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A general method is presented for eliminating, in the theoretical values of the nuclear mass-tensor
components, the unphysical efFects due to the nuclear number fluctuation allowed by the usual BCS wave
functions. General formulas for number-projected orthonormalized pairing wave functions and their energies
are established in the quasiparticle representation. Analytical expressions are given for the pertinent pairing
correlation matrix elements and overlap integrals, with strict nucleon number conservation. The importance
and validity of the physical and mathematical approximations used are discussed. The tensor so obtained,
without number dispersion spurious efFects, is compared to the pure BCS tensor.

NUCLEAR STRUCTURE Inertial-mass tensor calculated in cranking model, '

with number-projected BCS functions; SBCS theory; fission.

I. INTRODUCTION

The deformation energy and the tensor of effec-
tive mass B&& are the most important pieces of
information required for a dynamic description of
the fissioning nucleus.

Different techniques in the calculation of the
shell correction energy, ' ' due essentially but not
solely to Strutinsky, ' have permitted the calcula-
tion of the collective potential energy with a high
degree of precision.

Little conclusive progress has been made, how-

ever, in the evaluation of mass parameters since
the initial calculation of Inglis. We should men-
tion, however, without any claim to completeness,
the following improvements:

(i) The collective mass parameters can be cal-
culated with the random-phase approximation
(RPA) corrections. '~'

(ii) They can also be evaluated by taking account
of the nonadiabatic correction, "whgther this is
negligible' '" or not. '

(iii) The components of the effective mass tensor
can and must be calculated for nuclear shapes
which have reflection asymmetry. "'"'"

(iv) The self-cranked generator coordinate
method, ' together with constrained Hartree-Fock-
Bogoliubov wave functions, may be used to calcu-
late the mass parameter for quadrupole deforma-
tions. "

(v) Different variations of the theory of super-
fluidity have been introduced in the calculation of
mass parameters.

Jensen and Miranda investigated the effects of

monopole and quadrupole pairing on the fission
mass parameter" and found that the deformation
dependence of the pairing gap (on which the mass
parameter essentially depends) depends in a fun-
damental way on the definition of the matrix ele-
ments of the quadrupole pairing interaction. A

brief study of the influence of the particle-number
fluctuation in the usual BCS theory on nuclear mo-
ments of inertia has been made in the framework
of the projected BCS (PBCS) and fixed BCS (FBCS)
theories. In an investigation of the Coriolis anti-
pairing effect" Frauendorf estimated the projec-
tion operator given in integral form" and showed
that the elimination of the unphysical components
of the BCS functions was indispensable if one
desired to find a reliable estimate of the value of
the angular momentum by which the system passes
from the superfluid state to the normal state.

To the best of our knowledge a similar study of
the spurious effects of the dispersion in the num-
ber of nucleons has never been made for the mass-
tensor parameters. Such a study appears, how-
ever, to us to be indispensable for two reasons:
on the one hand, because the inertial-mass tensor
plays a primordial role in the determination pf
the behavior of the dynamical system and is the
key factor in the evaluation of the half-lives for
spontaneous fission and of the reduced widths,
and therefore of the cross sections in the ease of
induced fission (via the kinetic energy associated
with a slow aperiodic increase in the nuclear dis-
tortion leading finally to fission); on the other
hand, because the values of the inertial parameters
depend in an extremely acute way on the pairing
parameters, such as the pairing gap' ' ' and the
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pairing-energy strength, ' '" and consequently on
the unphysical effects due to the particle-number
fluctuation allowed by the usual BCS wave func-
tions. In what follows, we calculate the inertia
tensor parameters in the general formalism of
the str ict particle-number-projected BCS theo-
ry ' ~ (SBCS theory} .This formalism is con-
firmed to be extremely powerful in the extraction
from the BCS functions of the component corre-
sponding to a well-fixed number of nucleons, and
it is also well adapted to the numerical calcula-
tions on computers. " The many-quasiparticle-
number-pro)ected pairing wave functions and the
corresponding energies are given in Sec. II. How-
ever, because these projected wave functions are
not orthonormal, the orthonormalization procedure
of Schmidt is applied to them and the result is in-
dicated in Sec. III as well as the energies corre-
sponding to these new orthonormal states.

