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Calculation of the S- and 3-state components of the deuteron-triton overlap integral
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The S- and D-state components of the deuteron-triton overlap integral and of the form factor required
for a distorted-wave Born-approximation analysis of (d, t) reactions have- been calculated for a number of
variational triton wave functions corresponding to realistic nucleon-nucleon potentials. It is found that the
calculated overlap functions decay too rapidly for large n-d separations, and this has important
consequences for the corresponding distorted-wave Born-approximation form factors. In particular, the
parameter D2, which measures the relative importance of the D-state form factor in the low-momentum
limit, is found to be more than a factor of 2 smaller than the best experimental value. A more direct
calculation of the form factors leads to a much larger value of D,.

NUCLEAR REACTIONS DKBA theory; calculated deuteron-triton overlap and
form factors for {d, t) reactions.

I. INTRODUCTION

It has recently been shown' that one can obtain
information about the internal structure of the
triton by studying the spin dependence of (d, t)
reactions on heavy nuclei. In a direct (d, t) reac-
tion the deuteron may be thought of as a spectator
particle which simply picks up a neutron from the
target nucleus to form a triton. Conservation of
parity and angular momentum thus ensures that the
pickup can take place only if the n-d relative orbit-
al angular momentum (1.) is either 0 or 2. Since
the dominant term in the triton wave function is an
S-state configuration, (d, t) reactions proceed
m ainly by L = 0.

It turns out' that the tensor analyzing powers
are especially sensitive to L =2 contributions to
the reaction. Measurements of these quantities
for (d, t) and (d, 'He) reactions' ' have clearly es-
tablished the importance of the D-state contribu-
tions and in addition have provided quantitative
information about the relative strengths of the
S- and D-state amplitudes.

It is therefore of interest to determine whether
existing three-nucleon wave functions, obtained
from Faddeev or variational calculations, are con-
sistent with the experimental results. This re-
quires a calculation of the overlap integral be-
tween the deuteron and triton wave functions. In
this paper we report calculations of the d-t overlap
integrals using the variational triton wave func-
tions of Jackson et aE., ' Delves and Blatt, ' and
Akaishi et al. ' Similar calculations have recently
been carried out by Santos et aE.' and by Kim and
Muslim.

II. BACKGROUND

In order to determine what effect the D-state
amplitude has on the (d, t) tensor analyzing pow-
ers, one makes use of the distorted-wave Born
approximation. In a finite-range DWBA calcula-
tion, the transition amplitude depends on the in-
ternal structure of the deuteron and triton through
the matrix element

Here P~ and &f&, are the internal wave functions of
the deuteron and triton, respectively, and X„ is the
spin wave function of the transferred neutron. The
quantity p is the internal coordinate of the deuteron
and r is the separation of the transferred neutron
from the deuteron center of mass. The neutron-
deuteron potential V~ is the sum of the nucleon-
nucleon potentials between the transferred neutron
and the nucleons in the deuteron.

From the behavior of the potential and the wave
functions under rotations and spatial reflections,
it follows that E(F) can contain only 8- and D-state
terms. In particular, E(r) can be written in the
form

&(r) = Q Q(LA, so
I ~o,) (Io~, ,'o„I so)v~(r)—Yz(r),

(2)

where s=2 for I =0 and s=2 for I =2. The radial
functions v, (r) and v, (r), which we will refer to
as the DWBA form factors, contain all of the nec-
essary information about the internal structure
of the triton and deuteron. The main goal of the
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present work is the calculation of these form fact-
ors.

By making use of the fact that pd and p, satisfy
their respective Schrodinger equations, it is pos-
sible to eliminate the potential energy factor in
Eq. (1) and write E(r) in the form

D, =~ r'v, r dr r'v, r dr,
0 0

or equivalently,

(10)

In terms of the coordinate-space functions, D, is
given by

(3)

where

G(r) = (X'"y"(p)
~

y" (r, p)),

and where

3I y =B~ -Bu ~

Here M is the nucleon mass and B, and B~ are the
triton and deuteron binding energies. By analogy
with Eq. (2), G(r) can be written as

G(r) =Q Q (LJ)., sa
~
,'(r, )(lo-„, ,'o„~s—otu (r)I'~(r) .

