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An approximation which minimizes binding and recoil corrections is derived for projectile nucleus elastic
scattering. We generalize previous work on single scattering and consider now multiple scattering amplitudes
in this approximation. These are expressed in terms of amplitudes for elastic scattering off on-shell target
nucleons and form factors. The first nonvanishing correction terms are estimated.

I'

NUCLEAR REACTIONS Multiple scattering amplitudes, minimization of cor-
rections, factorization, reflections, higher order corrections. .

I. INTRODUCTION

The proj ectile-nucleus elastic scattering ampli-
tude is usually expressed in terms of a multiple
scattering expansion. ' The ingredients of every
multiple scattering term are the matrix 7, des-
cribing the scattering on a bound nucleon i and the
Green's function G describing the propagation of
the projectile between scattering. 7,. and G are
many-body operators; therefore, we need approx-
imations for practical applications of multiple
scattering expansion. In a previous paper' we de-
veloped the "optimal" approximation for the first
term of this expansion —the single scattering am-
plitude. For elastic projectile scattering we found
that in the approximation, designed to minimize
corrections, the single scattering amplitude fac-
tors into a form factor of the nucleus and an on-
shell projectile-nucleon amplitude with the energy
argument increasing with momentum transfer.

In this paper we develop a similar optimal pres-
cription for evaluation of multiple scattering
terms; that is, we find approximations for 7,. and
G in every multiple scattering amplitude such that
the first order correction is zero. As a bonus we
find that for our choice of approximations the in-
tegrands in multiple scattering integrals factor
into a multiparticle target density in momentum
representation and a part dependent on the pro-
jectile on-shell nucleon input. We find also the
first nonvanishing correction and estimate its
magnitude.

The plan of this paper is as follows: In Sec. II
we derive our result for multiple scattering of a
projectile off different struck nucleons. In Sec.
III we consider the lowest order reflection term
when the projectile rescatters on the same nucleon.
In this Section we also formulate the general rules
for calculation of any multiple scattering ampli-
tude in optimal approximation. In Sec. IV we dis-

cuss the correction terms. Pauli corrections are
not considered here.

II. MULTIPLE SCATTERING TERMS OF

DIFFERENT STRUCK NUCLEONS

,I

The projectile-nucleus scattering t matrix T„
satisfies the Lippmann-Schwinger equation

T„'= V;+ V,GT

in terms of which

(4)

(5)

we relate the scattering operators T„'and v

through a system of coupled equations'.

T„'= r, +r,cg T~. . (6)

Equations (5) and (6) are exact expressions of the
projectile-nucleus scattering operator T„. The
formal iterative solution of Eqs. (5) and (6) is

T„= V; + V)GT~,
i=1

where V,. is the potential between the projectile
and nucleon i, and G is the full Green's function

G ~=E-H-Kp,
I

where E is the total energy, H the full target
Hamiltonian, and K& the projectile kinetic energy.
The first step in the treatment of Eq. (1) is to con-
struct the t matrix for the scattering of the pro-
jectile from one nucleon bound in the field of the
others. This t matrix v satisfies the equation

7', = V)+ V,Gv', .
Then, introducing the auxiliary t matrices TA
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T = Q T& + Q T)GT~ + P T;G7'~G7'2+ ' ' . (I)

Equation (7) expresses T„as a series of single
(T„"'),double (T„"'),. .. , n-order scatterings
(T„'"') of the projectile on the nucleons bound in the
nucleus. As such, this formal series is a good
starting point for many approximate solutions of
the proj ectile-nucleus scattering problem. How-
ever, every term of the multiple scattering series
includes the operators T, which are solutions of
the many-body scattering equation (3), and Green's
functions 6 containing the full target Hamiltonian.
Hence, for the practical treatment of multiple
scattering series we look for approximations to
T and G.

In a previous paper' we sought an approximation
for the first term of the multiple scattering series
(&)—7,. In the following we will concentrate on the
optimal approximation for the multiple scattering
terms T„'"' (n ~ 2) in the multiple scattering series
(I). We show how best to choose the approxima-
tions for the Green's functions 6 and operators T,
which define the approximation T,'"' to each mul-
tiple scattering term T„"', so that the first cor-
rection to T„'"'- T,'"' vanishes for the elastic
scattering from the target ground state. We also
derive expressions for the higher order nonvan-
ishing correction terms and discuss their magni-

tude relative to the main terms T,'"'.
Instead of carrying out the argument for the gen-

eral case —with all the resultant notational com-
plications —we will present it for a special ex-
ample and state the generalization later.