In Sec. IV the number-projected adiabatic
cranking model is developed, the matrix elements
and overlap integrals are calculated in the quasi-
particle representation using the projected ortho-
normalized states, and the components of the
mass tensor, from which all the unphysical effects
(due to the nonstrict conservation of the number of
nucleons) have been withdrawn, are compared to
the pure BCS components given in the Appendix.

II. MANY-QUASIPARTICLE PROJECTED STATES
AND THEIR ENERGIES

In order to evaluate the mass parameters in the
cranking model' we need the energies of the states
with 0, 2, and 4 quasiparticles projected in the
occupation-number space. We start, therefore,
by establishing the expression of these energies
in the framework of the strict particle-number-
projected BCS theory.

A. Sharp number-projected BCS theory (SBCS theory)

~ g) = BCS)= (u„+v„a„a~ } 0) .
v&0

(2)

v&0
a„av + a„-a„-, (3)

since only the mean value of the operator & is as-
sumed constant and equal to the real number of
particles. The states represent, rather, a super-
position of states describing several nuclei dif-
fering between themselves by an even number of
particles, and corresponding to the same chemical
potential A. and to the same half-width of the pair-
ing gap ~. It is clearly shown in the particle
representation that the states of the quasiparticle
representation are described by a superposition of
wave functions with 0, 2, 4, .. . , 2 particles,
where ~ is the total degeneracy of the system.

In view of the increasing number of applications
of the mass tensor, particularly in the heavy .

nuclei where the pairing correlations are extreme-
ly important, it seemed worthwhile to study more
extensively the errors expected as a result of the
nonconservation of particle number.

It has been shown ' that the sequence of states
(normalized by the coristant C„),

- n+&

g)„=C„g $„z (u„+z v„ata„-)+c.c. ~0),
I- ~0 v&0

where

(4)

This ground state behaves as a vacuum for quasi-
particles created and destroyed by the usual c~

and cv operators:

c„~BCS)=0, for all v.
In this representation the excited states possess
an even number of quasiparticles. These states
are no longer eigenfunctions of the particle-num-
ber operator,

We content ourselves with recalling here the
main results of the SBCS formalism and refer to
Refs. 23-26 for more detailed explanations.

Let us recall, in order to make our notation
clear, that in the usual BCS theory the intrinsic
movement of a system of I' pairs of paired parti-
cles (neutrons or protons) is described by the in-
trinsic Hamiltonian

H= Q t„(a„a„+a~} g Q a~a„-a-„a„.
v&0 Vs Q&0

We designate by
~
P) =a„-~0) the time-reversed

partner of v) = at
~
0) .

The ground state is then described by

and

(see Ref. 27), converges towards the states
PBCS)" or t FBCS),' ' according to whether the

variational parameters u„and v„are variationally
determined before or after projection. The ad-
vantage of this method is that the convergence is
practically realized for n=2 or 3 (Refs. 23-26,
31, 32), and it is theoretically total for 2(n+1)
& Max (P, A —P) .
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B. SBCS many-quasiparticle states

The spurious effects of the dispersion in the
number of nucleons on many-quasiparticle BCS
states may easily be eliminated within the SBCS
theory. Let us give the final results: The pro-

jections in the occupation-number space of the
two-quasiparticle states

I vv) = cic& g) and
~
vp)

= etc'„-
I g), and of the four-quasiparticle states

vvpp) =c„c„-c,cg g), vvpq) =c„'c~c'„c„g),and
v pqp) = ctczc„'c~t P) are given by the following

expressions if 2(n+1})Max(&, & -&),

n+1 ~+I P

i (vv) ) =C„" p $zzz (-v„+zzu„a„az), (u„+z~v„a„a„-}+c.c. J0)
A=Q r

(/v}

+1

i(vp)Q=C"„" g,z, ~ "a)a'a
' '

(u„+zv„ata~)+ c. c. i0),

(5a)

(Sb)

n+1

i (vvpp)„) = C„""" g $~z~ (-v„+z~u„a„a„-)(-v,+z~u, at a&) (u„+z~v,a~„-}+c.c. 0),
4-"0

Ov, o)

(5c)

+1

(vv p,q)„)= C„"""" (,z,~ "(-v„+z,u„a„'a„-}at„a„'-
" 40 r

(6,g, n)

(u„+z v„a~a„-}+c.c. 0), (5d)

n+1

(v p,qp}„)= C„"""' Q $~z~ "a„'a-„aiba;
'

(u„+z~ v„aint) + c.c. 0) .
A=O r

( vs &e "ep)

The energies of the ground state and of the pro-
jected states with two and four quasiparticles are
expressed in terms of the matrix elements of the
total Hamiltonian, in the truncated basis given by
Eqs. (4)-(5).

