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The collective path g(q)) to be used in a microscopic description of large amplitude collective motion is

determined by means of the generator coordinate method. By varying the total energy with respect to ~$(q))
and performing an adiabatic expansion a hierarchy of equations is obtained which determines uniquely a
hierarchy of collective paths with increasing complexity. To zeroth order the ~$(q)) are Sister
determinants, to first order they include 2p-2h correlations. In both cases simple noniterative prescriptions
for an explicit construction of the path are derived. For a correlated path their solutions agree at the Hartree-
Fock minimum with random phase approximation eigenmodes. The resulting equations for the path are
compared with the outcome of related theories, particularly of semiclassical nature. It is remarkable that
both sorts of approaches, on one hand the generator coordinate method with correlated states and on the
other the quantized adiabatic time dependent Hartree-Fock theory, are virtually identical in the results,

although they are of different conceptual origin and use different techniques. It is shown that the use of a
correlated path does not cause numerical complications.

NUCLEAR STRUCTURE Collective path derived by GCM, inclusion of RPA cor-
relations, relation to adiabatic TDHF.

I. INTRODUCTION

In recent years there has been renewed interest
in theories suitable for the microscopic description
of large amplitude collective motion. Although
those phenomena occur in all many fermion sys-
tems, particularly nuclear processes such as fis-
sion, heavy ion reactions and anharmonic multipole
vibrations are a sensitive testing ground. The aim
is to reduce the many body problem to a simpler
one in terms of one (or few) collective degrees of
freedom. One promising way to achieve this is
provided by the concept of a collective path

~ Q(q}).
This is a set of suitably chosen A-body wave func-
tions, which depends on a parameter q in such a
way as to reflect properly the various stages of
distortions of the system during the collective mo-
tion, like snapshots. The set f~ Q(q))) spa~a a cer-
tain collective subspace of the full Hilbeit space.
In choosing

~ Q(q)), one is guided by the objective
that the Hilbert space splits as far as possible into
a direct product of the collective subspace with the
corresponding subspace of the noncollective de-
grees of freedom or, in other words, that the Ham-
iltonian of the system splits into a sum of a col-
lective Hamiltonian and a noncollective one. If
this is fulfilled, collective and noncollective mo-
tions are decoupled, and one can treat them sep-
arately. In general the splitting wiQ only be ful-

filled approximately, giving rise to phenomena
such as friction, dissipation, damping, etc. How-
ever, it is hoped that a proper choice of the col-
lective path allows us to minimize the residual
coupling and treat it in low order perturbation
theory.

There are two conceptually different ways to
treat collective motion by means of a collective
path

~ Q(q)). One is provided by the generator co-
ordinate method" (GCM). There, one diagonal-
ized the total Hamiltonian H of the system in the
subspace spanned by the

~ Q(q}), using the ansatz

Ik) fAf(e)IA(s))=.

The superposition function f (q) is to be evaluated
by solving the well known Griffin-Hill-Wheeler
equation'

dq' q II-E q' q' =0.

The GCM, employing the superposition principle
(1.1), is a thoroughly quantum mechanical theory.
The other group of theories is more classically
minded, extracting the collective dynamics by
studying the explicit time evolution of the system
along the given path

~ Q(q(t), p(t))). These theories
are all embedded in the framework of time depen-
dent Hartree-Fock (TDHF} theory. We will call
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them hereafter mean field theories. They a)re
widely used in their various stages of refinement

~ as, e.g., the deformed shell model, or the con-
strained Hartree-Fock (HF) model together with
various cranking approaches, and finally the adi-
abatic TDHF approach (ATDHF). ' '

Furthermore, there are essentially two basic
questions to be solved in a microscopic descrip-
tion of collective motion by means of a path

~ P(q)):
First, one has to determine the path

~ (t)(q)). A
good choice of

~ (t)(q}) is important for a proper
description of the processes, since large ampli-
tude phenomena are characterized by the fact that
~ Q(q}) substantially changes its structure, and
therefore, it is not satisfying to have just an edu-
cated guess of the path. One really should have an
equation of path (EOP) which uniquely determines
an optimal

~ Q(q)). Second, for a given path one has
to recover the proper collective Hamiltonian H,
for the motion within the collective subspace
( ~ (t)(q})j. The second problem, the evaluation of
H„has been solved and discussed extensively for
both approaches, the GCM and the mean field the-
ories, with the result"' that both conceptually
different ways finally yield the same unique H, if
they use the same dynamic collective path ~(t)(q, p})
depending on. a pair of conjugate collective param-
eters.

It is the aim of this paper to study the first prob-
lem, i.e., the derivation of EOP, by means of the
GCM. The GCM seems to be very appropriate for
such an approach, since it is a genuine quantal
theory and there is a strict variational principle
for it. The use of the GCM for the construction of
~ (())(q)) has already been suggested by Holzwarth
and Yukawa. " The present approach goes beyond
this by a more general treatment and by consider-
ing also correlated states

~ Q(q)).
The present derivation of an EOP using the GCM

is the last step towards a complete and unified view
of the microscopic collective theories. The coun-
terpart, the derivation of EOP using the mean field
theories, has already been given by various auth-
ors' ' and leads eventually to the so-called ATDHF
(adiabatic TDHF) equations for the path. The re-
markable outcome of the present investigation will
be that the ATDHF equations are virtually identical
to those derived by means of the GCM if proper
correlations are incorporated into the states ~g(q})
of the path. Together with the known result that both
ways yield the same quantized collective Hamil-
tonian, "this feature actually unifies two basic
sorts of theories for large amplitude collective
motion which are of entirely different conceptual
background.

The contents of the paper are as follows: Sec-
tion II describes the variational principle to be

employed for the construction of the path. Section
III displays a local algebra appropriate for the
variation of the path. Section IV considers a path
consisting of Slater determinants. In Sec. V it is
shown that one can easily generalize the approach
to states incorporating random phase approxima-
tion (RPA}-like correlations without complicating
the numerical procedures. Section VI considers
a dynamic generalization of the GCM which in-
cludes also the momentum p as a generator co-
ordinate. The unification with other large amp-
litude approaches, particularly with the quantized
form of ATDHF, is done in Sec. VII. Summary
and conclusions are given in Sec. VIII. The pres-
ent approach can easily be generalized to quasi-
particles and to several coordinates. However,
for the sake of simplicity this is not done here.

II. THE VARIATIONAL PRINCIPLE

Consider, e.g., the set of all A-body Slater de-
terminants. It provides a complete basis for the
Hilbert space of all A-body state vectors, which
means that any A-body stat'e ~g) can be expressed
as a linear superposition of Slater determinants.
If the Hamiltonian of a system exhibits a well-
developed collective degree of freedom, we can
expect that the states of the collective spectrum
are confined to a small subspace of states with
nearly constant intrinsic (noncollective) excitation.
One generally assumes that this collective sub-
space spanned by a set of Slater determinants
~ p(q}), depending on one generator coordinate q,
i.e., all states within the subspace, can be super-
posed as

I() jdef(e) l 4(s=)) . (2.1)

5&(g ~H -E ~P) =0

with respect to f. This yields the well known
Griffin-Hill-Wheeler integral equation. '

(2.2)

dq q' II-E q q =0, (2.3)

which may be solved directly in the above form,

This ansatz is motivated by imagining that the
[ Q(q)) represent a series of successive collective
deformations, so to say, "snapshots" of the col-
lective motion. The set f ~ (t)(q))) constitutes the
collective path. The ~Q(q)) need not to be restrict-
ed to Slater determinants, but can have a more
general structure, see Sec. V.