I=0,2 c, A

(6)

The radial functions u~(r) in Eq. (6) will be re-
ferred to as the d-t overlap functions. From Eq.
(3) we see that v~(r) and u~(r) are related by

v~(r)= —,r ,—-y'u~(r).
3N 1 d' L(L+1)
4M„rdr r

Thus, the form factors may be caluclated either
directly, using Eqs. (1) and (2), or indirectly,
using Eqs. (4)-(V). It should be emphasized that
the two methods of finding v~ are equivalent only
if P~ and P, are the exact eigenfunctions of the
two- and three-body Hamiltonians. For the varia-
tional triton wave functions that we use, this con-
dition is not satisfied and therefore we can expect
that the two methods will give different results.

In order to properly include the effect of the D-
state term in a DWBA analysis, it is necessary
to carry out a full finite-range calculation. How-
ever, the D-state effects can be included in an ap-
proximate way by making use of the local-energy
approximation, in which one assumes that the

(d, f) observables are sensitive only to the low-
momentum components of the form factors. In
this approximation the D-state effect depends on
the value of a single parameter, D„which is re-
lated to the relative strengths of v, and v, iri the
zero-momentum limit, i.e.,

D, = lim [v2(k)/k'vo(k)],~0
where the v~ are the momentum-space functions

()~(k)=f j (kr)v (r)rdr.
0

D, =& r u, r dr r'u, r dr.
0 0

Experimental determinations of D, have been
made for a number of (Z, f) and(d, 'He) reactions, ' '
and D, values ranging from -0.22 to -0.37 fm

have been obtained by fitting the tensor analyzing
power measurements for the various reactions.
The most reliable determinations of D, come from
measurements taken at energies below the Cou-

'
lomb barrier, since the D%BA calculations are
thought to be relatively free of ambiguities in
this case. Tensor analyzing power measurements
have recently been obtained for a number of sub-
Coulomb (Z, f) reactions and these data are best
fitted with aD, value of -0.275 fm'.

III. DEUTERON-TRITON OVERLAP CALCULATIONS

A. Results

In calculating the deuteron-triton overlap inte-
gral, one is simply projecting out the part of the
triton wave function that looks like a deuteron
plus a neutron. Thus, we expect that the overlap
functions will be mainly sensitive to the proper-
ties of P, and relatively insensitive to P~. In par-
ticular, it is expected' that the I = 2 overlap func-
tion will arise primarily from D-state terms in
the triton wave function. , although strictly speak-
ing, u2(r) can be nonzero if either P~ or ())), con-
tains a D-state term.

The deuteron-triton overlap functions, u0 and

u2, have been calculated for a number of triton
wave functions. Results are reported for the
variational wave functions of Jackson et al. ,

'
Delves and Blatt, and Akaishi et al. '

The triton wave function of Jackson et al. was
generated by a variational calculation employing
the Reid soft-core (RSC) nucleon-nucleon poten-
tial. ' The trial function was parametrized as a
sum of harmonic oscillator functions and the
binding energy was found to be 6.30 MeV. This
is smaller than the experimental binding energy,
8.48 MeV. The overlap functions were calculated
using the RSC deuteron wave function' and the
results are given by the solid curves in Fig. 1(a).
For comparison, the results of Santos et al.' are
shown by the dashed curves. Santos et al. used
the triton wave function of Strayer and Sauer"
which was generated using the same harmonic
oscillator parametrization employed by Jackson
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FIG. 1. Deuteron-triton overlap functions uo(y) and
u2(r). The solid and dotted curves in (a) show the results
for the triton wave function of Jackson et al. and for the
HJ wave function of Delves and Blatt, respectively. The
dashed curves are from Ref. 8 and give the results for
the wave function of Strayer and Sauer. The curves in
(b) were obtained from the wave functions of Akaishi
et al. and are labeled by the corresponding nucleon-
nucleon potentials. A factor of v 2, which accounts for
the presence of two identical neutrons in the triton, has
been included in all of the overlap functions.

et al. However, more terms were included and
the resulting binding energy (6.V MeV) was slightly
larger.