These matrix elements are calculated with the
least difficulty in the quasiparticle (qp) representa-
tion of Bogoliubov-Valatin. We must therefore
express the kets of Eqs. (4) and (5} in the qp
representation. To this end we employ the fact
t:hat every ket

i P) belonging to the Hilbert space

X of the states of the system described by the
BCS theory admits the following expansion. '

+ CvCu C wCv

v, P&0

+ CvCgC~Cp C-CqC~C„+ ' ' ' .
v o'0p

When all is calculated, we obtain the following
slightly cumbersome result:

n+1

Jq„)=C„Q t, z-,
'

( „u' +vz„') i+(z„i)g-
%2(z, - &) QvVvQ p, V g+ . . . A„A„+ ' +, ,

I iq),

n+1

I (vv)„) = C„"" g g~z~ ( 'u+ „z')Uu„g„(z~ —l) +Ai

(&v)

(«)

(A) (gv)

f gr

(eb)

n+1

t(vp)„)=C„"" Q g, za
A 0 (A, u. )

Q„+8~8„
Qv, y)

(6c)
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n+1

(vvp p)„)= C"„""" Q &,z, (u„'+z,v„') (z, -1)'u„cu„u„+(z„—1)u„c„At+ (z, —1)u„v„At +A'„At
&0 y

(gu, y)

(A, v)

+jz~ 1)'u„v Q, ' ",AiA,'+ +c.c.Ii)), (8d)
r

uy'+ gavr

n+1

1(vven)„&= C„""'" g h&z,
" (u„'+z,c„') (z„—1)u„c„c'„c»

&0 r
(A, u, v)

QP ~ fl ~
'6 )

gu„+ 2'zv„)
(~u, Q, v))

Qy + Z~V~

c'„c~At

(6e)
n+I

1(v ~up)„& = C."""'
WO Y

(e~t~ef )

(u~'+zqv, ') 1+ (z~-1) 2 a A~+ ' ' ' + c.c cc-c.~c-
Qy +Spy ~

' u ~ f) P

(A, ~ p, n)

(6f)

The pair creation operator AJ = ctc„- may easily be shown to be invariant under time reversal. "

C. SBCS many-qp energies

The Hamiltonian (1) and its canonical transform in qp representation, "

(Va)

(Vb)

(Vc)

(Vd)

(Ve)

(Vf)

4
H= Q H)~, i j1=0-,2

$ egao

conserve the number of particles and only connect the components of Eqs. (6) and (6) corresponding to the
same number of particles. This fact considerably simplifies the calculation of the matrix elements of H.
We find, in fact,

8„0=(q„H y„&=2(n+1)C„(y„lH y),
8"„"=((vv)„1H (vv)„) =2(n+1)C"„()„Hctc„'-

8"„"=((v )„uH (vg)„& =2(n+1)C„""()„1Hc~c-„P),
g"„""~=((v yves)„1 H(vvgp)„) =2(n+1)C„""((„Kctc„etc„g)., -'

&"„"""= ((»vn)„l Hl(» pn)„= 2(n+ 1)C„""""(q„[Hc„'c„'-ctc'„

S".""'=«v~~p). IH l(»~p). &=2(n+1)C„"""()„Hc„c-„c„c-g).