Consider the scattering of a projectile of mass
p and energy E~ from a target of two nucleons,
each of mass m, bound to an infinitely massive
core, allowing for their mutual interactions. We
take the potential between the projectile and nu-
cleon i to be V„ that between target nucleon i and
the. core to be F„and the one between target nu-
cleons V». All the interactions are taken to be
local and we assume that there is no projectile-
core interaction.

Equation (7) reads in this case

Tg=T = T1+ T2+ T16T2+ T2GT1+ T1GT2GT1 + '' ' .
(8)

We consider separately the terms describing the
scattering on different struck nucleons and the
terms which include rescattering on the same nu-
cleon (reflections). In our example the reflections
are the triple and higher order term in the multi-
ple scattering series (8).

The double scattering amplitude of Eq. (8) for
elastic scattering from the target bound state
reads

(ti., ll&"'(2,) &., 2') = f&.(& -(,P.-(((2,&„&(.li, l&(„&l', ll'&

%i~&&P21Glp2 P~ P2)(p2&pl lp2 I~21p P~ P2)l0(~l plp2 p )

xdsp dsP d P'd P'd P"d P~d P"dsP"'d~p d p1 2 1 2 1 2 1 2 1 2 P

where p and p' are initial and final projectile momenta, E2 = p2/2p = p"/2p is the projectile energy, and
P, is the total projectile plus nucleon i momentum (P, = p+ Q,.). (t(0 is the bound state wave function with
binding energy B It sati. sfies Hg, = B(„((hiwc-h reads in momentum space

2 2

l(2' +2')&.(Q Q)+ (I'(& -@~'(Q.-Ql)+ I'4 -4)&'(4 -4)
+ I',.(4 -4')&2(4, +4.-0'-0'))4, (0', 4')d'Q'd'O' = —Bt.(4„4)

where we have used explicitly the fact that the nucleon potentials V are local. 6 is the full Green's func-
tion defined by Eq. (2) with E = E2-B. (It is diagonal in the projectile momentum p, &».) We will approxi-
mate the full Green's function 6 by a Green's function G„which does not involve the total Hamiltonian.
In the same way as in the previous paper2 we look for G, in the form

2

/» pll pll l G l
» pili pill/ (Pl Pl ) ~ (P2 P2 ) ~ (pz p2)

where z is to be determined so that the first order correction to T"' —T,"' is zero. The quantity & may
depend on the projectile momentum p, and on external parameters, but it does not depend on the total pro-
jectile-nuc1eon momentum P, . The full Green's function G can be written as an expansion in the operator
hG,

6 = G, + G hG, + G,hG, hG, + '' ~, (12)
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where

E +~+~
The operators 7,. in Eq. (9) we approximate by a scattering matrix t, of the form

where the Green's function G,'" is taken in the form

(14)

(14a)

+ t G~i)g G i)t + t G~i 0 G i)h G~"t. + t G&"h G&' t G&' 0 G")t.+ ' ' '
i a i a i i a i a i a i i a i a i a i a i t

where

I . = G&')-'-G-'=- ~. -S + a+ a.a i p

The scattering matrix t, [Eq. (14] will conserve total projectile-nucleon i momentum P,. and nucleon mo-
mentum Q&

= P& —p (j4i) and be independent of P,. and g& so we can write

&p P; q lt;IP. , P' el&=&pit IP.»'(P -P')6'(q -&,')-

(16)

Substituting (12) and (15) into (6) we see that the double scattering term can be expressed as a power
series in operators AG, and G,"' t,. of which the zero order term and the terms including the first power of
the operator h are

T r G1 2 t1G t2 + t1G k1G t1G t2 + t1GaAG t2 + t1G t2G 8 G t +

The quantity ei is also to be determined so that the first correction to T"' —T,"' is zero and &,. may de-
pend on the projectile momentum p and on external parameters, but it does not depend on the total projec-
tile-nucleon momentum P, The dependence of &, on the projectile momentum and external parameters
may in principle be quite different from that of quantity c G.iven (3) and (14) we can write'

