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Multiphonon K" = 0+ states in even-even deformed nuclei. III. Comparison with boson
expansions in a realistic case
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Collective K = 0+ multiphonon states are studied in a realistic case and compared to those obtained by
use of two different boson expansions.

NUCLEAR STRUCTURE Multiphonon E = 0+ states in even-even deformed
nuclei. Application to a realistic case. Comparison vrith the results of boson

expansions o

I. INTRODUCTION

In two recent papers'" (quoted hereafter as I
and II) we developed a microscopic theory allow-
ing the study of the anharmonicity of the collective
multiphonon K"=0' states in even-even axially de-
formed nuclei. Taking properly into account the
Pauli principle we gave recursion formulas allow-
ing an exact calculation of the norms of these
multiphonon states (paper I) and of the matrix ele-
ments of a general Hamiltonian (paper II). Since,
in an application to real nuclei, this approach may
be very time consuming on a computer, we also
developed an approximate method generalizing to
higher order the modified Marumori boson ex-
pansion suggested by Holzwarth et al. ' These ex-
act and approximate treatments were applied to a
simple solvable model of 2m identical particles
filling 2m equidistant pairwise degenerate levels
and interacting via a pure constant monopole pair-
ing force. In this schematic model we could test,
to different orders, the proposed approximations
and observe some properties, the most specific of
which are summarized here.

In the "exact" calculation (i.e. , where the Pauli
principle is correctly fulfilled) the energy of the
two-phonon states E(0', ) was always found to be
larger than twice the energy of the one-phonon
level. This is generally not the situation observed
in the nuclei of the rare earth eegion.

In the different approximations it was found that
there exists a cutoff factor N, in the dimension of
the basis of diagonalization, i.e., a critical value
beyond which the energy spectrum becomes wrong.

In some conditions we obtained some "dangerous"
or "intruder" states, low in energy, the wave
function of which is predominantly composed of a
large number of phonons.

It seemed interesting to us to see whether these
properties are conserved, or how they are modi-
fied, in a more realistic model (e.g. , two kinds of

particles in a Nilsson potential interacting by a
monopole pairing plus quadrupole-quadrupole resi-
dual force). Lastly, according to the recent suc-
cess of the boson expansion techniques developed
by Kishimoto and Tamura' (KT) in the spherical
and transitional nuclei, it seemed also worthwhile
to compare this kind of approa, ch to the exact and/
or approximate method mentioned before. In Sec.
II we review the essential points of the theory de-
veloped in the two preceding papers I and II. In
Sec. III we summarize the method of the boson ex-
pansion of KT for deformed nuclei. In Sec. IV we

apply, successively, the exact multiphonon the-
ory and the modified Marumori and KT boson ex-
pansion techniques to the more realistic model
chosen here, and compare the different results
obtained. Our' conclusions are finally drawn in
the last section.

II. SUMMARY OF THE THEORY DEVELOPED IN
PAPERS I AND II

A. The starting point

We introduce an orthonormal basis of quasi-
particles fulfilling the usual anticommutation rules

(n„, n„)= fn'„, n', )=0,
fn„, n'„) =5„„.

The Hamiltonian of the system is expressed in
terms of these basic operators as

H =U +H„+H, +H, +H

with

~ S+8&yQ 28QyG&,
e8&6

H3& = ~ R&syz(nqz npi2ynz +nznynsn&),
n8&5
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ff4o= Z f'n»~«uo'soy'-"~+o'~~so'so'n) ~
f.- t.

n8)'6

The coefficients P, B, and 8 are assumed to be
real and verify all symmetry properties of the
quasiparticle operators.

We suppose that in the two-quasiparticle space
it is possible to find a collective state described
by

Qr(i ) = 2 Q X„„(i) a~ c~, ,

where K is the projection of the intrinsic angular
momentum on the symmetry axis and where i
stands for all other quantum numbers. The X ma-
trix may, for instance, be chosen as the collective
solution of the Tamm-Dancoff approximation
(TDA). One could also take any other unitary ma-
trix fulfilling the condition X» = -X». Without
any loss of generality we assume the X matrix to
be real.

In order to simplify the treatment we restrict
ourselves to K"=0' collective states and hence-
forth omit indices i and g. By this restriction we
neglect states built on couples of Q~t Q~~ .with I.0 0,

I

n

X„(n ia„in&=- g Tr(EX")at„, ,
l=l

which may be important when one wants to compare
to the experimental situation.