Delves and Blatt have obtained variational wave
functions for a number of nucleon-nucleon poten-
tials by employing a trial function parametrized
in terms of exponentials. The number of terms in
the trial function was not large, and corresponding-
ly, the binding energies obtained in the calcula-
tion were quite small. The overlap integral was
evaluated using the deuteron wave function of
McGee." Results for the triton wave function de-
rived from the Hamada-Johnston (HJ) potential"
are shown by the dotted curves in Fig. 1(a). Sim-
ilar results were obtained for the wave function
corresponding to the Yale potential. "

Akaishi et al. construct a trial wave function
using a method which makes it possible to properly
include nucleon-nucleon correlations. The wave
function contains very few variational parameters,
but the binding energies are typically 6-7 MeV.
Overlap integrals have been calculated for wave
functions corresponding to the HJ potential, the
OPEG and OPEH potentials of Tamagaki" and the
super-soft-core (SSC) potential of de Tourreil
and Sprung. '6 The deuteron wave function of Ref.
12 was used in all cases. Results are shown in
Fig. 1(b) for the HJ, OPEG, and OPEH wave func-
tions. The overlap functions for the SSC potential
are similar to the OPEG results.

In Fig. 2 we show (he separate contributions to
u2(r) which result from various terms in the triton

FIG. 2. Contributions to the L = 2 overlap function
arising from various terms in the triton and deuteron
wave functions. The largest contribution, I&, results
from the overlap of the deuteron S-state with the D-
state terms in the triton. The curves shown are for the
HJ wave function of Akaishi et al.

and deuteron wave functions. As expected, u, is
dominated by the contribution u, ~, which arises
from the overlap between the S-state of the deuter-
on and the D-state terms in. the triton wave func-
tion. The contributions from the overlap of the .

deuteron D-state with the S- and D-state parts of
the triton (uP and u~2D, respectively) are relatively
insignificant. The curves shown in Fig. 2 are for
the HJ wave function of Akaishi et al. Similar re-
sults are obtained for the other wave functions.

For purposes of comparison with experiment, it
is useful to calculate the parameter D„using Eq.
(ll). The results obtained for each wave function
are given in Table I, along with values of the var-
iational binding energy and the D-state probability.
The calculated values of D» which range from
-0.07 to -0.12 fm', are more than a factor of 2
smaller than the best experimental value.

It is also of interest to calculate the DWBA form
factors using Eq. (7). For reasons of consistency,
the quantity y was calculated from Eq. (5) with B,
set equal to the binding energy obtained in the
variational calculation. The form factors are
shown in Fig. 3 for the OPER wave function of
Akaishi et al. The results for the other w'ave func-
tions are qualitatively similar for r &1 fm. The
behavior of vo for small r is quite different for
the various wave functions, but this is relatively
unimportant because of the r' weighting factor
which always appears in integrals involving v, .

B. Discussion

The magnitude of the discrepancy between the
experimental and theoretical values of D, is sur-
prisingly large. Although it is possible that the
empirical v.alues are grossly in error, or that the
phenomenological potentials used to obtain the tri-
ton wave functions are somehow incorrect (e.g.,
if the nucleon-nucleon interaction is nonlocal or if
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TABLE I. Calculated values of D2 for various wave functions along with values of the vari-
ational binding energy B, and the D-state probability P~.

Wave function Potential B~ (MeV) PD (%)

Delves-Blatt

Akaishi et al.