= t G t + /'T&2) + /" T&2) + /" T &2) + ~ ~ ~ (16)1 a 2 1 1 1

Consider the matrix element of n,'T"' for elastic scattering from the target bound state. (The condition
of vanishing of this matrix element will determine the quantity &, in the Green's function G,"' defining t, .)
Using (14a), (16), and (17) it reads

~" pl"T'*'l~. ,~')=I~(~, -~ ~. -PIm~ll. ~lp)~~~*-r-p i'&

1 1
A

x 5 (P —p —P'+ p')g~~ (P~ —p', P~ —p')d~P~d~P[d~P~ ~ ~ ~ dBP~d~P~ ~ .. daPq",
1

(19}

where we used the fact that h, [Eq. (16)] is diagonal in the projectile momentum p, . For the matrix ele-
ment of h, in Eq. (19) we have

&pi, pi, P2 i@i —Eq+B+Hi pi, pi, pm"} = e, —Eq+B+ ' + '

&&5'(P, -P,")5'(P," -P,")+ V(P, -P,",P," -P,"'), (20)

where

V(P, -P~, P2 -P2') —= V(P, -'P,")63(P2 —P,"') + V(P3 -P2)5'(P, -P,")+ V2(P~ -P,")6 (P~+ P2 —Pf -P,"').

(20a}

After substituting (20) into (19) we use the Schrodinger equation (10) to eliminate V:

(P, P Pn pt) V(P, Pn Ptt Ptn)d SP,d Pti = 3B "1- P) ('2" -Pl)
~ (Pr - ie Pt) . (20b)

I
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Then we can rewrite Eq. (19) as

(21)

In (21) R(p„p2) is the remaining part of integral (19), which does not depend on P, variables, If we further
use the fact that P, has a definite parity

(22)

we find that

f r ~
I~

(p» ~ p/ )
1 ~p pl~ yg(p» pl I) dsI»»d3pt ~p pll &p pl&

q (p» pt )

x g»0 (P," —p„P,' —p') d 'Pf d SP2. (22a)

%'e now choose E, to be a function of p,
' and two

e'er;exnal Parameters Kg pg which has the form

- a
&x

- &P - (Kz - Px) 2

Using (22a), and (23), one sees that Eq. (21)
vanishes if

(23a)

Equation (23}gives the special form e, should have
in the propagator G,"' of Eq. (11) in order that the
scattering operator f, of Eq. (14) be defined so that
the elastic scattering matrix element of 4,'g"'
vanishes. When Eq. (14}with such a propagator
G,"' is considered, one sees that the matrix ele-
ment g(t, ip,) is just the elementary projectile-
nucleon scattering amplitude expressed in the
Brett frame [Fig. 1(a)] at the total energy

on relative momenta and c.m. energy we can write

(pit, ip~) t~(E»)i~p qK~~pi qK~) ~

(p, it, ip') = t, (E&'„',p, -qK„p'-qK, ),
(25)

P-P
I

2
P-P(

2

where K, = (p+ p, )/2, E~u,' = pm/2p. K,»/2(tn-+ p)
+ (p —p, )'/8m, q = p/(m + p), and K„E,",,' are de-
fined by the same expressions with p-p'.

The vanishing of the elastic projectile-target
bound state scattering matrix element of the oper-
ator &f T"' [Eq. (18)]will determine the quantity
c in the Green's function G,. Using (ll}, (12), and
(17}we can write

z z, (p-p, )' P', (p-p, )'
2p,

(24)

E, (P, —P')' P', (P, -P')'
8m 2p. 8m

(24a)

In terms of the more familiar t matrix, depending

defined as if the struck nucleon is on the mass
shell (cf Ref. 2). The parameters K, and q, [Eq.
23(a)]definethetotal projectile-nucleon momentum
and the struck nucleon kinetic energy (~q, )~(l/2m).
Since in general ip, ihip i, this amplitude is a half
off-shell one.

