
easily in closed form if we consider only n =n' =1
and use harmonic oscillator orbitals. Using first-
order perturbation theory we soon find

d(l ) = psi2J ~ &sf(1 l') x [1 l' —'] (21a,)

and

&E (l') = v' 'g (SP)+'(l, l') x l, (21b)

where v is the usual oscillator constant in fm '
and

(l +1)[2(l +l') —1]!!
(2v)sis2 l'(21 +1)l l (21' 1)l! (22)

decrease with increasing bombarding energy so
that the quenching effect should be most important
for relatively small bombarding energies.

At this point it is convenient to reexpress &U~~~

in Eq. (16) in a slightly different form. In particu-
lar, if we neglect any j dependence of the radial
wave functions,

Wong' and Scheerbaum' noted that the Predicted
quenching of the one-body spin-orbit potential (or
the spin-orbit splitting) due to the total contribu-
tion of an SUS peaks for that orbit whose l value
is one unit smaller than that of the orbitals in the
SUS. This result follows readily from our approx-
imate expressions, Eqs. (21a) and (21b). The
function f(l, l') peaks (weakly) at P =l but at this
value of /', &E~$ changes from positive to nega-
tive (for increasing l') and "interferes" destruc-
tively with &E~ ~ providing the observed diminished
quenching of U~$ when l' becomes as large as l.

Another measure of the strength of different
spin-orbit potentials (one body and two body) used
for scattering is often made by comparing their
4, values where J', (f) is obtained by replacing
VLddd(r) by any function f(r) in Eq. (20). For those
contributions arising from SUS we find using Eqs.
(18) and (19) and assuming that the j =l +-,' subshell
is full

g (~ULS) ( ) Jsdd, ls
2 L,$4 (23a)

(23b)

Such simple estimates must be used with caution
especially when rather different geometries ac-
company the different &U . As suggested earlier,
this is especially true for the scattering case
where the absorptive potential will discriminate
among contributions from different spatial regions.
Nevertheless, Eqs. (23a) and (23b) [and (21a) and
(21b)] suggest that the quenching of the single-
particle spin-orbit potential due to SUS should be
most important when the unsaturated subshell has
a large l value. Moreover, for orbitals of large
l small "contaminants" of occupancy of the j& sub-
shell are relatively less important in quenching
AULd than for subshells of smaller l [see Eq. (18)].
This result should consequently affect most strong-
ly the calculation of spin-orbit splittings in rela-
tively heavy nuclei. More specifically, this result
poses an acute uncertainty on any extrapolation of
single-particle spin-orbit potentials to the super-
heavy region where stability" is extremely sensi-
tive to the single-particle spin-orbit splittings.
Apart from these considerations we ariticipate the
largest effect of &Uc~ for those nuclei having the
largest percentage of SUS nucleons. Although these
effects are included in those Hartree-Fock calcu-
lations which contain realistic tensor forces, such
calculations' are known to have difficulty repro-
ducing the observed spin-orbit splitting in kncnen

nuclei.



20 SPIN-UNSATURATED SUBS HELLS AND THE. . . 164$

III. APPLICATIONS TO ELASTIC SCATTERING

In this section we present some calculations of
elastic scattering of protons from nuclei believed
to have a spin-unsaturated subshell (SUS). No
attempt was made to search on the optical-model
parameters to fit the data; that is not the point
here. We simply want ot explore the importance
of including the contribution of &U~~ in the total
optical-model spin-orbit potential. Any phenom-
enological optical potential which fits the data will
clearly include (implicitly) the effects of b,Ucr.
Ideally one would simply include dU~~ as part of
a program to calculate the complete optical po-
tential; as is done by Brieva and Rook for nuclei
with spin-saturated subshells (SS). Here we start
from phenomenological optical potentials and esti-
mate the size of LU~~ by perturbation theory in
the distorted-wave approximation. In particular,
we calculate the change in the elastic scattering
t matrix via

(24)

where X' ' are distorted waves generated by some
phenomenological potential. C ross sections and
asymmetries predicted by t»,„o and tphepom

can then be compared. This was done using the
full nonlocal form of b,U ~ given by Eq. (11) in
which case it was unnecessary to introduce a lo-
cal equivalent potential as in Eq. (18). However,
since we believe it is desirable to find an equiva-
lent local potential for purposes of interpretation
we also calculated the change in the t matrix due
to the approximate local potential LU~ ~ of Eq.
(18) via