Finally, we introduce the normalized multi-
phonon states in) =N„(Qt)" i 0).

B. Norms and matrix elements

Owing to the Pauli principle, the calculation of
the norm N„and of the matrix elements (n iH im)
is not easy. In I and II recursion formulas were
established for these quantities. To write those in
a simple form we introduced the following tools:

(1) The successive powers of the X matrix,
(2) The "reduced norm" Z„=(n! N„) '.
It was shown in I that the norms can be obtained

by
n-1

n6!„=-X„, —,
' g Tr(X"")6f„. . .

where the existence of the second term shows
clearly that Q' is not a pure boson.

In II we established recursion formulas for the
different matrix elements involved in (2). Ex-
plicitly one has

fn/2] t(n-1)/2] n-1-2l
(6f„„X)"'(n+2ilI4oin)=3 Q!P(2!+1,2l+l)X„„+6 Q g 6'(2!+3+2k, 21+1)X„,„,,

l =- 0 l =0 0=0
[(n+ 1)/2g

(X„„X„)"(n+ lie„in&= -2 g 6!(2! 1, 2!)X„„„
l=1

t'n/2] n - 2l

Q [dt(2l+1+2k, 2l)+6!(2/ —1, 2&+2+2&)]6!„
l =1 0=0

I.n/2 j
6!„(~lff„l~)=—g S,(2l+1, 1)&„, , —g S,(2!-1, 2!+1)+2S„(21,2!) 6t„„

l=o i=1
[(n «1)/2] n-2l -1

Sz(2l+1+2k, 21+1)+Sz(2/ 1, 2l+3+2k)+4S»(21+2+2& 2f)]6f

(6)

where the symbol [x] stands for integer m such
that m ~x&m+1. The quantities d' and I, are de-
fined by a relation of the type

v(i, m)= g T„»,(x')„,(x )„,
n8)'6

C. The modified Marumori boson expansion

The numerical evaluation of the powers of the
matrix X and of the quantities 6', Q., and I in-
volved in the preceding recursion formulas may
be, in some cases (large number of levels, for
instance) very time consuming. To avoid the ex-
act calculation of (niH im) for large values of m

an/dron it is possible to work with the boson rep-
resentation of the Hamiltonian through the modi-
fied Marumori expansion. In the boson space we
define the image of the multiphonon state in) by

in) =(n!) "'(a')"
i 0),

where 8 i 0) =-0. According to a suggestion of Holz-
warth et gl, .' this can be achieved by use of the pth
approximati. on of the boson Hamiltonian given in II:
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' &.IHI.&' " (-l)', „... .„
n=0 A'= 0 ! I}'

[(fit)n+ 0+ I
fin+ @ + (H t)n+ kgn+ k+ I]

[n! (n+ I)!]"' ~ I!
( I I & ~ ( [(II't)ll + k+ 2 ~N ~ k + (I!t)8+ kfltl+ k+ 2]
[n! (n+2)!] !' ~ I!

One can see that in this kind of approximation one only needs to calculate matrix elements (m IH In) with
n~m ~~p.

The boson Hamiltonian (I) can be written in the simple form

P

H,"'= g c(i,j )Ht'fi',

vrhere

I)' (m IHlm)
m!(i-m)! '

(' ' — ) = (' — ') = g ( )
(

~

) [ ( l) ]
(mlHlm -»

&mlHlm -»c(i, i —2)=c(i —2, i) = Q ( —.l)' " (. ),[,( 2),]„, ,
m —2

c(i,j ) = 0 otherwise .

(nI H&'& In) =&nlHln) for n~ p

&m IHlm&
(n -m)m! (p -m)!

+k+1 'Q ( l)k- m

m=0

(nlHg'In-I)=(nlHln-I& «»~p

If one considers the approximations up to order p =4 one gets 11 nonvanishing coefficients.
The matrix elements (nlHg' lm) in the boson space depend on these coefficients c(i,j } and on the geom-

etrical factors (nIBt" B"lm). After some simple algebra one can, however, express the interesting ma-
trix elements in the boson space directly in terms of those in the fermion space. Explicitly one gets

=v~ A», g (-l)k
1

&m IHlm - I&

(n -m)(p —m)! [m! (m —1)!]'~'

( l nH&l -n)2=& lnHI n2& for n~p

[ ( l)]]g2~k-y ~ ( i}k (m IHlm 2)
(n-m)(p-m)! [m! (m —2)!]"'

where

Ak =n(n —l)(n —2), . . . , (n —p + I) .
These relations demonstrate the existence of a
cutoff factor empirically observed in II. As a
matter of fact let us consider as an example
(n IH"'

I
n —2). According to (9) one has

(n IH"' In —2) =Hn(n —l)1"'(2 IH IO&

which shows that this matrix element goes to in-
finity for large n, whereas, .according to the Pauli
principle(nlHln —2) goes to zero. In the same
way, for any matrix element (9) to any order it is
possible to see that (n IHg' lm) behaves asymp-

I

totically as a "polynomial" i.n n and consequently
goes to + for large n, contrary to the fermion
matrix element (n IH lm) which necessarily goes
to zero beyond a given value of e.