The condition of vanishing of the matrix element
(P„pi &f' T"'

i
p', $,) will determine the quantity z,

in the Green's function G,"' defining t,. The ma-

trixx

element (p, i t, i
p') appears to be the elemen-

tary projectile-nucleon scattering amplitude [Fig.
l(b)] at the total energy

P(

P'- P)

2
P)- P'

2

(Pi It~i p')

P] P

(b)

FIG, 1. (a, b) Schematic representation of the matrix
elements (p (t& lp&) and (p& lf2 (p') as an amplitude for the
projectile-(dished line) nucleon (solid l. ine) scattering.
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A

(p, pI p,"p"'Ip, p) f=()(p, -p, p, -p„' ',&p„(p„p„p,I~-z, +p+a(p„p'„p)

)t*(P' — P' — ') d'P d'P d 'P'd'PP 'P'
p 2/2p 0 1 Plp 2 P 1 1 1 2 P

1

Using the Schrodinger Eq. (10) to eliminate V in the Hamiltonian H we find

(()., PIp"p"'lp', pd=fp(p, -p, &, -p) ~-&, + ', ' — 'z p:(p, -p„p. -p')

(26)

XR(p,) d~p, d3P, d P2 p

where R(p, ) is the rhmaining part of the integrand (26), which does not depend on I),. variables. Using
again the definite parity of )t)o [Eq. (22)] we find that Eq. (27) vanishes if we choose

p'
2p.

'

This quantity defines the Green's function G, [Eq. (11)]which reads now

6'(P,"—P,"')53(P," —P,"')53(p, —p,) (29)

Let us now see the consequence of using our scattering operators t„ t, and Qreen's function G, as an
approximation for the t mati ices 3„32and Green's function G in Eq. (9) for the double scattering term
We have for T"'-T'2'

a

( ppIT Ipp) fp(p pp p) *gp *jp p(p p p p)dpdpdp

t1(E~,'p P 3}K1pP1 --)7K,) t2(E,'„,P, —)7K2p P -rlK2) S,-,& d3„
p2/2 p 2/2 OOP 1 1 lp

where Boo is

P..(p-p„p, -p') fP.(P -p,=P, -p)P1(P -P, P.-P')d'Pd'P. . (31)

One can easily see that this quantity is two-nucleon
density in momentum representation. In the inde-
pendent nucleon model $~ equals the product of
single nucleon form factors:

I

energy and the energy of the projectile.
The extension of our method to the case of finite

nuclear mass (M) is straightforward The der. iva-
tion is simplest in the projectile-nucleus Breit
frame. It requires the replacement of the nucleon

S o(p p1 p1 —p) =S..(P-P,)S..(p, -p') ~ (32)

The integrand (30) for our optimal approxima-
tion of the double scattering amplitude factors into
two-nucleon density containing nuclear informa-
tion and a part dependent only on the projectile-
nucleon input and this comes about from the fact
that t» t» and G, are independent of the total pro-
jectile-nucleon momentum P,

The double scattering amplitude in the optimal
approximation may be represented by the usual
diagram, Fig. 2(a). However, contrary to stan-
dard treatment, it is calculated at total projectile-
nucleon momenta P, = (p+ p, )/2, P2 = (p, + p')/2.
The averaging over ground state wave functions
is standard [Fig 2(b)]. Th. e amplitudes t,. in Fig.
2(b) are taken at energies E, [Eqs. (24), and
(24a)] set equal to the sum of the on shell nucleo-n

P2-P(

P(-p

/j»P'

10
I
t
~

3P)
I

—9
III

/ ~
P

= P2-P'

= Pj-p

1/to (Pj-P, P2-P()

r/I»
P-Pp

t g P

p 2/

1(/

P

P, —P

2

P—P,
2

~o & P& ~ 2

FIG. 2. (a, b) Schematic representation for the double
scattering amplitude in the optimal approximation. The
nucleons are bound to an infinitely massive core.
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momentum by the relative nucleon-nucleus mo-
mentum, so the nuclear wave functions for initial
and final states are

changes our result (30) only by replacing
Soog -p)~p) -p ) With

Q ~ ~) qS )p-p ——mp-p ——m

I'