(25)

Since the strength of 4U&& is not expected to be
given correctly by Eq. (18}we calibrated it by
normalizing the integrated cross sections pre-
dicted by &c~ to those obtained using the nonlo-
cal potential in Eq. (11}. It was verified that the
amplitudes 4t&& and 4t are almost completely
in phase and that the associated cross sections
are very similar in shape. Cross sections and
asymmetries were then compared by solving a
local Schrodinger equation first w Rh U~h,„, and
then with phenom+ EUgz ~

The internucleon central and tensor interactions
were taken from Ref. 21 with the even- (odd)-
state force being that derived from the oscillator
matrix elements of'the Reid (Elliot) interaction. The
regularized one-pion exchange potential (RopEp}
form of the tensor force was used. Harmonic
oscillator radial functions were used in each case
with v(~ C) =0.284 fm 2, v(28Si) =0.289 fm 2, and
v( Ca)=0.250 fm . Although the use of harmonic

oscillator functions may underestimate the effect
in the surface region, the calibration procedure
discussed above should largely compensate for
this.

A. "Ca+p, E&=E& =15 and 30MeV

For 8Ca we chose the phenomenological poten-
tial to be that given by Becchetti and Greenlees.
Structurally, Ca is believed to have 8 SUS fr~2
neutrons and this property has been used to
explain the aPParent decrease in the proton rms
radius as one goes from Ca to Ca. Indeed, the
nuclear matrix element for both processes is pro-
portional to l(2j+ 1). Figure 2 shows the asymmet-
ries calculated with U,henom and Uphelm+� 'BUD p at
30 MeV bombarding energy. Similar results were
obtained at F.~=15 MeV. The changes are seen to
be non-negligible beyond 8, -50'. Comparable
changes in the cross section only occur for 8,
&125'. Also shown in Fig. 2 is the change in the
single-particle spin-orbit potential at F.~= 30 MeV
produced by the SUS. This translates into cali-

Ca+ P, Ep=50MeV +0& ~
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FIG. 2. Effect of SUS on the optical-model spin-orbit
potential and on the elastic asymmetry for 4sCa+p with
&& =30 MeV. The dots denote the results using the
phenomenologi:cal potential described in the text. The
curve labeled U+&&~ denotes the result when the term
&&gg is included.
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brated values of J(K ) of 509 MeV fm' and 459
MeV fm5 at 8~=15 and 30 MeV, respectively. The
tensor force contribution to 4U&& is about 14
times that of the central force at each energy. The
M =1 proton-neutron interaction is known~8 to be
quite weak.

Since the isospin dependence of the central part
of the optical potential is often determined 4 by
scattering from SUS nuclei, a reliable estimate
of hU~~ is clearly desirable. Otherwise, one
may extract a spurious isospin dependence which
should more correctly be ascribed to SUS effects.
Moreover, the tensor force used here would yield
an explicit isospin dependent contribution to hU~ ~
-40/p as large as the isoscalar contribution, with
nucleons unlike those in the SUS experiencing a
larger quenching of the spin-orbit potential.

b

b

10

Si+ p, Ep= 30Mev

I
I

~ oU—-U+ QU"

l g/

«j
~ f

/l
/ h

g/ t
~O

8 Si+p, E& = 30 and 135 MeV

For Si we used the optical potential of Fricke
et al. 5 at 30 MeV and that of Nadasen 6 at 135
MeV. Following Ref. 27 we assume ground-state
occupation probabilities of 10.14 and 0.59 for the
1d~&2 and ld3&2 levels, respectively. This corre-
sponds to an expectation value of Z,l, 'o, of 18.5
which compares favorably with the value of 16.0
found by Kurath using the Nilsson model. The
results at 8~=30 MeV are shown in Fig. 3. Al-
though the effect of hU on the cross section is
relatively small forward of -125', the effect of
AU on the asymmetry is quite large over the
full angular range. For essentially all of the cases
studied the effect of hU on the cross section and
asymmetry is qualitatively similar to what one
might expect. In particular, since the total U

is reduced the asymmetries tend to be reduced
and the cross section minima tend to be deeper.
It should be reemphasized that the U+ AU curve
does not fit the experimental data, but the differ-
ence in the U and U+ dU curves does indicate the
size of the effect to be expected. Indeed, the phe-
nomenological potential alone provides a reason-
able (though not good) fit to the asymmetry and
cross section data forward of 8. =100'. An
anomalous behavior of the spin-orbit potential
for this system has been reported; it would be
interesting to reinterpret this behavior when
AU is included explicitly.

