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Self-consistent pseudopotentials in the thermotiynamic limit.
I. The correlation field
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The repulsive hard core of a pair-wise interaction acting between fermions is simulated by a constraint to
be included in the variational principle. The Euler-Lagrange equations are usual Hartree-Fock equations with
a self-consistent one-body pseudopotential. It can be seen that the imposed constraint generates a correlation
field in addition to the regular portion of the two-body interaction. The origin of density waves in coordinate
space is discussed in terms of the hard-core correlations.

NUCLEAR STRUCTURE hard-core potentials, constrained Hartree-Fock,
correlation field, pseudopotential; localized single-particle orbitals in nu-

clear matter.

I. INTRODUCTION

It is usually believed that correlations induced
. by two-body interactions characterized by the pre-

sence of a hard core cannot be handled within the
framework of the Hartree-Fock (HF) formalism.
This assumed failure of the HF theory has led to
the development of powerful methods that are
able to deal with the strong short-range repulsion
of the nuclear force (see Refs. 1—3 and references
cited therein).

However, de Llano and Ramirez4 have shown that
in the limit of infinitely repulsive potentials be-
tween pairs of particles, there exists for both
fermions and bosons a periodic density HF solu-
tion. Although they did not give an explicit form
for such solution, they showed that a Slater deter-
minant of spatially localized, nonoverlapping,
single-particle (sp) functions yields a noncollapsing
ground state. More recently, Giraud and Orland'
have demonstrated that nonoverlapping orbitals
make HF calculations possible in the presence of
hard-core interactions. New HF solutions thus
arise that break translational invariance and favor
close packing. Crystalline or glass structures
are then to be expected, an idea pioneered by
Overhauser, ' which has received considerable
attention. ' "

A different approach to the hard-core problem
is that of the pseudopotential method, which has
proved to be an important tool to investigate the
thermodynamic behavior of gases."" In particu-
lar, this technique has been applied to the hard-
sphere dilute gases' ' with special success in
the case of the bosonic hard-sphere gas with

attractive interactions (see Ref. 21 for a survey).
The essence of the pseudopotential method re-

sides in the replacement of the hard-core inter-
action by a figured potential that guarantees can-
cellation of the wave function at the hard-core
radius. The idea is similar to that underlying
the image method in electrostatic potential theor-
ies.

It may be of interest to relate the method of
construction of a pseudopotential to the variational
principle, in order to attempt a connection with the
HF theory, and thus shed light on particular as-
pects of those HF orbitals that arise in the pre-
sence of a hard-core potential. In the present
work, we show that the effect of the strong repul-
sion in the actual two-body force can be included
as a constraint into the variational principle. This
constraint forces the wave function to vanish at
the hard-core radius. We derive the Euler-
Lagrange equations for a one-dimensional system
and show that they are of the Hartree-Fock type,
but with a modified one-body field, the pseudopo-
tential. The extra term in this field, which origi-
nates in the constraint, provides complementary
correlations in momentum and coordinate space,
and allows us to suggest a possible explanation
for the origin of those density waves whose exis-
tence has been conjectured in nuclear matter. '

In Secs. II to VI we present the theory and dis-
cuss the equations and their solutions. The con-
clusions are summarized in Sec. VII.

II. THE MODEL

We consider a system of N fermions enclosed
in a (one-dimensional) container of volume L in
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the thermodynamic limit, i.e., N-, L-,

|t)„(l,2) = [g„(1)g„(2}—g„(2)$„(1)]. (2)

If we express (I)»(1, 2) and G(1, 2) in the center-
of-mass system of particles 1 and 2, and integrate
over the center-of-mass coordinate X», we ob-
tain a one-body correlation function, namely

limN/L = pa=finite.
N
$» oc)

This system is acted upon by a hard-core pair-
wise potential; let 5, c be its range and hard-core
radius, respectively. We shall find it useful to
introduce the correlation function of the system"
as