Usually, in the generator coordinate method
(GCM) one assumes the path

~ (())(q}) to be given and
derives an equation of motion (EOM) for f(q) by
variation
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or which can often be transformed into a collective
Schrd dinger equation. ' "' '

In this paper, we aim at obtaining the equations
of path (EOP) for the

I Q(q)&, i.e., we want to de-
termine the best possible path to be inserted in the
ansatz (2.1). The EOP are found by variation

6~()IH-E lg&=0 (2.4)

with respect to Q. This yields

dq dq' * q' q' II -E q q =0, 2.5

which determines the path I (p(q)& for a given f(q).
This equation has already been discussed by Holz-
warth and Yukawa. " Both E(ls. (2.3) and (2.5)
form a coupled set which generates, in general,
a spectrum of superposition functions f„(q) to-
gether with (f„-dependent) paths I Q„(q)&. Nothing
guarantees yet that the resulting I (P„(q)& span a
collective subspace distinguished by its decoupling
properties. ' In order to achieve this, one has to
remember that a collective Hamiltonian corre-
sponding to a well-established collective motion
should not describe just one collective state, but
a spectrum of states with different eigenenergies.
Hence the GCM, which corresponds to a true col-
lective motion, should be distinguished by the fact
that one path I Q(q)& fulfills E(1. (2.5) for a full
spectrum f„(q)~ This means that E(1. (2.5) reduces
to

6.&(p(q) IH -H
I (p(q')& =0 (2.6)

for all combinations of q and q'. This is actually
a very strong requirement which might only be
exactly fulfilled in the ideal case of collective
motion corresponding to a symmetry of H.

In general cases, however, collectivity is most-
ly exhibited for adiabatic motion. Hence we first
write the kernel of E(1. (2.5) in an expansion which
is suited to the adiabatic limit, i.e., which counts
orders of the collective momentum p. For large
systems, the overlaps &Q(q} I Q(q'}& and
&((e)(q) IH I Q(q') & are peaked at q = q', and for slow
motion a differential expansion in orders (q —q)
is appropriate, yielding

&(P(q)IH I(P(q')&

= I (q, q') (360 2 i (q'- q) 3C, - () (q'- q)'3C2 + )
(2.V)

where the overlap

&(t)(q) I (p(q')&=1 —'(q'-q)(P. &--'(q'-q)'&P. '&+ . .

(2.8)

is approximated by

I(q, q') = exp(-i (q'- q)&P0&- 2(q'- q)'&P0'&) . (2.8)

The operator p0 is defined by

P. l e(q)&=i, I e(q)& (2.10)

5$ dqg+ q B'c q, p -E g q dq=0 (2.12)

with

H, (q, p) =H, +:pH, :+:p H, :+ ~ ~,

with

n
~ png. 2-n g p™gpn-m

=0 m

The various terms are given by

H.(q) = 3e.(q) -
2 P'. 36,(q)
(P()&

0

&P0&'

16(P .). —
8(P .

&
I

2(q}+ ",

(2.13)

(2.14a)

0 0

H, (q)=, X2(q) + ~ ~ ~
~

1

0

The g (q} is related to f (q} by

n(s) =J'"*(s,v )f(s )ds''
(2.14b)

(2.14c)

The expectation values in E(1. (2.14) are to be eval-
uated at

I f(q)&.
I«ne requires the path I p(q)& to be the same for

a full spectrum g„(q), then the group of E(ls. (2.11)
is equivalent to postulating separately 5 QH0 5 @IIy
= 6 @H, = ~ ~ ~ =0, which is exactly as strong a con-
dition as E(1. (2.6). However, for an adiabatic mo-

and the coefficients K„of (q'- q)" are given by

3e.(V) = &e(q) IHI y(q)&, (2.11a)

R,(if) =
& Q(q) I (H, P0'fl Q(q}&, (2.11b)

n. (e) =(('(q) 0'. , (n, n.9-(I2, 'I e(il)).

(2 ~ 11c}

The H =H —(H& and all expectation values in E(ls.
(2.8)-(2.11) are to be evaluated at q =2 (q+q'). In
contrast to the usual treatment, "'"we have to re-
tain terms that are linear in q'- q for the later
variation. These formulas allow us to transform
the integral E(1. (2.5) to a differential equation in
terms of the collective momentum operator
p = -id/dq. The derivation is given in Appendix A

in detail and yields the result
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tion, the terms in E(l. (2.12) with increasing pow-
ers in p are of decreasing importance for the de-
scription of the motion. This defines in a natural
way an order counting such that to zeroth order
the path is determined by the terms proportional
to R„which originate from (q'- q)c, to first order
by the terms proportional to 5C, and proportional to
K„which originate from (q'- q)' and (q'- q}', etc.
To zeroth order one obtains explicitly

5~(H&=0

and to first order in addition

5~([H, P()}&=0.

(2.15)

(2.16)

III. THE VARIATION OF THE PATH

The collective path should belong to a family of
simple wave functions. In the following, we will
consider Slater determinants or RPA-correlated
states. As in the case of Slater determinants, we
can also assume for the RPA-correlated states
that Thouless's theorem applies, "viz. , that for a
given state I (p(q)& any infinitesimally neighbored
state I (P(q)& can be expressed by weakly excited
1p-1h excitations

I q(q)) = ((+P C„,.~„'a, )) q(qB, (3.1)

where c~ creates a particle in state n and a, a hole
in state i. The grouping into empty states n and
occupied states i depends on the reference point

Actually, the term proportional to X, in the first-
order expansion of II, has been neglected, since
its variation is automatically zero with 5g$Qy 0,
i.e., with E(I. (2.16). This is a general feature of
E(ls. (2.14) persisting to all orders with the con-
sequence that only the leading terms on the right
hand side, i.e., 3C„3C„SC„.. . have to be varied.
[The expectations in E(ls. (2.14) are to be evaluated
at l(Ie)(q)&. To require 5&H„=O, .. . , 5&H, =O up to
a given order n is equivalent to require 6 &X„=O,
5 @X,=0, since the subtraction terms in 5 &H, =0,
i & n are just 5 &II, ,~, which are already solved in
5&K, ,n=O up to the given order, i &+& n ]Thi.s
shows that an order counting in terms of (q'- q}"
is equivalent to an order counting in terms of p".
Apparently, to second and higher orders one ob-
tains more and more complicated expressions. As
will be shown in the next sections, the dominating
term in the zero-order variation can be met by a
pure Slater determinant, in the first-order vari-
ation by an RPA-type correlated state, in the sec-
ond-order variation by second-order RPA, etc.
In the present paper we will consider in detail the
zeroth and first order.