P 2,P. -P
i

where q = p —p', and the nuclear Hamiltonian now

contains the kinetic energy of mass M —2m. This

The extension of our procedure to a many-body
target for the n-order multiple scattering ampli-
tude with different struck nucleons is simple.
Performing the same procedure as for the double
scattering term we find that the optimal approxi-
mation T,'"' for the n-order amplitude T„'"' can be
written in the projectile-nucleus Breit frame as

where

( q
p&

-—m, P, -p, ——m, ... , p„,—p -~ m
~

d p ~ ~ d p„„

(~ p~1(n)~p ~g
(!ll P-& . P. -& )).(!l' P. -& ., P. -n a)

" .( ~l, p.-. n-. P'-& .}
(Pm/2p, -p,2/2i), ) (P'/2p. —p~'/2p, ) ~ ~ ~ (p'/2)), -p„,'/2p, )

(33)

K P Pl K —Pg 1 Pi K Pn )P -E(g)- f ) + ( J PP(K
1 2 t jul, n 2 t n 2 s off 2))) 2()n + p) 2)))

(p„=—p', p, and p' are the projectile momenta in the projectile-nucleus Breit frame}, and

f q ) / q
drool P-p). -M ~ ~ ~ ~ Pn) Pn ~~~ 40(p) P+2M~ ~ ~ P -PN)2M )

(j)P )-P)-2Mm, . . . , p„-P -2 m~ d P ~ ~ ~ d P„.q
2M

(34)

We see that the integrand (33) also factors into
multiparticle nuclear density in momentum repre-
sentation ((„containing only nuclear information
and the projectile part dependent on the projectile-
nucleon input. The amplitude T,(") [Eq. (33)] may
be represented by the diagram [Fig. 3(a)] which is
calculated at nucleon momenta corresponding to

p P+Px p Pn-x+ t)

but averaged over ground state wave functions in
the usual way [Fig. 3(b)]. The amplitude t, [in Fig.
3(b}] is taken at an energy equal to the sum of the
projectile energy after (i —1) collisions, which is
p~/2)). as can be easily seen from Fig. 3(b), and
the on-shell energy [(p, -p, ,)/2]' (1/2m) of nu-
cleon i. One sees from Fig. 3(b) that the optimal
approximation for the n-order scattering ampli-
tude corresponds to scattering off n on-shell nu-
cleons which have all the momentum of the nucleus
while the core remains at rest.

Now we comment on the relation between our
optimal approximation T,'"' to the multiple scatter-
ing amplitudes T„'"' and the first order optical po-
tential. Applying the usual arguments for the de-

rivation of the standard first order optical poten-
tial from the multiple scattering series, i.e. ,
approximating the projectile-nucleus elastic am-
plitude T„' (E,p, p') by the sum of multiple scat-
tering terms off different struck nucleons and
assuming the nucleons to be uncorrelated, ' we
easily find that the equation for T'„' in our optimal
approximation reads

T,"(E,p, p') = ~."'(E,p, p')

A 3m~~go~&(E»i
g ( t P) P ) p2/2p pit 2/2p

i T, (E,P",p'), (»)

where E=P'/2p, and

P ))t(E 0&)

= (A —1)t(E"',p —)iK, p' —qK)()~(p —p'), (36)

with K= (p+p')/2,

E., E ip, pii' 1 ~~p-p'I'1
2 j 2(m+p, ) ( 2 i 2m '
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q
~ ~

q

n-l

K-5 (P—
p )

i= I

~P =K——q
fl

n
~P

I

Pn-~

Pn- Pn-i

— Pz-p zPp-p)

P-p
I

-"'"--'"'"---"'7"'"'

1~

p=K+ +
2

f {p-p ——~,. ... , pn-p —~q
2M

(b)

q q
~ ' P 2M '' ~ P~-i 2M

P —Pp-I

2

~P' =K-2
r

Pn-I-p'

2 (p-p ——m .. ., p„-p ——
o ) ) 2M 2M

Pp-Pi

2

Pi- P

2

t2

l~

/
/ ~

q/ p=K+—
2

P)-Pp

2
P- Pi

2

FIG. 3. (a, b) Schematic representation for the n-order multiple scattering amplitude in the optimal approximation for
the case of finite nuclear mass.

and Sop is the single nuc leon form factor.