N=

G(i, 2) = —g (q„„(1,2) (', (1)
X, u=l

where (1)„„(1,2) is the antisymmetrized two-particle
wave function. Hereafter, we shall consider g~„
to be purely spatial, in order to bypass cumber-
some algebra which does not enlighten the main
points to be discussed. The symmetrical spin
functions contribute a degeneracy factor p,.
Accordingly,

Ig. THE EULER-LAGRANGE EQUATIONS

We assume that we can perform a Fourier analy-
sis of the sp wave functions g„(x),

(t)„(x)= dk C,(k)e'~, (7)= 1
v'2m

and that the correlated ground state (P,& is a nor-
malimed Slater determinant of these orbitals. The
constrained variational principle then reads,

5,Ho, -Og c — q» A p, =5 C„=O.
(8)

The third term within the parentheses enforces
orthonormality of the sp states 2' The general
form of the Hamiltonian in momentum representa-
tion is

Ho= dk t k a~~a~

+ + dkldk2dk3dk4V kl ~ k2, k3$ k4

~ aa, aa, agan

where at creates a plane wave state on the sp
vacuum,

g(x„)= dX„G(1,2) .
The presence of the hard core in the potential
causes g(x„) to vanish at x»= c. Our proposal
is to include the boundary condition

(s)
d(0&= in&, ( (n&(= e*'".

v'2w

We introduce the one-body density matrix

p(k„k, ) = (P, (at~ a& ((()),&

through which E((I. (8) can be written as

(10)

c}=0

as a constraint in the variational principle through
a Lagrange multiplier, 0..". The two-body force
in the Hamiltonian will be taken as the analytical
continuation of the original one for x & c. For
instance, if the two-body interaction were a square
well hard-core potential,

'O, ixi&b

V'(x) =( V„c& (x(&b

,-, (xi&c

we should consider the analytical continuation

O, (x(&b
v(x) = -V„ fx(&b

i.e., a regular square well. Let us show how it
works and derive the modified Euler-Lagrange
equation for the system.

kf(C )=5 (Trp(k+ —'V) —&d(&) —p k f dk)C(k)( )
=0 (12}

with the self-consistent one-body potential

V (k, k ) = ff dk dk V(k„k,k, k )p(k, k ) .
(is}

The detailed form of p is

p(k2kk~) = Q C)*, (k~)C~(k2) k (14)
X~F

where E is the self-consistent Fermi label, i.e.,
it denotes the last occupied sp level in the Fermi
sea.

Now we obtain a set of Euler-I agrange equations
for our system performing the derivatives Sf(C„)/
SC„*(k,). It is easy to find the overall appearance
of the result,

rdk [t(k„q)5(k k )+I',(k, k }]C„(k,}
bc„*(n,)

= e„C„(k,}. (15)
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IV. THE PSEUDOPOTENTIAL

We shall show that the extra term, in Eq. (15)
generates a one-body potential r, (k„k3). Inclu-
'sion of this potential under the integral sign leaves
us with the well-known set of integral equations,
.known as Hartree-rock equations '

dk tk, k 5k -k +& k, k C„k =g„C„k

(16)

where

r(k„k,) = r,(k„k,)+r,(k„k,}
will be referred to is the (self-consistent) pseudo-
yotential. We can think of the new one-body field
I, as one created by a set of "image sources, "
following an electrostatic analogy, "as needed to
'guarantee vanishing of the correlated wave func-

tion on the hard-core edge.
Notice that we are actually replacing the "true"

hard-core condition

g(c)=0 if ixi &c (18)

by the much looser statement (4) in which we
force the relative wave function to exhibit a node
at the given position. In a rea.l calculation, we
could obtain the correlation function g out of the
solutions of (16) and simply drop that portion that
lies inside the hard core. The outer portion will
still be a reliable representation of the problem,
since it is provided by the variational principle.
The most important point to be stressed here is
that interesting properties of the pseudopotential
and the sp density can be discussed, which we can
expect not to be substantially altered by substitu-
tion of (18) instead of (4).