I Q(q)& and so does the definition of a 1p-lh oper-
ator. The algebra of 1p-1h excitations can be
handled in different ways. For the following, it is
most convenient to couple them to a basis of Herm-
itian operators'

P„(q) = Q (p(,". 'aia,. —p„',. '*ata„),
ffg s

Q„(q) = P (q(„,
")ata. , +q(P. )nata„) .

n, i 2

(3.2)

(3 3)

I'n order that the P, and Q„provide a basis for the
Ip-1h operators, they should form an orthogonal

(A(q) I [Q.(q), P8(q}]I A(q)&=i 5.8,

(P(q} I [Q.(q), QB(q)] I A(q)& = o,

(4(q) I [P.(q), PS(q)]l y(q)&=0

(S.4a)

(3.4b)

(3.4c)

and complete set,

&,„=g(fQ (q)(4(q) I [P.(q), &]lk(q)&

Q. l P(q)&= Qrs fPB I(t)(q)&

and vice versa. It is thus possible to assume a
coupling (3.2) and (3.3) for which

P„(q) I O(q)&=i Q. (q) I e(q)&. (s.6)

This assumption establishes a relation between the
q„',."' and p„(i"), depending on the state I (p(q)&. With
E(l. (3.4a) one sees that this corresponds to the
orthogonality relations

&4(q) I (P., P,}I e(q)&= &(t)(q) I 4Q. , Q,}le(q)&

In the Q„,P„representation, the neighborhood of
l(2I)(q)& can be represented as

Iq(q))= () —q gqq p (q)+( p()q..c..(q)) (q(q)),

(3.7)

where 5q and 5q can be restricted to real values,
since

iraq„

is equivalent to 6p and vice versa, ow-
ing to Eil. (3.6). We now assume a labeling a so
that P,(q) is the generator of the neighbor state
soithie the path

-iP (q)&4(q) I [Q (q), &]14(q)&}, (3.5)

where A may be any operator and A„„is its 1p-1h
part with respect to l(P(q)&. With respect to all
possible lp-1h operators, the Q„,P„are a com-
plete set. The set of state vectors Q„l(t)(q)& and
P„l (t)(q)&, however, is overcomplete. Each
Q„l (p(q)& can be represented as a linear super-
position
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14(q+5q) & =(1—i 5q p.(q)) I e(q) & .
The variations of the path 5 &I (t)(q)& consist then in
all states Not proportional to (3.8). These are in-
dicated by the superscript 4 and are

14(q)+&'g(q))=() -& Q ~„(c)P„(c)
0f ss0

(3.8)

+i Q ~'((q) Qs(q) I I A(q)& (3 9)
8=au ]

for all possible choices of real 6 (q) and E()(q).
[In fact one has in mind thereby localized vari-
ations, i.e., e(q)(L5(q —q,).]

It should be remarked that without changing the
structure of the 1p-1h space, one could assume a
more general form of Eq.(3.6) containing a pro-
portionality factor x„, i.e., P„l (t)&=ix„Q„I(t)&,
with A. = 2&p~'&. This would merely change the
scale in Eq. (3.8). Thus we are free to choose a
scale which is most convenient, i.e., A. „=1for a11

q which lead to Eq. (3.6).

IV. THE EOP FOR A DETERMINANTAL PATH

In this section, we are going to derive the EOP
for a one parameter path 1(t),(q)&, which consists
Strictly of Slater determinants. In that case, the
neighborhood is given by all 1plh excitations, and
the developments of the previous section can be
applied. For pure Slater determinants we have

a,. a„l $,(q)&=0 (4.1)

and thus obtain from the condition (3.6) the relation

q(&) —P(u)
ni (4.2)

which links Q„and P„. If one knows Q„, one im-
mediately knows P, and vice versa.

From the hierarchy of conditions (2.14) we con-
sider now only the first, i.e., (2.15}and look how

far this does determine the path. The variations in

(3.9) yield

&y.(q) I [P (q) Hll $0(q)&=0, for a~0

&y.(q) I [Q8(q), ff]l y.(q)&=0 for all P.
(4.3)

(4.4)

H,„=Q QB(q) &(t.(q) I [ps(q), H]I e.(q)&

-ip (q)&e.(q) I [Q8(q), ff]l d.(q)&.

Due to Eqs. (4.3) and. (4.4) only one term remains:

(4.5)

These zero-order equations already determine the
path: Suppose that one point 1(((),(q)& on the path is
known. There the total Hamiltonian can be ex-
panded in 1pp, 1hh, 1ph, 2pp, . .. operators. The
above equations are only sensitive to the 1p-Ih
part of H which can be written, using the complete-
ness (3.5}

H,.= i Q.(q) &4.(q) I [P.(q), H] I A.(q))

We thus obtain the path generator p0 as

P,(q) =i ca,„(q),

(4.6)

(4.V)

with c being a real proportionality factor. Its
choice is free and determines merely the scale
of the collective path. It can be chosen such that
&P,') = const, as suggested at the end of Sec. III.
Another way of fixing the scale is, e.g., the use
of a measuring operator &, such that

&e.(q) I & I y. (q)& =q.

In this case we derive from

& 4.(q+5q) I &14.(q+5q)& =q+5q

the c as

c '=&0.(q) I EH...Cjl y.(q)&.

No matter how c is chosen, Eqs. (4.V) with (3.8)
show that if we know one point I g, (q)& on the path,
we know also its neighbor 1$,(q+5q)&, and thus
the total path can be constructed successively.

One point which should be on the path is the
Hartree-Fock minimum 1(t)(0)) determined by

.& y.(0}I [P8(o), H]1@.(0)&= &y.(o) I [Q 8(o), H] I e.(0)&

(4.8)

(4.10)

8, I e.(q) &
= -ip.(q) I e.(q}&,

s,p. (q) = -i [p.(q), p. (q)1+(8,p. (q)),„,
and similarly for B,Q()(q}. (For an extensive dis-
cussion of the latter relations see Ref. V. ):. At the
HF point 1(())0(0}&, the 1p-1h terms from B,p and
B,Q do not contribute, and we obtain the equations
determining the first step P,(0):

&(t),(0)1[P,(0), [H, p„(0)]]1@,(0))=0, fo o. 0 0

(4.11)

t(0)(1)[P,(0), [H, Qs(0)]]1@,(0)&=0 for all p.
(4.12}

for all p. But there the propagator po(q) is not
determined uniquely because Eq. (4.V) contains an
undefined limit, H,„O and c . We have to study
a small neighborhood of the HF point in order to
specify the first step (rule of I'Hhspital). Taking
the s„derivative of Eqs. (4.3) and (4.4), we obtain

&4.(q) I [p.(q), [H, p. (q)]]
-i[If, (s,p. (q))„.] I e.(q)&=0, (4.9)

&e.(q) I [P.(q), [H, Q, (q)]]
— [H, (8, QB(q))„,l I y. (q) & =0,

where we have used
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These equations bear some resemblance to the
RPA equations [see Eq. (5.18)]. In fact, they are
half of them, viz. , the part which determines
P,(0). [The Q,(0) follows from Eq. (4.2).] Its
solution becomes explicitly a matrix equation for
the expansion coefficients p„",' in Eq. (3.2). It wiii
yield a whole spectrum of eigenoperators P„(0},
all mut~»'ily decoupling in Eq. (4.11), and all of
them can formally be used as propagators to the
first off-equilibrium point on the path,

I ko(~e}&=(I —& 5epa(0)) I yo(0) &

In practice, however, one has in mind a certain
collective motion such as, e.g., fission or a mul-
tipole vibration. This preconceived knowledge of
the motion can be used to select from the spec-
trum of Eqs. (4.11) and (4.12) that mode which is
expected to be the small amplitude limit of the
large amplitude motion under consideration. For
initiating a fission path, e.g., one wiQ use the
lowest collective quadrupole mode.