Jackson et al.
Strayer and Sauer

HJ
Yale
HJ
SSC
OPEQ
QPEH
HSC
HSC

2.6
2.5
6.0
7.1
6.6
6.6
6.3
6.7

8.4
7.8
8.7
7.5
7.1
7.1
8.5
8.8

-0.119
-0.074
-0.088
-0.086
-0.086
-0.085
-0.083
-0.113

Reference 8.

three-body forces are important), a more likely
explanation is that the triton wave functions ob-
tained from the variational calculations are not
sufficiently accurate.

If we use a triton wave function which is no't an
exact eigenfunction of the three-body Hamiltonian,
it is quite possible that the resulting form factors
and D, values will be significantly in error. As
we pointed out earlier, the derivation of Eq. (3)
assumes that P~ is the correct solution to the
three-body Schrodinger equation and if this condi-
tion is not met, Eq. (3) as well as the results
which follow from it [specifically Eqs. (7) and (11)]
are no longer valid.

From the behavior of the overlap functions and
form factors shown in Figs. 1 and 3 it is apparent
that the variational wave functions have some
shortcomings. From Eq. (7) we see that for large
x, where n~ goes to zero, u~ should fall off ex-
ponentially with a decay constant characteristic
of the triton-deuteron binding energy difference,

1 I I

10 10

where h~ ' is a Hankel function. The calculated
overlap functions do not have this property. For
all of the wave functions considered in this paper
the S- and D-state overlap functions decay too
rapidly. Santos et al.' also encountered this prob-
lem and have discussed its consequences.

The problem is illustrated in Fig. 4, which shows
a log plot of u, and u, for the wave function of
Jackson et al. and for the QPEG wave function of
Akaishi et a/. The corresponding Hankel functions,
normalized to the calculated overlap functions at
x = 5 fm, are given by the dashed curves. For the
Akaishi wave function, the asymptotic behavior of
uo is nearly correct, but in all other cases the cal-
cu1ated functions fall off too rapidly. The calcu-
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FIG. 3. DWBA form factors vo(r) and v2(r) derived
from the deuteron-triton overlap functions by using Eq.
(7). The results shown are for the OPEH wave function
of Akaishi et al.

FIG. 4. Deuteron-triton overlap integrals for the
OPEG wave function of Akaishi et al. and for the wave
function of Jackson et al. The dashed curves show the
appropriate Hankel functions normalized to the calcula-
ted gl. at r= 5 fm. The value of y used here corresponds
to the binding energy obtained in the variational calcula-
tion.
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lated form factors also behave incorrectly for
large r. Although it is not apparent from Fig. 3,
both v, and v, cross zero at r=5 fm and have a
long-range tail which is small in magnitude but
which extends to very large values of x. This will
have important consequences for DWBA calcula-
tiohs at low energies, since the low-momentum
content of v, and v, is especially sensitive to the
long-range behavior of the form factors. In par-
ticular, we see from Eq. (10) that D, depends on
integrals in which v, and v, are weighted by factors
of x' and x' respectively. The problem is thus
particularly serious for the D-state integral. In
this case the integrand r'v, (r) peaks for r = 2-3
fm and is still quite large in magnitude for x& 5
fm where v, (r) has the wrong sign. In view of this
it is not surprising that the calculated values of
D, are too small.

IV. DIRECT CALCULATION OF THE FORM FACTORS

From the preceding discussion it is clear that
if one wishes to determine the form factors by cal-
culating the deuteron-triton overlap, it is critical-
ly important that the triton wave function behave
properly in the asymptotic region. However, if
one calculates the v~ directly by using Eqs. (1)
and (2) the results should be relatively insensitive
to the long-range behavior of g, .

Evaluation of the integral in Eq. (1) is rather
tedious, and for this reason, the calculations have
been performed only for the wave functions of
Akaishi et aE. For simplicity, we completely neg-
lected the spin-orbit, quadratic spin-orbit, and

L ' L terms in the various nucleon-nucleon. poten-
tials and retained only the central and tensor
terms. The neglected terms probably would not
have a large effect on the form factors.