III. REFLECTION TERMS

We now consider the multiple scattering terms
which include rescattering on the same nucleon.
We take for simplicity the previous model of a
projectile scattering on two nucleons bound to an

infinitely heavy core. The first reflection term
the multiple scattering series (8) is the triple
scattering term T' ' = Tzo~2GTz. We again approx-
imate the operators r, and G by .t, and G, [Eqs..
(11)and (14)]which will be defined so that the first
correction to T,' ' —T' ' vanishes. It can be
written as

(rP„P ib,,T'3'i p', tPO)
= (g„pi 5vG, t G2,t, + t,5Gt G,t, + t G,5r 2Gt, + t G,t 5Gt, + t G,t2G, 5r,

i $0, p') = 0, (37)

where 5r, = t,h, G,'t, , &G = G,hG„and h and h, are given by Eqs. (13) and (16). Setting the matrix element
of each term in Eq. (37) to be equal to zero, we determine the operators t, and G,. By a s. imilar procedure
to that for the double scattering term above and using the definite parity of g, [Eq. (22)] we find finally
after some algebra for the T,'3'-T' ' amplitude

t, (E P~~—riK„P, —riK, )t,(E~f', P, —rlK„P, —rlK2)
[P'/2l -t,'/2l + (P -P,) (P. -p')/2m] [t'/2l -f.'/2l + (P -P,) (P. -p')/2m]

x tj(E~~ggy P2 rlK3pP rlKp)Sop(P Pg+ P&-P'&P& -P&) d P|d Pp g (38)

where S» is two-nucleon density in momentum representation defined by (31) and the amplitudes t, are
written in terms of the c.m. energy and relative momenta, so that

p+P, —P+P @(i& p Ei +(p-p|+Pm-p 1
2 ' "' 2p, 2(m+p, ) . 2 2m '

—pl P2 @(2)—~ 2 + (Pl P2) + (P pl) (PS
2p 2(m+ p) 8m 2m (39)

s
2 ' ~' 2p. 2(m+p) 2 i 2m
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(40)

The integrand (38) again has a factorized form since t, an. d G, are independent of the total projectile-nu-
clean momenta P,. Using the identities for the propagators in Eq. (38)

I

O' Pg' (P-P,) (P. -P') t' ~&-9+51-PI+9'~' 1 0 p- p -P.+P'&'
2p 2p, 2m 2p, ( 2 j 2m 2p, 2 )~ 2m'

we can easily show that the amplitude T,"' may be
represented by the usual diagram [Fig. 4(a)]
which is calculated, however, at values of the
total projectile-nucleon i momenta P, chosen in
such a way that the initial momentum of nucleon i
equals its final momentum but with opposite sign
[Fig. 4(b)], and is averaged over the ground state
wave function in a standard way. The amplitude
t, , where index i is the number of the collision,
is taken at an energy E, [E,= E~(', + K, /2(m + p, }]
equal to the sum of the on-shell energy E~&„' of
nucleon i and the energy of the projectile after
i —1 collision, i.e. ,

2 ll
(41)kga 2p

where E„'~„' and E„'&„' are the kinetic energies of the
nucleon before and after collision j.

We can show that these rules, which we have
found for the calculation of the optimal approxima-
tion to the first reflection term and also to the
multiple scattering terms off different struck nu-
cleons, are valid for any term of the multiple
scattering series. In the case of a finite nuclear
mass these rules remain the same if we calculate
the multiple scattering ampl. itude in the projectile-
nucleus Breit frame, except that the nucleon mo-
menta in the nuclear wave function should be re-
placed by the relative nucleon-nucleus momenta.
[One sees easily that these rules require that the
struck nucleons have all the momentum of the nu-

I

cleus during the collision, cf Fig. 3(b).]
We note that such factorized forms for optimal

approximation of multiple scattering terms of
different struck nucleons [Eq. (33)] have been used
before~ without derivation and demonstration that
they are the first terms of a systematic expansion
designed to minimize corrections. However, the
optimal approximation formulas for the reflection
terms [such as Eq. (38}]have not been used before
to our knowledge. The comparison of our expres-
sions for the reflection terms with those calcula-
ted in the fixed scatterer approximation (as in the
Brueckner model' shows that the optimal approx-
imation results in the modification of the energies
in the elementary amplitudes and also in the modi-
fication of the propagators of the projectile.