An important feature of the path is its behavior
under time reversal Her.e Eqs. (4.11) and (4.12)
come into play. Assume one given point on the
path

~ Q(q)& to be time even. Then H,„will be time
even and, according to Eq. (4.V), the P,(q) time
odd. From step (3.8) we see finally that

~ Q,(q+5q)&
again will be time even. Thus if one point on the
path, off equilibrium, is time even, then the whole
path is time even. The HF minimum itself is cer-
tainly time even and Eq. (4.12) is trivially. fulfilled
if we choose from the spectrum of Eq. (4.11) the
solution p, (q) to be time even, which is a reason-
able decision. Thus the whole path consists in
time-even

~ Q(q) &, which represent statically de-
formed states. This means we have obtained the
path in a zeroth-order adiabatic limit as a natural
outcome of the expansion (2.14), which implies a
counting in orders of the collective momentum.

Altogether we see that if we restrict the
~ Q, (q)&

to be Slater determinants, being analytical in q,
and to be determinants along real q, then the first
of the conditions (2.9) alone is sufficient to de-
termine uniquely the EOP [except for some free-
dom of choosing the mode at ) Q,(0)&]. Any further
condition of (2.14) is met by chance or violated. If
we want to take into account higher orders, we have
to release some restriction on

~ Q,(q)&.

(Q.(e) —fPo(e)) I 4.(e)&=0. (5 2)

This condition links the correlation structure with
the relation between Q, and po: If the correlations
are given, then Qo and Po are no longer independent
of each other. Or, in turn, the correlations can be
determined by Eq. (5.2} if we evaluate P0 indepen-
dently from Q, by a further dynamical equation
[further than Eqs. (4.3) and (4.4) alone], yet to be
found by varying also the first-order condition
(2.16).

Again we choose P, to be the path generator
according to Eq. (3.8), i.e.,

excitations. (Owing to Thouless's theorem, the
1ph excitations cannot lead out of the determinantal
space. ) One could handle them explicitly as

IA.(e))=l &+I;r ;;.~'~, ~'~ )~14(e)&.

However, we prefer to determine the correlations
by means of their 1p-1h properties; we require
the [ P,(q)& to be a vacuum for a certain set of 1p-lh
operators B„(q):

B„(e)I P.(e)&=o. (5.1)

The B„can be represented in general by means of
the operator algebra of Sec. III as B„=+~c~"'Q„
+ d "I~. Their choice defines type and size of
the correlations. This way of defining [ p, & is well
known in RPA where the B„tare the boson oper-
ators Bt =(1/vY)(Q„+i p„), with Q„,P„being the
eigenmodes of RPA, and where Eq. (5.1}defines
~ Q, & as the so-called boson vacuum. "~" Thou-
less's theorem and the concept of the 1p-fh nei-
borhood still hold for this type of correlated states.

Since we are working in a state space more gen-
eral than Slater determinants, we have to release
condition (4.4) (which was q„'~' =p„'p'). This nuLkes

Q~ independent from P and we hope that, with this
greater flexibility in the basis, we can also meet
the first-order condition (2.16). We have to keep
in mind, however, that the correlations are not
completely arbitrary but are to be determined by
condition (5.1). In the following, we will take into
account only the least amount of correlations nec-
essary to fulfill the first-order condition (2.16},
i.e., we restrict the set B„just to the "path-boson"
B, and remain with the condition

V. THE COLLECTIVE PATH FOR CORRELATED STATES
~4.(&+5&}&=(l-f5eP.(e)) ~4, (e}&

As we have seen in the preceding section, the
restriction of

~ Q(q)& to Slater determinants allows
only the lowest order condition (2.14a) to be met.
The next possible generalization is to consider
correlated states

~ Q,(q}& which contain weak 2p-2h

and remain with the variations in (3.9). In contrast
to the determinantal case, we have now to meet an
additional condition, viz. , Eq. (5.2). This is
achieved by adding a constraining functional to the
variational Eq. (2.15). We formulate it as
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A= dqdq' * q

~ (&e.(q) IP.(q') —iQ.(q') I e,(q')) n(q')

+ n*(q) &e.(q) IP.(q) +iQ.(q) I e.(q') &j, (5.3)

where q(q) is a continuous set of Lagrange multi-
pliers. Along the same lines as for &/IHIP'&„we
perform a narrow overlap. expansion for A (for de-
tails see Appendix B) yielding

I

A= dqdq' ~q, q, q' gq+g*q, q P, , q -i gq -q*q q, , q

--' '(q'- q) [(a, [n(q) + n*(q)])&4.(q) IQ. I 4,(q) &

+ (a, [n(q) -n*(V)])&e.(q) IP. I e.(V)&]+ ]f(q') (5.4)

In zeroth order we then obtain

&e.(q) I [P.(q), H]ly. (q)&=0, f» «0 (5.5)

&y,(q) I [Q,(q), H —Re(rl)P (q)] I P,(q)&=0 for all P.
(5.6)

This seems to be a change compared to Eqs. (2.14)
or (4.3) and (4.4). However, the Lagrangian mul-
tiplier Re(q) is not really in effect here. It can be
chosen freely and we assume for convenience

&4,(q) I [Q,(q), [H, Q,(q)] —i lm(e, n)P. (q}]I @.(q)& =o

for all P (5.12)

[the

a, &~. l [QS,P.]le&=e.('68.)
does not contribute in the variation]. Here the
Lagrangian multiplier Im(q) is really necessary,
it allows us to fulfill Eq. (5.12) for p =0. There
one obtains

Re(~) =0. (5.7) lm(e, q) = -s„, (5.13)

& P,(q) I [P„(q),H] I P, (q)& =0, for n c 0

& Q, (q) I [QB(q), H] I Q,(q) & =0, for all p

which determine Q,(q), using the completeness
(3.7) as

(5.8)

(5.9)

Q.(q) =(s.~) 'H,.(q).