The results for the two soft-core potentials,
SSC and OPEG, are shown by the solid and dashed
curves in Fig. 5. Qualitatively, the form factors
are similar to the results shown in Fig. 3, but in
detail there are some important differences. The
differences are readily apparent in Fig. 6, which
shows a direct comparison between the form fact-
ors obtained by the two different methods. In order
to emphasize the regions, which are important
for determining the low-momentum behavior, v0
and v, have been multiplied by r' and x' respective-
ly. The solid curves show the form factors ob-
tained by the direct method, using Eqs. (1) and

(2), while the dashed curves give the results which
we obtained by using Eqs. (4)-(7). All of the re-
sults shown in Fig. 6 are for the OPEG wave func-
tion.

From Fig. 6 it is clear that the form factors
obtained in the direct calculation will lead to much
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FIG. 5. DWBA form factors vp(r) and v~(r) obtained
from Eqs. (1) and (2). The curves shown are for the
triton wave functions of Akaishi et al. and are labeled by
the corresponding nucleon-nucleon potentials. A factor
of v'2, which accounts for the presence of two identical
neutrons in the triton, has been included in all of the
form factors;

larger values of D,. For the two soft-core poten-
tials we find

D, (OPEG) = -0.381 fm',

D, (SSC) = -0.377 fm'. (13)
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FIG. 6. Comparison of the functions r v p(r) and r v2(r)
obtained from two different methods. The solid curves
result from a direct calculation using Eqs. (1) and (2),
while the dashed curves were derived from the deuteron-
triton overlap functions by using Eq. (7). The curves
shown are for the OREG wave function.

These results are about a factor of 4 larger than
the values obtained in the indirect calculation (see
Table I).

For the hard-core potentials (HJ and OPEH)
evaluation of the matrix element in Eq. (1) did not
lead to reasonable results. The calculated form
factors for the HJ potential are shown by the dotted
curves in Fig. 5. Note that for small r, the S-state
form factor is much larger than those obtained with
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the soft-core potentials.
One reason for believing that the soft-core form

factors are more correct than the hard-core form
factors is that the zero-range DNBA normaliza-
tion constant does not come out right in the latter
case. According to the conventionaL definition, "
the (f, d) normalization constant Do is related to
the S-state form factor by

and

y
~it [4&]-&/2(I) (p)x~it

(i6)y"=[8m'] '~'g (r p p,)y"

where p, is the cosine of the angle between r and
P. In E(ls. (15) and (16), X„and X, are normalized
spin functions, while the spatial functions are
normalized according to

4) =-&4v f rv (r)dr. (i4) d p'dp=1 (17)

For the soft-core potentials we find D, =140
MeV fm' ', whereas the hard-core potentials give
DQ 280 MeV fm' '. Cross section measurements
for (d, t) reactions give an average experimental
value (Ref. 18) of D, = 164+ 16 Me V fm'~ ', while a dis-
persion analysis" ofn dela-stic scattering[where
Do= (9vK y/2M')C, '] leads to D, = 168+ 10 MeV
fm'~'.

It is not difficult to understand why the normal-
ization factor is too large for a hard-core poten-
tial. For a soft-core potential, the triton wave
function is small but not zero for nucleon-nucleon
separations smaller than the core radius r, . Since
the potential is very large in this region, VP, may
be significant. The repulsive core will therefore
contribute to E(r), and it is presumably the core
that causes v, to go positive for r & 1 fm (see Fig.
5). For a hard-core potential, on the other hand,
(])), is zero when the nucleon-nucleon separation is
less than r, and consequently the repulsive core
makes no contribution at- all to the form factors.

In a direct calculation of the form factors it is
clearly important that the triton wave functions
have the proper behavior for smaLL r. Fortunate-
ly, the method used by Akaishi et al.' to construct
their variational wave functions ensures that the
nucleon-nucleon correlations are properly ac-
counted for. It is quite possible that if other var-
iationaL wave functions were used in the calcula-
tion, difficulties would be encountered in the treat-
ment of the repulsive core.