1. Zero-qp SBCS energy

It is easy to see that the only components of H giving a nonvanishing contribution to $„are H, o and H«.
Let us-recall that the variational determination of the probability amplitudes uu and v„cancels the term H20.
More explicitly,

g o = Hoo —G Q A"„"u„'v„',
uy g)0

i

where the BCS energy is simply

(6)
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H =2 Q (t„—g —Gv„)v„—G Q u„v„u„v» ~

V&0 Va u00

The A"„' functions are defined by

n+1~""= 4(n+ 1)C„' g $pk sin'xk(cosg» [1 —2(u„'v„'+ u „'v„')sin'x, ] + (v„'v„' -u„'u„') sing» sin(2x»))
k'=0 Pva Pug

We have, furthermore, used the following defini-
tions:

+1

4(n+1)C ' f R cosp =1, y„=2u„v, , 5„=u,' —v„', x = (. }, R = p„
A+0 V

p„k= [1 —y„sin'x»]'~', g»= g [p„»+ (& —2P)x»], tan p»= -5„tanx», with p„» ~ w/2.

2. Two-qp SBCS energies

n+I
$„'"=H~+2E„—G+ 4(n+1)(C"„")' g f»sin'x» g GR»"y„(u„'u„'+ v„'v„') cosgk"",

0 0
(Ar )

n+1

8"„"=H»+E„+E,—G(u„4+v„') —2 Guv„u„v„+4(n+1)( C„"")' g $» P R»" sinx»y, 5, cos($","k+x»+ —,
' v)

P
(A, u)

n+1

+4(n+ l)(C"„")'G g g»sin'x» g R»»y, y~u, 'v„'cos(g~»+2x»+&),
A=O PA,

(A, u)

(9b)

A calculation similar to the preceding one shows that in the evaluation of h"„" and $"„"[Eqs. (7b) and (7c)]
the nonvanishing contributions of H come from the components &p0 &gyp H22 &3y and H40. We indicate
the fina1. results for the two types of two-qp projected states:

where

n+1

E„=[(e„—A, —Gv„')'+ b']' ', r =G g u„v„, 4(n+1)(C„)' g $»cosg»=1, and
&0

n+1
4(n+1)(C"„"}'g (»Rk" cosgk"=1, Rk=

'

p„k,
0 0 r

(AJ )

vu
RA — . .. , Prh ~

r
(&v, u)

vu
Rra = A, a~

(A', v, u)

~vu
Rr}LA =, ... ~P»

P

(+,X,v, u )

4vks C 4 4uk 4Qk ~ 47~» 4k 4vk 4Pk 4 Y»I Ck 4k'4uk 4isk 41k Ak'

IH. ORTHONORMALIZED SBCS STATES AND

THEIR ENERGIES

The calculation of the mass parameters in the
Inglis cranking model' requires a knowledge of all
the excited states of the nucleus. Unfortunately
the SBCS states determined above are not ortho-
gonal among themselves, nor to the ground state,
the projection in the occupation number space
having destroyed the orthogonality of the BCS
states. Therefore we will replace the preceding
SBCS states by linear combinations, which will be
normalized and orthogonal among themselves, by
employing the well-known Schmidt orthogonaliza-
tion process and by correctly normalizing the kets
so obtained. This orthonormalization procedure
is often ignored, although there is no a priori

reason to neglect it." We employ the following
approximations:

(i} The Hilbert space X associated with the sys-
tem is restricted to the space K, of the two-qp
elementary excitations, higher excitations (four
and more qp) being very likely negligible, since
to excite a single qp we need at least an amount
of energy equal to the gap.

(ii} All the terms in (uv) of an order higher to
or equal to 3 are neglected.

A. Orthonormalized SBCS states in qp representation

More explicitly, the preceding restrictions sig-
nify that the only SBCS states which are considered
are the following:
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4.&= I&&0 t.&++ Ivv&&vv 4.&

@+1
= C„Q g,z,v

' '

(u„*+ z~ v„') '1+ {z,—1) Q, " ",A„' + c.c.
&0 V

(»)„&= 4&&4 (»)„&+g }l u&&I l }(vv).&

(10a)

g+1
= C„"" 'z) (,z,

' ' (u„'+z, v„') (z, —1)u„v„+A'„+(zz —1)u„v„t, " ",A'„vc.c}

(v p, )„)= v p&, the two-qp BCS state,

(10b)

(loc)

(vvPP)„) =
} y&(y (vvPP)„&+ Q (17})&)I7I (vvVP)„&

@+1

= C„"""" g (zzz, (u„+zzc„)[(zz—1)'u v u„v„+ (Z —1)u„v„v(„+(zz —1)uvre„]+ c c.} ~ () .
(A, v)

(lod)

In these equations, account has been taken of the orthogonality of the two-qp state v p&, with the projected
states (C)„&, }(vv)„), and (vvpp, )„&, having an even number of qp:

Q } v g& & v p g„& = 0, . .. .