There the

s,v =-i&4,(q}I [H, P,(q)]14,(q)&

(5.10)

can be interpreted as the slope of the collective
potential 'U(q} = &p,(q) IH I

Q', (q)&. The slope, of
course, depends on the scale of q and thus the
8,'U plays a role similar to the proportionality
factor c in Eq (4.7). Eq.uation (5.10) determines
only Q,(q). We find the equation for P,(q} by per-
forming the variation of the first-order condition
(2.16) together with the first-order part of the con-
straint (5.6). Changing in addition &(H, P,j& to
&[H, Q, ]) by means of Eq. (5.2), we obtain

&4.(q) I [P (q), [H, Q.(q)]]IA.(q)&=0,

(5.11)

[Any other choice would only introduce a recoupling
within the operators Q, and P, , being the eigen-
solutions of Eq. (5.7). If Q, , P, is the set for Re(7I)
=0, we can transform to Q, =cos(y)Q, +sin(y)P,
and P, = cos(y) P, —sin( y},Q„which then fulfills
Eqs. (5.5) and (5.6) for Re(q) =sin(y) ( i)&[P,-,H]&.]
Thus we remain with the lowest order equations

& P(q) I [P„(q),H] I P(q)) = 0, for a x 0

&y(q) I [Q8(q), H]lp(q)&=0, for all p

with

(5.17)

where

. .(q) =
& %.(q) I [Q.(q}, [H, Q.(q)]] I e.(q)& . (5.14)

Thus Eq. (5.14) becomes explicitly

&4.(q) I [Qs(q), [H, Q.(q)1+ii..(q)P.(q)] I4.(q)) =0

(5.15)

The two first-order Eqs. (5.13) with (5.17) allow
us to determine P,(q) as

P, (q) =„'i[H, Q, (q)]„„

=„'(B, Q) '[H, H,„],„. (5.16)

Thus if we know one point of the path I Q, (q)& and it is
off equilibrium (since a, 40 is required), we know
the path generator P,(q) and can construct the next
point I Q,(q+5q)&. From this one can proceed fur-
ther and can successively construct the whole path.

There is a simplification, which makes use of a
theorem proved by Thouless, "which states that
commutators of the Hamiltonian between correlated
states can equally well be evaluated between the
corresponding uncorrelated single particle states.
Hence the EOP for the uncorrelated

I Q(q)&, associ-
ated with I Q,(q)&, are given by
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&P(q))[P„(q), [H, Q (q)]])@(q)&=0, for av0

&y(q) I [QS(q), [H, Q,(q)]+is„P,(q)]I&(q)&=0

for all p. (5.18)

For this uncorrelated
~ Q(q)), the construction

proceeds in a similar manner as outlined above
for the correlated path, using successively the
step P, ~[H, H „],„. In order to initiate the con-
struction one must know one point of the path. Ob-
viously the HF minimum belongs to

~ P(q)& and the
corresponding RPA-correlated state to

~ Q,(q}&.
Unfortunately, there one has s'U/aq =0, with it
H» =0, and P, remains undetermined. Performing
the 8, derivative of Eq. (4.11}one obtains

&P(q) ) [P„(q), [H, P,(q)]] ~ @(q)&=0, for ac 0

&y(q) I [QB(q},[H, PO(q)l] I g(q)&=0, for all P (5.19}

&4(q) I [Qg, [H, Q.(q)]]ly(q)&=58, „(q) f» all p.
These are the RPA equations at the HF minimum
q=O. They can be solved in the standard way. As
a solution, one obtains a spectrum of eigenmodes,
each one characterized by a pair Q„,P„Cho.osing
one of them in particular as Q„P„we select the
collective channel which we want to extend to large
amplitudes [see the same discussion following Egs.
(4.11) and (4.12)]. We then can evaluate the first
off-equilibrium point

14(5q)&=(1 —i5qP. (0) Ik(0,)&

and, by means of the above step-by-step method,
the full

~ Q(q)& for all q. The correlated
~ Q, (q)&

can then be constructed from
~ Q(q) & according to

Eg. (5.2).
For practical calculations it is important to

note that in most of the cases it is not necessary
to determine

~ $0(q)& explicitly. It is sufficient to
construct the uncorrelated path

~ P(q) & together
with P,(q) and Q,(q) and to express the final quan-
tities one is interested in by these three objects,
thus handling the correlations implicitly. For ex-
ample, if one consideres a GCM along

~ Q,(q)&, a
Schrodinger equation can be derived from it by
means of techniques exposed in Appendix A, which
finally can be expressed solely in terms of

~ Q(q)&,
~P,(q) &, and

~ Q,(q)). The inverse collective mass,
e.g., is given by

M ' = &y, ~ (P„(H,P,]]~ y, & i4&P, '&

=
& ~. l [Q. , [H, Q.]]I ~.&.

Since double anticommutators between correlated
states agree with those between uncorrelated
states, "the inverse mass equals (P~ [Q„[K,Q,]]) Q&.
Details can be found in Refs. 8 and 9. If, never-
theless, an explicit construction of

~ Q, (q)& from
[ Q(q)) is required, one can use Eg. (6.4) of the

next section. It should be remarked that the un-
correlated path ) Q(q) & obtained by Eqs. (5.1V) and

(5.18) is different from the path ~ Q,(q}) determined
by the zero-order Egs. (4.3) and (4.4) of the pre-
vious section.

By comparing Secs. III and DI, one realizes
that we have been studying the first two mem-
bers of a systematic hierarchy of more and more
complex collective paths. For purely Slater de-
terminantal collective paths, already the zero-
order Eq. (2.15) determined

~ Q,(q)& uniquely, using
a sort of simplified RPA equation at the HF mini-
mum as an initial condition. The next step con- .

sisted in allowing 2p-2h correlations in the path
~ Q,(q)) which was then determined by the zero-
and first-order Egs. (2.16). They lead to a

~ Q,(q)&,
which was the large amplitude extension of the full
RPA at the HF minimum. Obviously one could
implement higher and higher orders of correlations
exhausting more and more terms in the p expan-
sion (2.14) and leading to higher-order RPA solu-
tions at

~ $(0)&. It would correspond to approaching
the exact solution in the framework of an ep-nh
expansion within the shell model description. This,
however, is precisely what one wants to avoid by
introducing the concept of a collective path in large
amplitude theories. Hence from both a conceptual
and practical point of view, it does not seem to
make much sense to go to higher than the lowest
orders in Eq. (2.14}.

Equations (5.16}and (5.19}suggest the following
procedure for the explicit construction of the col-
lective path: (1}Find the stationary HF minimum.
(2) Solve there the RPA Eqs. (5.19) and select the
desired mode Q„P, . (3) Step off the HF equilib-
rium

I @(5q)&
= (1 —i 5qP. ) I +„&.

(4) Use this off-equilibrium point as an initial con-
dition for the differential Eg. (5.16) and construct
successively the rest of the path going "uphill. "
However, since the fall lines of the potential val-
ley are all infinitesimally close to each other and
diverge with increasing distance from the HF point,
this construction of the path is not stable. Hence
it is preferred to find one off-equilibrium point in
a finite distance from the HF point and proceed
towards the HF minimum rather than away from
it. Saddle points can be used for it or the off-
equilibrium point can be constructed by simple
iteration methods.