Analogous calculations were pe'rformed at Z~
= 135 MeV where there is much new data ~ being
taken. The effects are much smaller than at E~
=30 MeV as was anticipated in Sec. II. Usi.ng
the same internucleon interaction at both energies
resulted in a decrease in bU~~ by a factor of 3.6.
The difference in the predicted asymmetries at
E&= 185 MeV are typically 10-20% at the extrema.
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FIG. 3. Effect of SU'S on the optical-model spin-orbit
potential and on the elastic asymmetry and cross section
for 2 Si+P at &p =30 MeV. Legend is as in Fig. 2.
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C. '~C+ p, Ez =45.5MeV

For t2C we used the optical potential S2 of Ref.
30 which gives a reasonable fit to both polariza-
tion and cross section data. In j-j coupling ' C
would have eight 1P3&2 nucleons and would consti-
tute one of the best candidates in which to look for
the effects of b,U . To be more realistic we take
the P-shell occupation probabilities from the work
of Cohen and Kurath ' as provided by McGrory
giving N3(2 ——6.48, lV((2 ——1.52.

The results for the asymmetry are shown in
Fig. 4 together with the experimental data. No at-
tempt was made to optimize the optical-model
parameters after 4U was included. The fit to
the cross section is made slightly worse. The
point here is that 4U can make a measurable
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FIG. 4. Effect of SUS on the optical-model spin-orbit
potential and on the elastic asymmetry for C+P at
&p =45 MeV. Legend is as in Fig. 2.

Larger differences do occur in the regions where
the asymmetry is most rapidly varying. The cali-
brated values of J(K ) are 468 and 130 MeV fm'
at E~= 30 and 135 MeV, respectively. At K~=30
(135) MeV, the tensor force contribution to hU~~

is 3.0 (1.5) times that of the central force. The
difference between this result and that for Ca
may be attributed to the isospin dependence of the
nucleon-nucleon interaction.

difference in the calculated asymmetries. It
would be quite interesting to refit this data in-
cluding b,U explicitly. The calibrated value of
Z(K ) is 396 MeV fm for this transition with the
tensor force contribution to 4U being 2.8 times
as large as that of the central force.

For each of the systems studied above the val-
ues of J(K }associated with the important tensor
force contribution are typically a factor of -2
larger than the calibrated values if K is associ-
ated with the asymptotic energy. At 135 MeV, ,
however; this asymptotic-energy approximation
is correct to within 6%. A local-energy approxi-
mation in which K is associated with the local
kinetic energy evaluated at the peak of u„, is ac-
curate to within 25% with the exception of '2@+p
where the central well depth is unusually large.

IV. DISCUSSION

A. Other sources pf QUl. s

As has been mentioned in Sec. II, any part of
an effective nucleon-nucleon interaction which is
both spin and velocity dependent (nonlocal) will
contribute to hU for nuclei with SUS. This oc-
curs because the distinctive contribution of SUS
depends on the correlation between a target nu-
cleon's spin and its orbital motion. We have con-
sidered only those first-order contributions which
arise from an internucleon interaction which is
assumed to be intrinsically static. This is be-
lieved appropriate since exchange terms of this
same type are normally incorporated within the
folding model. It is felt that a "completely" suc-
cessful folding model calculation should include
such terms, although the very context in which
effective interactions are derived" (usually in nu-
clear matter with much averaging) may preclude
an accurate evaluation of such shell effects.

Apart from these first-order effects, many
second- (and higher) order processes will contri-
bute to 4U . Generally such contributions will
yield a complex hU . A particularly interesting
candidate is the two-step (p, d;d, P) mechanism
which, if different for the singlet and triplet deu-
teron, will lead to an LSJ transfer of (110) and
hence a contribution to ~U for SUS. Unfortun-
ately, it is unclear at present just'how important
this process is (i.e. , how to calculate it reliably).
The anomalously large triton spin-orbit potential
suggests the importance of such a mechanism.
Excitation of giant resonances through the "core-
exchange" process may also contribute to b,U

in selected energy ranges.

B. Relation of AUL~ to inelastic scattering

Since the spin-flip probability [S(8)] for the ex-
citation of low-lying levels is known to be deter-



i646 G. LOVE 20

mined largely by the spin-orbit part of the optical
potential, the inclusion of 4U should have a
measurable effect on S(6) for those nuclei with
SUS.