These states are obviously not orthogonal.
It is now possible to obtain the overlap integrals of the BCS and SBCS states:

- @+1

&$}(c)„&=C„Q&,z,p
'

(u„'+z,v„')+cc.
Aa0

g+1

( vv
} i/I„& =u„v„C„ f gzg (zp —1) '

(u), +zgv~ ) + C.C.
0

(4v)

n+1

&g} (vv)„) =u„v„C"„" Q $,z, (z, —1} '&~~' (u„'+z,v„')+c.c.
40

(4')

& pp (vv)„)=5„„C"„" Q ] z
' ' (u„'+z v„')+c.c.

'

bc0
W)

+ (1 —5„„)u„v„u„v„C"„" Q ]„z„v(z~—Ip (u„' yz v„z}+c.c.
u ~ AO 7

(4v, g)
g+1

& y (vvp p)„& =u„v„u„v„c"„""" Q g, z,v(z, —I)' '
(u„'+z,v„')+ c.c.

}- ao
(A, v)

&qg (vvug)„&=[5 u„v„+5„„u„v„]C"„"""Q ],z, (z, -1) '[" (u„'+z,v„')+c.c.
40 7

Otv, v)

n+1

&(vvpp) (vvpv)„)=C"„""" g $,z, ' ' (u„'+z,v„')+c.c.
(~,v)

(11a)

(11b)

(11c)

(11d)

(11e)

(11g)

(11h)

The set of orthonormalized states obtained by Schmidt's procedure, beginning with q„) of Eq. (10a},
prises the following vectors:

} (vv )„')=Ã„(v, v}[( (vv)„) — y„& (y„(vv)„)], (12a)

}(vV)„'&=}(vV)„&= vV&. (12b)
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~(vvVu)„'&=M„(v, u) (vvVV)„& —gN„'(n, n) (ml)„&&(n)7)„~(»V(u)„&

& y„~ (vvp(u)„&+, g & (vvpu)„(ml)„& & (qn)„q&
hs

(12c)

where the constants of normalization are given by

N„(v, v) = [1 —
~

& (vv)„q„& ~'] '~',

(13b)

The different scalar products of the SBCS kets are given either by Eqs. (A3), in which the terms of an
order higher than 2 in (uv) are neglected, or by Eqs. (10). The result is given in Eqs. (A4)-(A6).

The same expansions (10) allow us to obtain in R, the expressions of the projected and orthonormalized
states

~
(vv)„') = 0& L„(v) + Q I V( & P„(V,v), (14a)

(vvV p)„'&= , y& Q„(v, W)+ Q VR&S„(U, v, tu),

where the coefficients L„, P„, Q„, and S„are defined by

L„(v)=N„(v, v) &g~(vv)„& — &P g„& '&P (vv)„)+&) g„& g &55~(„&(55 (vv)„)
L d

P„(V,v)=N„(v, v) &VV (»)„) -&Vg 4, &&4 4„&&& ( v)„v& +&Wu P„& Q &55I(1)„&&55 (»)„)
5

(14b)

(16a)

(15b)

e(», »)=M(», )») (( (»»»»))-()) (.)(&). (»»»»). ) —Q()) (nn))((n»)). l(»»»»). )()). (nn)»&'( (,„))I,
(15c)

(n))=M»„.(», , )I&»))»(»»»»»»). &-g '( , )))&n5)(5)))„»)&((M)„(»»»»)„)
d

-&nql 0„&,& 4„(vv~4.&+ g & (vvu u)„(55)„&& (55)„g& (16d)

These equations define in X, a set of projected
orthonormalized states.

B. Energies

The energies of the SBCS orthonormalized
states previously obtained can be deduced from

the matrix elements of H calculated with the zero-
and two-qp BCS states.