VI. THE.EOP FOR A DYNAMIC PATH

An alternative way of extending a determinantal
path

~ Q(q)& consists in allowing a dependence on
collective dynamics. This is achieved by introduc-
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ing the collective momentum p as a second param-
eter, thus working with a two parameter, but still
determinantal path I (())(q, p) &. (In-fact, this sort of
collective path is the natural starting point in the
mean field theories, such as ATDHF. } We now

ought to consider the twofold superposition

(6.1)

Id& =Jdd d'(d)
~l d.(d)&, (6.3)

using an improved path I(p,(q) &, which is given by

I d.(d)) =fdd'dd' d'(d; d', d') I d (d', d')) . (6.4)

The folding function F(q; q', p') is Gaussian in

(q —q') and p'; an explicit expression for it can
be found in Eq. (7} of Ref. 8.

This path is an improved one in the sense that
it decouples in order p' the collective velocities
from the noncollective ones. As a result of this,
we have, e.g., proportionality between collective
current and progression:

Q. I 4.(q) &
= fP. I P.(q)) .

Obviously, the I (P,(q}& is no longer a Slater de-
terminant and shows correlations. In fact, con-
cerning the description of the collective channel,
the I(t),(q)& is fully equivalent to the RPA-corre-
lated path introduced in the previous section. The
further evaluation of the variational equations can
proceed as given there, and the resulting EOP will
be identical. We thus end up with the interesting
result that both above attempts to generalize a one
parameter determinantal path finally prove to be

This defines the dynamic GCM which has been
discussed extensively in Refs. 8 and 9. Unfor-
tunately, two parameters within a GCM are too
much for describing only one mode. This gives
rise to difficulties in a direct numerical treatment
and it forbids a straightforward derivation of a
collective Schrodinger equation from the Griffin-
Hill-Wheeler equation. In Refs. 8 and 9 a solution
to these problems has been proposed, which relies
on an expansion of the Griffin-Hill-Wheeler (GHW}
equation for small fluctuations in p. Therefore,
for slow collective motion, an adiabatic expansion
is appropriate where I(p(q, p)) is expanded in or-
ders p" about p =0. The first step is

I y(q, p)) =—(I+fpQ.) I y(q, 0)) . (6.2}

In that limit, the GHW equation for p can be solved
analytically with Gaussian superpositions. This
eventually leads to the reduction of the GCM with
a pair of conjugate parameters to an equivalent one
parameter GCM, i.e.,

6g&4(q, o) I&le(q, o)&

—p5 &%(q, 0)i[If, Q.]If(q, o)&=o,

where the variations (3.10) and (3.11) now exclude
also Q, . Assuming that I(P(q, 0}) is time even, we
immediately obtain Eq. (4.5) from the P„variation,
Eq. (4.9) from the Q„variation, and (4.6) and (4.8)
for time parity reasons.

VII. COMPARISON WITH OTHER THEORIES

There is a conceptually different way to de-
termine the EOP, which is guided by the idea of
an explicit time evolution of a determinantal wave
packet. The emphasis is on studying operator av-
erages whose time evolution obeys classical equa-
tions of motion and reveals the under1ying classi-
cal collective Hamiltonian. These approaches can
be subsumed"'" under the heading mean field
theories (MFT). The optimal MFT for the static
case is the HF theory. Its natural extension to
dynamic motion is TDHF. Villars' and Goeke and
Reinhard' derived a set of EOP for a determinantal
I (P(q)& by performing an adiabatic expansion of the
TDHF equations assuming the system at all times
to be close to a local equilibrium. They require
the path to be independent of the actual velocity or
energy, respectively, which allows one to over-
come the difficulty of choosing the proper initial
conditions in TDHF and yields the EOP

q S„,B —
0 q =0, (V.1)

&y(q) I [s,„,[a, Q,]+fe„P,]ly(q)&=0, (V.2)

which uniquely determine the path I (P(q) & and the
operators P,(q), Qo(q) along it. [The S „ in Eqs.
(V.l) and (V.2) stands for all possible 1p-1h op-
erators with respect to I(P(q)&.] These are the
so-called ATDHF equations. With determining

identical.
Although transformation from I (()&(q, p)) to the

improved static path I(t),(q}& and referring then to
Sec. IV-comprise a strict treatment for the dyn-
amic path, it is interesting to note that a very naive
approach to the problem also gives the right EOP,
Eqs. (4.7} and (4.10}. As we have seen in Sec. II,
for a determinantal path the lowest order in an
expansion of the Hamiltonian overlap will be suf-
ficient to determine the EOP. In the case of the
dynamic path I(t)(q, p)) this yields

5 &A(q, p) IJIIA(q, p)&=0

to be believed up to order p', i.e.,
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Q, (q}, in the dynamic equation (V.2) (in fact this is
a generalized cranking formula), they implicitly
determine also the dynamical extension of the path
up to order p', i.e.,

I Q(q, p)&=(i+i pQ. (q)) I Q(q)) .

This dynamic path I tp(q, p}) can then be used to
determine the classical collective Hamiltonian as

2

&(q, p) =
& 4(q, p) IH I e(q, p)& =

2~ +&(q)
2SII q

from which a quantized collective Hamiltonian
can'be derived' by subtracting certain quantum
fluctuations of the wave packets I Q(q)& in (q, p).
As discussed in Refs. 5 and V, the ATDHF theory
reduces to the RPA in the small amplitude limit,
or in turn, ATDHF can be understood as the ex-
tension of the RPA to large amplitude collective
motion.

We now have two conceptually different starting
positions, the more classically minded MFT, such
as ATDHF, and the thoroughly quantum mechanical
GCM. Both have in common the concept of a col-
lective path I Q(q)&, spanning a subspace. in which
the collective motion is assumed to take place.
But they treat it differently, first with respect to
determining the optimal path, and second with re-
spect to deriving a collective Hamiltonian H, (q, s,)
for a path I Q(q)&. Concerning the H, , both theories
give identical results as has been shown extensive-
ly in Refs. 8 and 9. The outcome of the present
paper is now that also the EOP are identical:
Equations (5.1V) and (5.18) obtained from a GCM
variation of a correlated (see Sec. V) or dynamic
(see Sec. VI} path are just the ATDHF Eqs. (7.1}
and (7.2). Thus both theories give the same EQP
for the uncorrelated portion of the path

~
Q(q)&,

which serves as the single particle basis for. the
fully correlated path IQ, (q)&, to be determined by
Eq. (5.2), i.e. , (Q, (q)+iP, (q)) IP,(q)&=0.

At this point we find a subtle difference between
both aspects: In ATDHF we are not forced to real-
ize that we have a theory for correlated paths,
whereas in GCM the assumption of a correlated
path is necessary to obtain Eqs. (5.8}-(5.15), which
then reduce to Eqs. (5.1V) and (5.18) or (V.1) and
(7.2} using the quasiboson approach. The reason
is simply that GCM is a quantized theory froni the
beginning, which means that to get the path, quan-
tized expressions are varied [see Eq. (2.12}],
whereas in ATDHF the path is obtained from 8,

classical equation of motion and the quantization,
which introduces the correlations, is performed
afterwards and independently. Following Sec. VI,
one also realizes that both theories consider a

collective path to order p, the ATDHF explicitly
and the GCM implicitly by using the correlated
I Q,(q)). These features have some analog in the
limit of small vibration, i.e., the RPA. Using the
HF state as I $(0)&, Eqs. (V.1) and (V. 2) or (5.18)
determine the excitation operators Q,(0) and P,(0).
Usually in RPA their frequencies are interpreted
as the excitation energies, tacitly assuming a cor-
related ground state without explicitly constructing
it.

