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Single-folding model for the spin-orbit potential between ' F and Si
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A general expression for the spin-orbit potential between two heavy ions is derived using the single-folding
method. This expression is applied to the calculation of the spin-orbit potential between ' F and "Si, using
single-particle as well as cluster model wave functions for ' F. In the cluster model, the magnitude of the
' F + "Si spin-orbit potential at the strong absorption radius is enhanced by a factor of 50 over the single-
partible model estimate.

NUCLEAR REACTIONS ' F+ Si spin-orbit potential: single-folding method,
single-particle, and cluster model wave functions for '~F.

There is currently a lot of interest' in the mag-
nitude of the spin-orbit potential for heavy ions.
The transfer reaction data' and the polarization
data can only be reproduced by adding a signifi-
cant spin-orbit term to the optical potential.
However, in some cases such as ' F + Si, the
empirical result' is two orders of magnitude larger
than the value obtained theoretically. ' So far,
all the calculations ' were performed assuming a
single-particle harmonic oscillator wave function
for "F.

In the present note, we derive a general expres-
sion for the spin-orbit potential between two heavy
ions using the single-folding model. We apply
this expression to ' F, assuming three different
types of wave functions: a single-particle harmon-
ic oscillator eigenfunction, a single-particle
Woods-Saxon eigenfunction, and a t +' 0 cluster
model wave function. The first two give approxi-
mately the same result for the F+' Si spin-orbit
potential at the strong absorption radius. ' Cluster-
ing enhances the value of the spin-orbit potential
by a factor of 50.

Let us briefly review the model. Consider a
target of mass A, and spin zero, and a projectile
of mass A, and spin S. Suppose that the projectile
can be described in terms of a cluster of mass
A, and spin s, moving in a relative Ns state g, (r)
around a spin zero core. N is the number of
nodes allowed by the shell model for the relative
motion. When the spin-orbit potential v„(x) be-
tween the cluster and the target is known, the
spin-orbit potential Vz, ~(R) between the projectile
and the target can be evaluated in the single-fold-
ing model. Extending the method of Ref. 3 to take
into account any cluster of mass A„we have

L'SV (R)=I'x fdvrld, (r)I v„(x),

Fig. 1, L is the orbital angular momentum of the
projectile with respect to the target, and l is the
orbital angular momentum of the cluster with re-
spect to the target.

Neglecting the velocity of the cluster around the
projectile core, we can approximate the orbital
angular momentum of the cluster by

l =Ac p & R+Ac(AR —Ac) p x (2
A~

where P is the projectile momentum.
The first term in Eq. (2) is proportional to the

projectile angular momentum L. We shall denote
by Vz, ~ i(R) the contribution of this term to the
heavy-ion spin-orbit potential

V„,(R) =—' fd'rl d.(r) I 'v„(x) .

The contribution of the second term can be easily
evaluated using the heavy-ion approximation

(R r)-r= p R,

which leads to

Vl, ,(R) —= ' ', ' d r l(j),(r) I r cos&v„(x) .A,(A, -A, )

(4)

The spin-orbit potential V~~(R) between the pro-
jectile and the target is given by the sum

Vt~(R) = V~~ ((R) + V~~,(R) .
For the cluster-target spin-orbit potential v„(x),

we use the standard parametrization

(6a)

where the coordinates R, r, and x are shown in where
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FIG. 1. Notation used for the coordinates R, r, x, x&,
and xz throughout this work.
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C LUSTER MODEL

fnserting this expression for v„(x) in Eqs. (3)
and (4), and performing the integrations, we ob-
tain

8 A,
vis, &(R)= A

'A If(xB) f(xA}j
m, c Ap-Ac

rl $,(r) I drV

0

arid

1 I A,(A, -A, } 1 df
VL$ pR =

24 m, c Ap xz dxz

r l(R,(r) I dr,V

0

where $,(r) is t, he radial part of g,(r),

(8)
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FIG. 2. The spin-orbit potential for ~F+ Sj. in the
vicinity of the strong absorption radius. The dash-dotted
line and the dotted line are obtained using a single-par-
ticle wave function for ' F. The dash-dotted line corre-
sponds to a Woods-Saxon eigenfunction, and the dotted
line to a harmonic-oscillator eigenfunction. The solid
line is obtained assuming a cluster-model wave function
for ' F, and the dashed line is the empirical' spin-orbit
potential for ' F+ Si.

and

A~-A,
xz =R-

Ap
(9a)

V~~(R, ) =(- 1.2 + 0.3) keV =-0.9 keV . (10)

The behavior of V»(R} in the vicinity of the strong
absorption radius is shown in Fig. 2.