Let e„, e„(v), e„(v, p, ), e„(v, v, p, , p) be the ener-
gies of the projected and orthogonalized states
[10(a), 12(a)-12(c)], respectively. Then we ob-
tain as the final result

e„(0)=&y„H y„&=H„~ &y y„& *+ Q (vv y„&
' (+2+ E„(& (gv„v&(',

I
)»

(16a)

e„(v)= &(v, v)„'~H (vv)„') = Hoo ~L„(v)('+ g (H«+2E„-2Gu„'e„') P„(g,v)('

—G g (N.*a*+~.*~.*)P„(~,v)P„(~, v), (16b)

e„(v, V) = &vgtH[vg& =E„+E„,
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e„(v, v, P2 P)=H» Q„(v2P) '+ g (H»+2E„-2G}M„'v„') S„(q,v, P) '

-C . u u'+v'v S gv pS 5v p, (16d)

We explicitly give, in spite of their unwieldiness,
the main results of our calculation, in view of
their usefulness in every numerical calculation of
mass parameters, and even in every calculation
of SB.CS type. We hope that our results will serve
to promote and to orient other research in the
SBCS theory.

IV. THE FULL INERTIAL-MASS TENSOR

Having now well prepared the foundation of our
work, we are prepared to enter upon the computa-
tion of the microscopic inertial-mass functions.

A. The SBCS adiabatic cranking model

We suppose that an even-even nucleus formed of
A nucleons can be described by a Hamiltonian
X(r»r». ..2r„;P„..., P,) depending on the coor
dinates r». .., r& of the A nucleons and on a set
{p,(t)) i = 12s of s parameters depending on time
and characterizing the deformation of the nucleus
at every moment t.

If we also suppose that the oscillations or the
fission process of the nucleus are approximately
adiabatic, that is, that the collective speeds
(p&(&))2 i = 1,s are small compared with the speeds
of the intrinsic movement of the nucleons, the
cranking model permits us to write the collective
Hamiltonian in the form

jg litchi 8 j j + 1' ~ ~ i

where W(P». .., P,) represents the collective po-
tential energy of the nucleus and where the —,

' s(s
+ 1) B,~ coefficients are the components of the mass
tensor. The speeds p&(t) being small2 the first-

order perturbation theory gives us the Bj& in the
form

,2, g (O 22 m)(m 22 O)

(g tf )'
(16)

where H designates the independent particle Ha-
miltonian with eigenkets m) and eigenvalues g
for each set (P&) of the deformation parameters of
the mean field.

If account is explicitly taken of the pairing cor-
relations, the Hamiltonian H is that of E(I. (1)
and the ground state ~0) is given by E(I. (2) or
E(l. (4) according to whether the conservation of
the number of nucleons is imposed as an average
or exactly. In Eq. (17) the summation must ex-
tend to all the eigenkets of B, or else in qp repre-
sentation, to all the states having an even number
of qp.

In the BCS theory the only states having non-nil
matrix elements are the zero- and two-qp
states. ' ' Here all takes place in K, space. In
the SBCS theory this is not the case [cf. E(ls. (10)].
In fact, the Bj& should be calculated in the Hilbert
space spaned by the totality of the states having an
even number of qp.

In the usual BCS theory the energy denominator
5 -80 is the energy of the two-qp excited states
with respect to the energy of the fundamental g)
(BCS vacuum). The matrix elements of E(l. (18)
are given in Appendix B for the sake of complete-
ness.

In the SBCS theory the inertia parameter be-
comes, in the notation of Sec. III,

B(,(n)=2 2Q ( ) ( )
()}„(uu}„')((uu)„' — 2 )

+22' g ( } (2) (2„2I) (u2}„') ((v2}„' — 2„)

(19)

Each term of this series is developed in qp representation and only the terms physically important with
zero and two qp are retained. By using the algebra briefly set out in Sec. IG, that is to say, the SBCS
orthonormalized kets (subsection A) and the corresponding energies (subsection B), the B,& components
of the mass tensor are thus formally given by
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()' (o) (' P
""('-" P

'")'"'
V v~g

+28' g g„(vvV. V)„' (vvgV)„'e„v, v, p, p —e„o " BP, d

20

a

p ~n8

(20)

By using the anti-Hermiticity of the differential operator,

(O. , ', O) (O=-, 'P O.) v(O,

all the derivatives of Eq. (20 can be expressed in terms of the derivatives of P„& with respect to the
deformation parameters. Let us calculate these derivatives.