Actually i n the above discussion the ter m "GCM

var iat ion" has to be used with a bit of care. In
fact, we do not strictly minimize an energy func-
tional in f(q) and

I
Q(q)&. This would have led to

, coupled equations for f„(q) and IQ„(q}&determining
one actual state system. We do, instead, employ
the GCM variation as a means to derive the EOP
for Ip,(q) & by requiring

I Q(q)& to be the same for a
spectrum of f„(q) (see Sec. II). That is quite the
analog to the case of ATDHF, where one employs
the EOM of TDHF to derive the EOP by requiring
the path to be independent of the collective mo-
mentum or energy.

Another approach in the framework of the mean
field theories has been put forward by Rowe and
Bassermann' and Marumori. ' They suggest a non-
adiabatic theory for the determination of the de-
terminantal dynamic collective path I p(q, p)). The
eventual .outcome is a constrained HF equation

(A(a p) I I~p, » - &Q. uPO] I e-(q, p}&=0,

where the constraining operators Q, and P, are de-
termine/ by the local RPA equations

&e(q, p) I [S,„,[H, Q.]+ P.]le(q p))=0, (7.8)

($(q, p}l [S „,[H, P,] -iP, 8]IQ(q, p))=0. , (7.4}

where and 6 are the local inverse mass param-
eters and, spring constant, respectively. The de-
rivation of this local harmonic approach (I HA) in
the present frame'work provides some difficulties.
In zeroth order one obtains the analog of Eqs.
(4.3) and (4.4), i.e., ([Q„,H])=([P,H])=0 for
o'. t 0. From this if follows that

H = I Q, & [P„H])—iP, ([Q„H]),
which means that at a certain lp(q, p)) the Q, and
Pp are completely determined by the time everi and
time odd part of the p-h elements of II, respective-
ly. However, this does not guarantee that iQ, I Q(q:,p)&
=P, lg(q, p)) persists in both directions, i.e., for
p+$p and for q+5q. In other words, the problem
is that in general B,(H,„,„,„)as~(H, „~.„,), and thus
the P, and Q, cannot be simultaneously local RPA
operators according to Eqs. (7.8) and (V.4) lsd
path propagators, i.e,

I g(q+5q, p+5p)&=(1- i 5qP, + i5p Q, ) I Q(q, p)) .
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The first attempt to employ the GCM for the de-
rivation of an EOP has been made by Holzwarth
and Yukawa. " They performed a local variation of
the determinantal path and derived a set of equa-
tions for an explicit construction of

~ Q(q)&. Their
result was that

~ P(q)& should be simultaneously the
solution of a constrained HF equation and the local
Tamm-Dancoff equation

(y(q) I [S,„,H —&Q.] I A(q)&=o,

(P(q) ~ Q, HQ
~ P(q) &

=0 for ax 0.
A comparison with Eqs. (4.9) and (4.10) shows that
the present approach yields the same result, if
one neglects in Sec. I1I terms such as (HQ„Q, &

(i.e., the backward going graphs in HPA) and the
q dependence of P, and Qo.

VIII. SUMMARY AND CONCLUSION

The present paper is concerned with a micro-
scopic approach to large amplitude collective mo-
tion using the concept of a collective path j Q(q}),
i.e., a set of A. -body wave functions labeled by a
proper collective coordinate. The aim is to de-
rive equations which determine the oPtimal collec-
tive path (EOP). This is important, since large
amplitude collective phenomena are characterized
by substantial changes of the wave function during
the process. To this end, the variational principle
of the generator coordinate method (GCM) is gen-
eralized to include also a variation of the path of
integration,

~ Q(q)&. The resulting integral equa-
tion is transformed to a differential equation in
terms of the collective momentum p=-id/dq. For
adiabatic motions this defines in a natural way a
hierarchy of equations associated with increasing
powers of p. To fulfill these equations requires a
corresponding hierarchy of collective paths of in-
creasing complexity.

If the collective path is assumed to consist of
Slater determinants

~ Q, (q)&, the zeroth-order vari-
ational equation is already sufficient to determine
[ Q(q)& unambiguously. It leads to a differential
equation which determines the propagator
P,(q) ~ $(q)&=iB, )g(q)& for a given )Q(q)& and al-
lows one to construct the path successively by

14(q+~q}&=(I—t t~qP. (q)) I 0(q)&.

For small amplitude vibrations around the Har-
tree-Fock minimum (q=0}, the equations for P,
(q =0) reduce to some sort of Tamm-Dancoff or
RPA-like equations. They can be solved by stand-
ard methods, and yield a spectrum of eigensolu-
tions P„(0}from which a P,(0) must be selected to
start the collective path. Although already these
zero-order equations uniquely determine a path,

they seem to be unsatisfactory, since in the limit
of small amplitudes they do not precisely reduce
to the RPA equations.

The next reasonable generalization of the path
consists in including 2p-2h correlations of the
BPA type. They are defined by requiring that the
correlated path

~ p, (q)& is the vacuum of the local
collective boson B,(q) =Q,(q) +iP, (q). This gen-
eralization requires to take into account also the
first-order equation in the adiabatic heirarchy in
order to determine ~Q, (q}& uniquely. Nevertheless
the equations deforming P,(q) and Q, (q) are rather
simple: Q, (q)~H „(q) and P,(q)~[H, Q,(q)] „. They
essentially involve the calculation of the j.p-1h part
of the Hamiltonian H with respect to

~ Q, (q}&. As
expected for small vibrations around the HF mini-
mum, the equations for

~ P, (q)& reduce to the HPA
equations. In order to start the path, one solution
Q, (q), P,(0) of the total RPA spectrum must be se-
lected. This is the only point in the theory which
requires physical intuition, i.e., some precon-
ceived knowledge of the collective motion under
consideration. It is important to note that in prac-
tical cases one needs not to evaluate the correla-
tions in

~ P, (q}& explicitly. It is possible to handle
them implicitly by means of Q, (q), P,(q) and the
single particle basis

~ P(q}& corresponding to
~ $0(q)). Thus in an explicit numerical calculation
it is sufficient to construct

~ Q(q)& rather than
le.(q)&-

An alternative generalization consists in assum-
ing a path Q(q, P} still consisting of Slater de-
terminants, but which are labeled now by a pair
of conjugate parameters q and p. This leads to a
dynamic GCM, where both q and p are integration
variables. It is interesting that in the adiabatic
limit, this procedure turns out to be identical to
the one parameter GCM using a correlated path
~ Q,(q) &. One gains thereby an explicit expression
of ~Q, (q}& in terms of )Q(q, p)&.