V. EVALUATION OF THE PSEUDOPOTENTIAL
s I

This is straightforward. We use Eqs. (2), (5}, and (7) and integrate away the center-of-mass coordinate
'x, obtaining

(p..(.)l = ff
&hen

dk dk dk dk C(k)C(k, )C, (k", )C,„(k )S(kc, k, —kck)2 sin( ' -csin c.
2 2

(»)

(k

g(c)= fff dk, da, da, dk, p( „k) k( k„k„k„k)pk(a„a,), (20)

.where

X'(k„k„k„k,) = — 6(k, +k, —k, - k4)sin~ ' ' c sin
~

' ' c./k, —k, . (k3-k4
(21)

It can be seen by inspection that X' possesses the
following symmetries:

X'(k3, k3, k3) k4) = -X'(k3, k3, k„k4)
= -X'(kkk k4, k3) k3):

= X '(k3
p k4s k), k3)

= X'(k3, k) k k4, k3) .
Now if we -define a one-body entity ~„

(22)

r,(k„k,)= 2a dk3dk4X (kkp 3) 3) 4)

X p(k4, k,), (28)

and use Eq. (20) we can see that the boundary con-
dition reads

(r,),=o,

where the expectation value is taken With respect
to the correlated g.s. ~Qp. In addition, we see
that the corrected Hamiltonian, (Ho) - ag(c), now'
reads

(26)

VI. PROPERTIES OF THE CORRELATION FIELD

(H)= Trp(t+ —I' +—I' ).
~2 represents then the one-body potential that
reflects the existence of the hard core in the real
system; its fictitious nature is expressed in the
fact that it vanishes in the average, as displayed
by Eq. (23}. (It nieans it does not contribute to
the macroscopic or internal energy of the system,
or to its equation of state. }

Tr(I'3p) =0,
lee+ ]

(24)
We can learn more about the correlAtion potential

I', by studying Eq. (21). If we let
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X= -2+X

we get

(a'I)

X, (ki, k,)=- 5(k, +k-k, —k)
Po

x sinl ~ &Icsinl 2
&lc, (30}

the arrows pointing at the direction in which the
momentum operator acts. It can be easily checked
that

(k, ~X.,(k„k,) ~k,&
= X(k„k„k„k,) . (31)

Notice that X, (k~, k~) is non-Hermitian, in agree-
ment with our previous knowledge of pseudopoten-
tials. (' " It satisfies the symmetry relation in
the parameters

Xty(kit kg) = X(kmlkl} )

which ensures'symmetry in I"„
I' (k, k ) = I' (k, k ) .

(3a)

Expression (30) displays the nature of the correla-
tion field and its role in the many-body system.
We can see that X„(k„k,) creates correlations in
momentum space. On the other hand, it can be
verified that the most familiar set of Hartree-
Fock solutions, namely the plane waves, do not
satisfy the modified Euler-Lagrange E(l. (16). In
fact, they are not even zero-order approximations,
since I',(k„k,) will diverge if attempted to be
evaluated with a plane wave density. Now a
characteristic of plane waves is its localization in
momentum space. The oscillating inhomogeneities
created by the momentum operators in X„(k„k,)
will destroy that localization, giving rise to sub-

1' (k„k ) =Jf dk dk x(k„k , k , k )p(k , k ) .
(as)

Comparing this structure with that of I', given in
Eg (1.3), we see that I', looks like a typical
correlation field similar to the pairing field in
superconductivity. " In this case, the two-particle
force originating this field is the one whose matrix
elements in momentum space are X(k„k„k„k,),
which in turn are entirely induced by the boundary
condition.