(21)

B. Evaluation of the matrix elements

The matrix elements of the derivation operator a/a p, are all known if we know a/p p, y„&. Now in X,
space the following expansion can formally be written:

l(I).&=f.(p~) g&+ g S"„(p~)»&+2 ""."(p~) vV&
ap, V V/g

in which the real coefficients f„, g"„, and h"„" are obtained using Eq. (21). The result is

(22)

f.(ol)=
(O o

O.)=-(O. Pp O)

:( =(--.'- )=-( .'- -)
)l, (Pl) = (vll o,) = —(o, vo) ~

(23a)

(22b)

(23c)

Thus, it suffices to know the derivatives with respect to the P& parameters of the zero- and two-qp BCS
states. Now it is known' that to the first order in P, the BCS states allow the following expansion in K,
space:

ij')= O(0))+ g Pl p +'(Pl) (vv)(o)& —g "P"vo"" (ll to v) (v)O(o))
v Q VV V

(24a)

By using the technique of calculation of Bes,' which leads to the expansion (24a), we have evaluated the ex-
pansion of the states

~
vv) and vg&:

»&= (»)(0)& —ZP$
" '

q(0)&

(24b)

(24c)

(25a)

(25b)

+ g " " "
.
"

(P P
v (Pv)(O)) V (v O) (vv)(O))

(A)

lvo)= (vl)(O)&++ P " "+ ""
(O ') O(O)& —p " '

( v) ( )(O))
E„+E„ Q —E„B

The kets
~
$(0)&,

~
(vv)(0)), and (v p)(0)& describe the zero and two-qp-BCS states for deformation p, all

zero.
The coefficients of ansatz (22) may then easily be computed:

f„(P,) = g 4" ' ( g„(0)
~
(vv)(0)),

V

g"„(p,)= 4" ' (y„(0)iy(0)),
V V

".""(Pl)= " " "" o )(o,( )lo(o)). (25c)
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The final result for the matrix elements of Eq. (20}is

. vv„' =- vv„' „=-N„v,v „P& vv„- „„vv„
+ g ).."())i)K(»).low) -(C. wv)(C (». ).) )I,

vp. = — vp,

( (vvg)u)„' = — (vv p p}„' )F)„=-M„(v, p) g g"„(P&)((vvV p)„~')}')})
8 g g 8

n pp . n "
BPq

(26a)

(26b)

—g N„(n, n) g'. (&&)&(vvV V)„(nn)„& &(nn)„~»& .

(26c)

C. Mass tensor without spurious' number-fluctuation effects
h

By using the results found in the preceding subsection B, Eq. (20), the number-projected inertial-mass
parameters may be written in the form

B&&(n)= [B&&(n)]ecs + (Bu (n)]z aoz,

where

[B„(n)]ec,= -2I' Q " ' " ~ ~N„(v, v)((vv)„~ vv) (y„)I)& ~'
B„(a,)B„(V,)

1 (uv& + u& v)2 8H 8H

„„e„v,p, -e„0 ~+g 2 3, 8&

(27)

(28a)

and

B„(e,)B„(u,)[B)j(u}]pRoJ 2@ Q ( ) (0)
v n n V V

e„(v, v, g, p)-e„(0) (E ~E }2 al3,
' '

8P,

The F„and G„ functions are defined by

&„(v)=N„'(vjv)&(vv)„vv&(4„vv) &4„4)[&(vv)„0& -(q„y&(4„(vv)„&li

(28b)

(29a)

G„(v, V) =
—,
' M„'(v, u) g &(»~V)„nn) ((»~~)„nn& [1-N„'(6,6)((»)„~») -N„'(n, n}((nn}„nn&

+ N„'(q, q)N„'( 6, 6)( (qq)„qq) ( (66)„66)] . (29b)

The first term (28a) of the effective mass-tensor
component, Eq. (27), tends to the limit, where
there is no projection towards the term [B,&]ec8
given by Eq. (B6}. The second term, [B&&(n)]»»,
given by Eq. (28b), has no equivalent in the usual
BCS theory. It is a corrective term which char-
acterizes the projection and which tends, evidently
and visibly, towards 0 when we pass from the
SBCS states to the BCS states.