In the present calculation we find that the form
factors are quite insensitive to the small pieces
in the triton and deuteron wave functions. If we
neglect the triton S' state we find that the integral
of r'v, (r) increases by 6%%uo while the integral of
r4v, (r) changes only slightly. Neglecting the D
state terms in either the triton or deuteron wave
function also leads to rather small changes, typ-
ically on the order of 2 or 3%. This suggests that
orie can obtain a useful estimate of the form fact-
ors by employing simple wave functions which con-
tain only the dominant 8-state terms. In this case
the wave functions can be written as products of
spin and spatial factors, i.e.,

, r, p, p, 2r'p'drdpd p, =1. (i8)

V. SUMMARY AND CONCLUSIONS

Recent experiments have shown that D-state
components in the triton wave function can have
large effects on the tensor analyzing powers for
(Z, t) reactions. To study these effects we have
evaluated the S- and D-state components of the
DWBA form factor using a number of variational
triton wave functions derived from realistic nu-
cleon-nucleon interactions. fwo methods were
used to calculate the form factors. In the first we
evaluate the deuteron-triton overlap integral. In
all cases studied, we find that the calculated over-
lap functions decay too rapidly in the asymptotic
region and that the corresponding form factors
also behave in an unphysical manner. The values
of D, obtained from these calculations range from
-0.07 to -0.12 fm2. These results are consider-
ably smaller than the best experimental value
(-0.275 fm'), and it appears that the small values
of D, result, to a large extent, from the failure
of the overlap functions to exhibit the. correct ex-
ponential falloff. In view of this difficulty, it
would be of interest if a method could be developed

In this special case the form factors reduce to

v,(rl= 44 ff 4-,"(p)[-,''V. (r„)+-,''V. (r„)]

xq, (r, p, p)p'dpdp

and

v, (r)=44 ffil,"(p)'Vv (r„l (+4 l,
. ) (p'-))

'4('r P &)P dPdv ~ (20)

Here 'V and 'V are the singlet-even and triplet
even nucleon-nucleon potentials and r» ——r+ ~p.
We see that in this approximation the S- and D-
state form factors depend in a rather simple way
on the nucleon-nucleon central and tensor inter-
actions.
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for constructing variational triton wave functions
which are assured of having the proper asymptotic
behavior.

The second method of calculating the form fact-
ors involves the direct evaluation of the matrix
element in Eg. (1). In this case one is presumably
less sensitive to the long-range properties of the
wave function. We have included only the central
and tensor components of the nucleon-nucleon po-
tential. For soft-core potentials, the form factors
obtained from this calculation lead to D, values
of about -0.38 fm', which is in somewhat better
agreement with the experiments. However, we
believe that the form factors may be quite sensi-
tive to the behavior of the triton wave function for
very small nucleon-nucleon separations and to
the nature of the repulsive core.

Because of these problems, we are not yet in a
position to say whether the empirical value of D,
is consistent with what is already known about the
nucleon-nucleon interaction, and it is clear that
more accurate triton wave functions will be needed
if we are to make a meaningful comparison be-
tween experiment and theory. Unfortunately, when

variational wave functions are used one can never
be certain whether a discrepancy results from a
failure of the variational calculation to accurately
reproduce the exact eigenfunction, or from a more
fundamental problem. With Faddeev wave func-
tions one does not have this problem (provided of
course that the calculations are done with suffi-
cient accuracy). It is encouraging to note that the
recent calculation by Kim and Muslim, ' in which
a Faddeev wave function was used to determine the
asymptotic normalization of the deuteron-triton
overlap functions, leads to a D, value of -0.24 fm',
which agrees quite well with the experiments.
Further calculations employing Faddeev wave
functions would clearly be of interest. Such cal-
culations may help to answer the question of
whether the empirical determination of D, places
any new constraints on the internal structure of
the triton or on the form of the nucleon-nucleon
interaction.
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