In order to investigate whether this result is
strongly dependent on the type of wave function

A -A,
xg =R+ (9b)

, P

Let us now apply this model to the F projectile
and ' Si target.

We use initially a P + ' 0 single-particle wave
function for '9F, setting A, =1 in Eqs. (7) and (8}.
We adopt a 1s&~2 harmonic-oscillator eigenfunction
for the proton, and determine the oscillator cons-
tant n =0.645 fm ' by fitting the experimental rms
radius of '9F, r=2.9 fm. For the v„(x) potential
between the proton and the ' Si target, we use the
standard pararnetrization, V0 ——6.0 MeV, R&,

067 fm, and a, s
——0.75 fm. At the strong ab-

sorption radius, R, =1.5(Ap'~~+A, ' ) fm, the
F+ Si spin-orbit potential of Eq. (5) is

used for the proton, we perform the same calcula-
tion using a 1s&&2 Woods-Saxon eigenfunction. We
set the radius of the Woods-Saxon well at 2.9 fm
and the diffusivity at 0.64 frn. We adjust the depth
of the Woods-Saxon well to reproduce the 8 MeV
separation energy of the proton in '~F, taking into
account the Coulomb potential of a spherical
charge distribution of radius 2.9 fm. With this new
single-particle wave function for F, the F + Si
spin-orbit potential at the strong absorption radius
1s

V~~(R, ) =(-1.0+0.3) keV =-0.7 keV. (11)

Therefore, the type of wave function used for the
proton does not seem to have a large effect on the
heavy-ion spin-orbit potential (see Fig. 2).

From earlier work, ' ' it is well known that
clustering effects are significant in ~ F. For ins-
tance, the cluster model accounts successfully
for the excitation energies, charge radii, quadru-
pole moments, and F.2 and Ml transition rates in

F that cannot be explained in terms of a single-
particle wave function. Therefore, it is also im-
portant to investigate the effect of clustering on
the 9F + 28Si spin-orbit potential.
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In the single-folding model developed above, we
can easily introduce the t + 0 wave function.
The triton spin-orbit potential v„(x) is known from
the recent asymmetry measurements on a variety
of targets. ' ' The parametrization which leads
to the smallest X per point in the analyzing power
and the cross section data is of the form' '

Vo
=6 MeV, R„=5.15 fm, and a„=0.8 fm. (If the
depth Vo were lowered to 2 MeV, or raised to
12 MeV, and the geometry kept fixed, the value of

per point would increase by a factor of 4,
nearly independent of the target. } In order to cal-
culate the wave function g,(r), we make the stan-
dard assumption that the triton cluster is moving
around the ' 0 core in a 3s, &2 orbit with binding
energy 11.73 MeV, and we adopt the cluster-core
potential of Ref. 12. The value of 4, in Eqs. (7}
and (8) is now A, = 3, and the cluster-core rms
radius is r = 4.0 fm. The resulting F+ Si spin-
orbit potential at the'strong absorption radius is

Vl, z(R, }=(-57+ 10) keV=-47 keV, (12)

which is 50 times stronger than the value obtained

in Eqs. (10) and (11) using the single-particle mod-
el (see Fig. 2}.

This large enhancement in VI.~(R,) is due, in
part, to a larger cluster mass. It is also due to
the geometry of the triton-target spin-orbit poten-
tial combined with the cluster-core distance in the

F wave function.
In conclusion, our phenomenological approach

indicates that the t +' 0 model wave function for
' F enhances the ' F+ Si spin-orbit potential by a
factor of 50 over the single-particle estimate near
the strong absorption radius. However, the clust-
er model result is still about a factor of 7 smaller
than the empirical' spin-orbit strength.
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