IV. CORRECTION TERMS

In this section we investigate the first nonvan-
ishing corrections to T„'"'—T,'"' with our optimal
choice of t,. and G, in T,'"'. We study the double
scattering term T'2' in the previous model of a
projectile scattering on two nucleons bound to an
infinitely heavy core. Consider the expansions
(12), (15), and (18}defining T'2' and keep the
terms up to second order in the operators h.
Since the operators 0, and h commute, ' the ma-
trix element for the first nonvanishing correction
can be written as

O~~i-p. P2-&i ~

P2- P(

P(- p

2

/

+t) t)~
//»
P P I

P)- P)+ P2-P' 4o ((
~

P+P~-P, p~-P~

(b)

O ~Pi P P2-P(~

P2- P)

2

-P+ P-P+P'
I 2

f2
=0
/

Pl / P2
/

-0 0
t/

P % pl

Pi-P2
2

P-PP Pg P

2

0o ( (-P+P~ P, ~-P~
I

FIG. 4. (a,b) Schematic representation for the lowest order reflection term in the optimal approximation.
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g., pl ~,T&'&l q„p') = (q„pit,a,G&'&+(G."&+G&'&i G&'&) G&'&a,i G,i, l y., p')

+ (g„p l t,I&,(G,"&)'t,I&G,'t, + t,hG, 't,h, (G &'&)'&,
l

&t&„p')

+ (&1&„p l t,I&,(G,"')'t,G,t,h, (G &'&)'f,
l
g„p') + (&t&„p

l
t,G,'I&'&,

l
&I&„p') . (42)

Assuming definite parity of g, separately in each nucleon momentum which holds in general for the inde-
pendent nuclear model

$(Q„Q.)|t.*(Ql,Q.') = 4.(-Q„@.)@(-Q,', 4.')
and the same for momentum g2, we find that only the first two matrix elements in Eq. (42) contribute.
All the other terms vanish. Indeed, consider for example the last term &, T"' of Eq. (42) which reads

d3
(p2/2p p 2/2&& )3 (pl I 2 I p )40 ( & pit P2 p )d (43)

Using Eqs. (10) and (20) and performing the P, integration we find

x g (P, —p„P, —p') R(p, )d'P, d'P, = 0. (44)

AI (1I)T (2)
2 =—Vz p, TO

a
(45)

where V„is the rms velocity of the bound nucleon
.and T, is the projective-nucleon scattering time
delay [T, = (1/t)(dt/dE)]. If t is relatively slow
varying we can approximate T, as 1/E and &2«" &T"&

is of order (V/V„)2 relative to the main term,
where V„ is the projectile velocity.

The assumption of definite parity of g, for each
nucleon variable is necessary for the vanishing of
the last three terms in Eq. (42). (We notice that
the vanishing of the first order corrections to the
multiple scattering terms T,'"' only requires defi.-
nite parity of tj|), when all nucleon momenta change
sign, which always holds for g, .) Therefore, these
terms do not equal zero, in principle, if one takes
into account the nucleon correlations in the wave
function. If, for example, the wave function g,

R(p, ) is the P, -independent part of the integrand
(44). The treatment of the first two nonvanishing
terms Lp"'T"' in Eq. (42) is the same as the
treatment of the correction term in our previous pa-
per. 2 Evaluation of the terms requires some off-shell
information for the elementary amplitude t, How-
ever, an estimation of these terms can be done
without detailed input. One, finds after some alge-
bra (as in Ref. 2)

I

depends on the sum and on the difference of nu-
cleon momenta

and has a definite parity in each of these variables

y, (x, y)y*, (x', y') = y, ( x, y)yg(-x', y')-
= A.(x, -y)4*.(xl, -y') (46)

all matrix elements in Eq. (42) may be easily
evaluated. The first two terms remain of order
VN'p. T, relative to the main term. The exact eval-
uation of the third and fourth terms of Eq. (42) re-
quires off-shell input for the elementary t,. ampli-
tudes (like that of the first two terms); however,
the estimation shows that these terms are of the
same order of magnitude as the first two terms.