Another inelastic process closely related to the
effects of SUS on the spin-orbit part of the optical
potential is the excitation of T =0 levels having
abnormal parity. The processes are related
since both receive a large contribution ' from
the exchange matrix elements of the tensor force.
Excitation of states with T =1 are usually domin-
ated by the direct term since the tensor force is
largely isovector. Excitation of states with normal
parity are preferentially excited by a different part
of the force. Recent measurements' '" and cal-
culations of cross sections and S(9) for the 1, T
= 0 level in ' C (12.7 MeV) and for the 2, T = 0
level in ' 0 (8.88 MeV) suggest that the exchange
part of the tensor force mediating DT = 0 transi-
tions is too strong (but see Ref. 34). This sug-
gests that our estimates of 4U may be too large
even though the tensor force used here is a typical
"realistic" force. These "interior processes" of
low multipolarity should be quite sensitive to any
density dependence of the tensor force and this has
not been included. An understanding of this type
of inelastic process would help clarify the role of
the tensor force in estimates of 4U

C. AUL~ and M1 resonances

Kurath has shown that for light nuclei with N
=Z the energy-weighted Ml strength is (semi-
guantitatively) proportional to the ground-state
matrix element of Z, l, o, . For such nuclei where
only a single shell (nl) is unsaturated, we see
from Eq. (16) that b,Uor is proportional to this
same matrix element. As a result we should look
for the effects of LU in those nuclei where large
M1 strengths have been identified experimentally.
It should be noted that there is a consistency re-
quirement to be met. Within the framework of
Kurath's model it is inconsistent to find a large
energy-soeighted M1 strength unless the tensor
force is either small or of opposite sign to what
is believed to be realistic or there is some com-
pensating higher-order correction. Otherwise
the l +-,' and l ——,

' levels would move closer together
and reduce the energy-weighted M1 strength. The
observation of appreciable strength may place an
interesting restriction on the value of the tensor
force.

V. SUMMARY,

It has been shown explicitly how SUS together
with an internucleon force leads in first order to
a correction to the one-body spin-orbit potential
(U~s) relative to the case in which both l + —,

' and

l ——,
' orbits are fully occupied. This correction

to U for bound states (and its implications for
spin-orbit splittings) has been discussed by
Scheerbaum. Here this correction has been ex-
tended to scattering states with a greater empha-
sis on the one-body spin-oribt potential itself.
The resulting nonlocal potential has been trans-
formed into an "equivalent" energy dependent lo-
cal potential for interpretative purposes.

Internucleon forces based on nucleon-nucleon
scattering data predict a substantial quenching of
U for nuclei with SUS, particularly for bound
states and scattering states of bombarding energy
below -50 MeV. The effects of such quenching has
been estimated for the elastic scattering of pro-
tons by 2C, 28Si, and esCa. Rather large changes
in the asymmetries occur when the contribution
bU is included, especially for the two lighter
systems. By far, the domi. nant contribution can
be attributed to the tensor force.

It was also pointed out how a number of second-
order processes may also yield a correction to
U which is peculiar to systems with SUS. These
corrections would generally be complex.

The close connection between the expected cor-
rection to U arising from the tensor force and
the inelastic excitation of abnormal parity states
with T =0 was stressed as was the close rela-
tionship between LU and the energy-weighted
M1 sum rule.

It was also stressed how our present failure to
obtain the correct spin-orbit splitting in known
SUS nuclei places a severe uncertainty on extra-
polations of single-particle potentials to super-
heavy nuclei.

It should be noted that a cursory glance through
tables of optical potentials for many nuclei does
not suggest a shell effect (AU ) as calculated
here. This is reminiscent of the bound-state
problem where such an effect is also largely ab-
sent. For the scattering case the spin-orbit poten-
tials were often fixed36 and variation of other pa-
rameters perhaps compensated. It would be in-
teresting to reexamine the spin-orbit part of the
optical potential for a number of SUS nuclei with
the 6U term included explicitly in the searches.
Should the evidence for such a term be definitively
absent, the optical- and shell-model anomalies
would at least be consistent and constitute a yet
more overwhelming "disagreement with theory. "
This together with the other evidence given here
would suggest even more strongly our lack of un-
derstanding of the two-body tensor force which
arises largely from the one-pion-exchange process.

I am indebted to George Bertsch, G. R. Satchler,
and Tom Davies for interesting discussions.
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