Another way of looking at I',(k„k,) may be de-
picted as follows. We can write E(I. (as) as

I',(k„k,}= Tr[X„(k„k,}p]

= (X„(k„k,)), (a9)

where X„(k„k,) is an operator in sp momentum
space, parametrized by the values of kg k2 In
fact, the form of this operator is

se(luent confinement in configuration space. (Ac-
tually, the correlations are provided by the sin
operators. The 5 operator is only in charge of
securing a selection rule, i.e., conservation of
total momentum. ) We could thus argue that this
may be interpreted as a justification for the wide-
spread use of Overhauser-type orbitals in nuclear
matter calculations. ' " Furthermore, we may
suggest an explanation of the origin of the so-
called "density waves" in Fermi systems in the
thermodynamic limit. The present investigation
shows that waves in the local density are asso-
ciated with the way in which the correlation func-
tion has to bend in order to reach a node at a
relative distance equal to the hard-core radius.

Further properties of the correlation field
arise from the following observations. The self-
consistent one-body potential 1", can be expressed
in a formal analogy with 1 2 as

r,(k„k,) =Tr[I. (k„k,)p]
= (V'„(k„k,}), (34}

with

&.,(k„k,) = 5(k, + k k, k)--
ik )0-k +Pi

i

k -k+k~-k
ta & "E

(35)

v(k) is the Fourier transform of the two-body
force V(x) with respect to the transferred momen-
tum between the scattering sp states; the double
term in (35) is due to antisymmetrization. We can
rewrite X„ in a similar fashion,

sin&eh

K

which, in addition to representing a damped oscil-
lation, is out of phase with respect to the corre-
lation field (36). The phase shift between I',(k„k,)
and I',(k„k,) will cause the momentum space to
deform itself into unlocalized one-body densities
in order to fulfill the variational principle.

On the other hand, if we consider the "direct"

(37)

X„(k~,k2) = — 6(k~+k -k~ -k}
Po

&x-&-&2+x cos c
~gw

k) —k+ km —k
(36)

2

and we can interpret the first and second terms
in (36) as Fourier transforms of "direct" and
"exchange" fields, respectively.

Now if we consider the two-body model potential
given by (6}, we find
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matrix element

(kg/ km' k3$ k4) - coslcc (38)

VII. SUMMARY AND CONCLUSIONS

We have shown that substitution of the hard-core
part of the actual two-body interaction in a Fermi

g(x) - 5(x+ c)+ O(x - c), (39)

whose functional dependence on the relative coor-
dinate agrees with the one-diMensional version
of former pseudopotentials. """The whole
procedure is then equivalent to that of substituting
the original hard core by a pair of transparent,
although infinite, walls at x=ac.

As a final remark, we point out that the sepa-
rable nature of the correlation field (30) implies
that the one-body density has to be nonlocal in
momentum space, in the sense that it cannot
depend only on the transferred momentum. In
fact, if p(k„k, ) =f(k, —k,), we 'have

I'(k„k) f(k, —k )-f dk, sin (
'

) c
2

csin ' ' -k, c

[ i(&g- Q&c/2 e-s(4- &s)c/2]
3L

X & k]+ k3l2- k2&c e-i(k~+ k3/2- k2)clre ] ~ (40)-

The integral in (40) is divergent. It means that a
finite I", is necessarily caused by a nonlocal p.
We could thus say p is "unlocalized and nonlocal"
in momentum space.

through Fourier antitransforming we obtain the
spatial representation for the correlation potential

system, according to the pseudopotential model
philosophy, leads to Hartree-Fock type of equa-
tions. The one-body field thus appearing is modi-
fied by an extra term which can be interpreted as
provided in a self-consistent fashion by a two-
particle correlation field. This field destroys
translational invariance through the creation of
momentum correlations. Accordingly, the solu-
tions of the modified Hartree-Fock problem are
expected to be localized in coordinate space. In
this way, the real hard-core potential is repre-
sented by the correlation field; and causes "solid-
like". sp orbitals to be expected as solutions of
this problem.

We feel that the arguments presented in this
work encourage further work on the subject. The
general discussion applies equally well to one-
dimensional boson systems and the extension to
three dimensions is straightforward, although
laborious. A numerical procedure to solve the
integral equations is in progress and the results
will be published elsewhere.
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