The last term ART&2& of Eq. (42) corresponds
to the correction from projectile propagation in
the intermediate state. We now turn to a more de-
tailed analysis of this correction term. We con-
sider a more realistic example of a finite mass
nucleus M. As was done above for the first order
correction ~,T&", we evaluate 4, T"' in the
projectile-nucleus Breit frame. In this case Eq.
(43) only requires the replacement
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&.(P -»P. -P.)-&o ~Pi-P+ m P +P+ ml =-col ' ' ' &P&+Pa-P-P, + —m~ (47)

(45)

and the operator hnow contains the kinetic energy of mass M —2m. Using Eqs. (10) and (20), performing
the P,. integration, and replacing

P+P&+Q+Q p Px+P +Q
1 2 2 ' 2 2 2

we find after some algebra

p ~

&vT(a&
~
~ p&)

t&(E,&&&p
—7K» P&

- gK&)'ta(~ nN& Pz —lKa& P I a} d sp
(f '/2u P,*/2-u)'

x (Q/2+ Q) ~«(P —P,} (Q/2 —Q) (p' —
p&.)

m m
(49)

where p and p' are the projectile momenta in the Breit projectile-nucleus system, E«, K„and K, are
defined by Eq. (25) and K = (p+ p')/2. To simplify the following discussion we consider scattering on the
deuteron. In this case the integrand (49) must be multiplied by 5"' (Q) which correctly accounts for the
total momentum of the nucleons being w-,'q in the initial and final state. One sees also that

~I
S..(p -P„p, -P)-S.

~,
P, —

2
-=S.(p, -K}

(50)

in the main term [Eq. (30)] where S, (Q) is the body form factor of the deuteron. Now we study the part of
the integra. l (49) that depends upon the bound state wave function. We have integrals of the form

( -K) = — p g p, -K
~« ~(f$

Pa-K ~Q,Q&d'Q Sa(p, -K)5,
ig p1 0

where we have used the symmetry of the wave functions to obtain 5,~
and introduced the quantity'

s,~i, -«&= f& I~&&+',
". &: o-'& \o*«'o

2 j
S,(Q) is a second moment of the deuteron form factor So(Q) and we can estimate it for small

~ g~ as

(51)

S,(Q) =—(Q') So(Q), (52)

which is exact for Gaussian wave functions. Substituting (50) into (49) we obtain for the sum of the term
T,"' and the correction term from the projectile propagation A, T "

(c., il T."'+~".&'"Ii;&& =f &,(«."l,o &«„&, &«»-.(«'lli, -&«. & &«, & o-(& &&,'&'.-,

where

(P-P, ) '(P'-P, .}
3m2G(p)

1 S K)f'/2P f '/2I& ' '-(f'/2u -P a/2I&)a

S,(p, —.K)

pa/2~ p a/2~ a(p&. -~/So(p&, -K}. (P&, -K}'- &I'

P'/2i -P, /t2i
'

3m

(54)

Since the form factor So(Q} decreases rapidly with Q, only p, -K contributes essentially in the integral
(53) and we neglect (p, - R)a with respect to -,qa in (54) and use Eq. (52) to write G(p, ) as



1266 S. A. GURVITZ

So(pi —R)
G(p, )= ' '

(ql) q.
p'/2" p~ 2" p'/2i -p,2/2i l2m'

1 1
p'/2p, -p, '/2p+(q/2m)((Q')/2)"* +

p'/2i(, -p, '/2g -(q/2m)((Q')/2)"' '

Therefore, we have finally found for the double scattering term

(P„P (r,"'+E,"P'"'~P', P, ) Jt=(Etr'r P —llK„P, —rtK )t (Errr, P, —rlK„P'-rlK )

2 p /2p, -p~2/2p+qVg/2VY pm/2i). -p,~/2p -qVg/2~

(66)

Comparing E(l. (56) with the main term [E(l. (30)]
we see that the nonvanishing correction from pro-
jectile propagation results in double poles in the
Green's function with their positions shifted from
p, =+p to the values p, =ap+ 6, where

qp, V„q V„
2Wsp 2&2 V„'

As was pointed out above, the deuteron has been
taken for simplicity. The same arguments can be
carried out for the correction to the double scat-

tering term given by Eq. (49) and result in the
same answer which we have found for the deuteron.

The corrections to the reflection and higher or-
der terms can be found in the same way as has
been followed here. We can show that their mag-
nitude relative to the main term is of the same or-
der of magnitude that we have found for the double
scattering term.

The numerical consequences of our approach for
hadron-nucleus elastic scattering will be pre-
sented in a separate publication.
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