There are some very interesting relationships
of the present approach to the adiabatic time de-
pendent Hartree-Fock theory (ATDHF) of Villars4
and of Goeke and Reinhard. ' That theory optim-
izes an adiabatic determinantal collective path

14(q, p)& =—(I+tPQ.(q))l p(q)&

employing the classical concept of an explicit time
evoluation q(t), p(t) and using the TDHF variation-
al principle. The remarkable result is that the
variation of the correlated path within GCM leads
to an EOP for

~ P(q)), Q, (q), and Po(q) which is
identical to the EOP obtained in ATDHF. Also,
since the quantization process' in ATDHF has been
shown to be identical to invoking a GCM with' cor-
related states" (or equivalently a dynamic GCM),
the present considerations are a final step in using
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GCM

lu» = I dq f(q) l~, (q).

ATDHF

l4(t)' l&(q(t) P(t))'

GCM variation« l~, (q)

full Hamiltonian

H(x. ,p. )
OHF variation
of ly{t)

(0, + i p, ) l~, (q)
identical

tions of pat
4(q P) = (& + POo) '~(q)'

GCM variation
of f

sistent quantization
.P) = ~(q P)lHl(I)(q. p)'

collective Hamiltonian

H (q, p)

FIG. 1. The figure displays the basic two ways to derive a collective Hamiltonian H~(q, d/dq) from a full microscopic
Hamiltonian H(x&, d/dr&): On the left-hand side one finds the generator coordinate method (GCM) and on the right-hand
side the quantized adiabatic time dependent Hartree-Fock approach (ATDHF). Both theories end up with the same ex-
pression for H and also closely related expressions for the collective path.

two concepts of treating microscopically large
amplitude collective motion, viz. , the more classi-
cally minded mean field theories, such as ATDHF
including there z posteriori quantization, and the
genuine quantum mechanical GCM. Both theories
aim at extracting a collective Hamiltonian H, (q, p)
from the full many body Hamiltonian H(x, , p, ) by
means of a collective path

~ P(q}). Although they
are of different conceptual origin, both theories
derive identical equations for the optimized col-
lective path, and both theories yield identical col-
lective Hamiltonians H, (to be used in a Schr5dinger
equation) and identical rules for evaluating collec-
tlVe tranSltlOns.

This remarkable correspondence can be visual-
ized as in Fig. 1.. Both theories are based on the
concept of a collective path. They agree at the
start by assuming a microscopic Hamiltonian
H(x, , p, ) and the existence of an adiabatic collec-
tive mode. The very satisfying result is that both
finally lead to the same quantized collective Ham-
iltonian H,(q, p), although they employ very differ-
ent techniques underway.

One of us (P.G.R.}acknowledges the support of
the Heisenberg-Stiftung.

APPENDIX A: TRANSFORMATION OF THE INTEGRAL

EQUATION TO A DIFFERENTIAL EQUATION
(

In terms of integral operators I and H, Eq. (2.5)
can be written as

Beg*(H EI)f=0,-
which can be reordered to a Schrodinger-type
equation as

5 &g *(H, -E)g =0,

with

JI, =i-'I'IIi- I'

and

(A1)

(A2)

(AS}

with

P(k) =
4 P, (k —(P()))'.

0

From this expression one obtains easily

»(q qi) =(2g)»2(2v(It 2))~~4

(A I)

dk, exp -ik, q-q' + k, . A8

This can be proved by explicitly evaluating the
expression

Assuming a rapid convergence of the expansion
(2.6) one can approximate

I(q, q') = exp[-i(q' —q)(P, ) -2(q'- q)'(P, ')], (A5)

which can be represented as a Fourier integral as

2(e, e') =(pe()', )) "*fepeep [(4(e —e,') —pp(k, )],
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dq" dq" I ' '
q, q" I q", q" J "q", q' = 6 q —q' .

(A9}

The integrals over q" and q'" give 5(k, —k, ) 5(k, —k, ),
such that the 6(q —q') on the right hand side of Eq.
(A9) results. In this and the following calculations
we assume the coefficients of (q —q')" in Eqs.
(2.7)-(2.11) to be so slowly varying that one can
neglect their q =—,'(q+q') dependence in the integra-
tions.

For the evaluation of I ' 'HI ' ' one has to cal-
culate terms of the sort

(A10)

The term in the middle can be obtained by partial
integration as

(q» q»i)n I (q» q»i)

b(k, —k, ), 5(k, —k,). Since p(k) is a polynomial in k,
one ends up with expressions such as

dk k" e "2" ' ' = 2vi" 5(q —q') .f ~n

2 2 gqff
(Ai2}

Since the terms (P,), &(P, , (H, P, })&, etc. , of the
expansion (2.6} are to be evaluated at if= 2 (q+q'},
one finally obtains from Eq. (2.5) terms such as

~n
dqdq'g* q W„q „5 q —q' g q',

dqdh, g* q+ —W„q „56 g q ——=0

or

(A14)

(A13)

with W„(q) containing expressions such as (P,),
&(H, P, ]&, etc. , which are to be evaluated at
if= &(q+q'). Changing the integration variables
to q andd =q —q' gives

sn=(-i)" I, e'~2" ' '
I
e ~' 2'dk,n ) ~n

dqW„q „g qgq (A15)
~n

=g" e'"2 " ") —e &( 2) ld
Bkn ', ~l

2 (A11)

I

The integrals in (A10} over q" and q"' yield again
Collecting all terms of the form (A15) up to n = 2

yields dii'ectly Eq. (2.13).

I

APPENDIX B: NARROW OVERLAP EXPANSION OF THE CORRELATION CONSTRAINT

Outgoing from

dqdq' *q, q P, q' -i, q', q' gq'+g*q, q P, q+i, q, q' q',

we want to expand in orders (q'-. q) about q = &(q+q'). Thus we insert

q'=q+ '(q'-q), q =0-- '(q'-q}-
and employ

s, I e.(q)&=-iP.(q) I e.(q) &,

e,(&(q) I &.(q)&) = -iP.(q) &(q) I y.(q)&+(s,&(q))„„le.(q) &,

where A(q) replaces Q, (q) or P,(q). This yields
I

dqdq' * q g+g* Po -i g -g*
1

,'i (q' q-) -[(q+ q.
—*)2&P,&&+(q+ q»)&Q, &+(s,q+ s,q*)&Q,&+i (r/-q*)&s, P,&

—iq2&P, Q, &+iq*2&Q,P,&+ '(s, rj —s, q*)&P,&] + ] f(q}.
We now use relation (5.2) to evaluate

2&Pa') = -i&[Pa @ol&=-1
2&P, Q, &

= &(P„Qo] + &[Po, @o]&=—

& s,P,&= s,&P,&+i&[P, , P,])= s,&P,&,

& s, q, &
= s,&Q,&+ i& [P„@,]& = i,&@,&+1,

(5.5)

(S2)

(as)

(B4)

(85)
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where all 7) are to be taken at q and all empty brackets at
~ Q,(q)).

With these relations we can compress the expression (B4) into the suggestive notation

cQ c(IIt g+g+ 0 z 'g 'g+ 0

which finally is used in Eq. (5.6).
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