Equations (27)-(29) entirely solve the problem
of the extraction of the spurious effects of the dis-

persion in the number of nucleons on the nuclear
mass-tensor components.

V. CONCLUSION

We have presented a generalization of the crank-
ing model thus permitting the obtaining of the mass
tensor with orthonormalized wave functions strict-
ly conserving the number of nucleons. Each com-
ponent of the tensor occurs as a sum of two terms.

When the SBCS functions tend towards the BCS
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functions, that is, when the extraction of the phan-
tom effects, due to the fluctuation of the number
of particles, ceases to have effect, the first term
becomes the mell-known BCS component of the
mass tensor and the second term disappears.

All the matrix elements, overlap integrals, and

energies necessary to the numerical calculation of
the tensor have been given in full detail. To sum-
marize, the present treatment adds another con-
sequential meaning to the physically important
problem of evaluation of the mass tensor.

APPENDIX A: SCALAR PRODUCTS OF THE SBCS KETS

The particle-number projection destroys the orthogonality of the kets. The scalar products of the pro-
jected kets are given by

n+1

((„(uu)„)=C(v+1)C„C"„" P (zzz (zz —1)u„v„' (u„'+z„u„')+c.c.I,
8&0

(A)
n+1

((l)„(vvpg)„}= 2(n+ 2)C„C„"""" Q f,z,v(z, —1)'u„v„u„v„' (u„'+z,v„') + c.c.
&0 y

(4v, v)
n+j

&(nn)„(vvVg)„) =2(~+ &)C„""C„"""Q $,z,' '"' (u„'+z„v„')
ao V

(&)

(Al)

(A2)

x y p)) u 2+z v 2 zy )zz) 2+(z —l)6 " " +(z
v 4 v

upvpu )z v tc

(u uz v )( u, )
+c.c.I. (&C)

Calculated in space X2 spanned by the components
of zero- and two-qp excitations, these scalar
products are written

Q„s- +I 8„-- pH
vp, =- ""

p, -- v, ifv4p,
,

BP» E +E BP,

((vv)„q„)=((|) y„) ((I) (vv)„)

+ pp „|ILg VV „

(( uV). 4„)=((t) 4, )(4~( vugg). )

+ Q'g vvp. JLL „

((ml)„(vvpp)„)=(4 (Wl)„)( F(v()vip)„)

(A4)

vv p =
~ ifv=p.~

~

&.(P )
(
BP) 4upvp

The following definitions have been used"~'.

&(e„-A.) B&' &' '

B&

g2.

E„' BP)

oc) + M) 8+
BP g2+ p BPg @2+ bm

(a2)

(B4)

+ . 55 qg „55 vvp. p „

(A6)

All the terms of order higher than 2 in (uv) have
been neglected.

APPENDIX B: BCS MASS TENSOR

With the aim of facilitating the comparison be-
tween the BCS and SBCS mass tensor, we recall
here the expressions of the BCS matrix elements,
entering into the calculation of the mass parame-
ter s2~ 20~ 36,

The derivatives. of the pairing gap and the Fermi
energy, with respect to deformations, have been
obtained by a lowest-order expansion. ~

As usual, we shall split up the mass parameter
into three parts: The leading part carries the in-
dex 1; part 2 is independent of the pairing gap and
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remains, therefore, even if the latter becomes
negligible; all the terms dependent on the variation
of the pairing gap and of the pairing energy versus
the deformations of the nucleus -have been grouped
together in part 3. Numerically, the two latter
pa,rts have the tendency to cancel each other:

[~„1...= [~„l,+ [~„l.+ [~„].,
with

[B„]-'l,r='L g . (v u)(u u), (Bva)

[a„],=2I'

+ (~.~. +~.~.&' as .

) (
as

)(E„+E„)'
(Bvb)

is„j,=; a g, ', ~(. '", .) (. '" )
+," ~.(v, )~„(v,) . (».)(2S„')s

The last part is identically zero if
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