III. THE KISHIMOTO AND TAMURA BOSON EXPANSION
APPLIED TO DEFORMED NUCLEI

A. The principle of the KT boson expansion

The transcription of the boson expansion (BE}
techniques of KT to deformed nuclei has been
achieved in a previous paper. ' We therefore re-
view only briefly the principle of this method. The
BE consists of introducing pure boson creation
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(annihilation) operators C» (C „)and in writing
e,«, and e,e2 in terms of C,-; and C,-;. The only
requirement for the determination of the expan-
sions is that the commutation properties

t[+1+2 e +3 +4] +3 '"1 24 3 2 14 s

[o'1&2 ~ o'3 &4] = &1o'4 523 —1r3 4r2 5 14 ~

1

[+1+2 t +3 +4] [+2 +I t 4 3J
1= (10)

[+2 +1 I +3 "4J 13 24 23 14 3 2 14 4 2 13

4 +1 23 3 1 24

are exactly satisfied order by order. It has been

shown ' that it is possible to choose a finite ex-
pansion for nto. As suggested by Sprensen, 3 it is
convenient to deal with an operator which changes
by c ne the number of bosons for the mapping of
o.fc' f and which does not change the number of bos-
ons for Q Q.

In expanding +f1', we choose all possible com-
binations of Cf and C which contain the indices 1
and 2 in creation operators Cf, and sum over all
other indices. A similar rule holds for the ex-
pansion of ef1a2. Up to the sixth order defined by
KT (equivalent to the fifth order of Ref. 5) the im-
age of fermion pairs can be written as

1+2)B 0 12 2 g 1. 231
3

f f f f 1f(o!,n2)B =xC»+aC» ~ C.„C„+b~C, , C„C„+pC» ~ C, C„C„C„+q~ C„C„C„C„C„
3456 3456

+ r ~ C ~ C C .C46+~C12 ~ C34C56C35C46
n f

3456 3456

In Ref. 5 it has been shown that we can restrict
ourselves to real coefficients x„x, x, , a, b, p,
q, r, and s. Furthermore, it was found that x, =1,
x=(1 —2x,)+2, and that all the other coefficients
can be expressed in terms of x (or x,) which can
be considered as a "convergence parameter. " The
third order coefficients a and 5 are obtained by
solving Eq. (2.12) of Ref. 5 which contain terms
such as a', 5', and ab cor~ing from contractions
of six operators (e.g. , C2C~C CtC C) to four oper-
ators (CtC tC C). There exist four real solutions
from which we retain the unique one where a and b

behave as const/x (where p is an integer larger

than one), i.e.,

a= —,
' [2(x' —1)"'+(x'+2)"'—Sx] =- 1

b = —'[(x' —1)~' —(x'+ 2)"'] =—1
3 2x

'

(12)

In the same spirit the five order coefficients P, q,
r, and s are solutions of Eq. (2.13) of Ref. 5,
where terms such as p', q2) r', pq. . . , and ap, bq. . .
come from contractions. There are eight real
solutions among which only one behaves as re-
quired:

p
1 [5(x2 2)1/2 15(x2 1)1/2 5(x2 + 2)1/2 + (x2 + 4)1/2 + 15x]

5
120 64x

q = 2B = 1 [5(x2 2)1/2 8(x2 1)1/2 4 5(x2 4 2)1/2 2(x2+4)1/2] = 1
60 8x' '

1 [5(x2 2)1/2 4(x2 1)1/2 5(x2 + 2)1/2+ 4(x2+4)1/2] 1
60 8x' '

B. Conditions of existence of KT boson expansions

The relation x=(1 —2x, )+2 shows that x, must be
chosen so that x0& &. The fourth order expansion
(12), hereafter noted KT4, exists only if the con-
dition x'&1 or x, &0 is. fulfilled. The sixth order
expansion KT6 defined by (13) further implies
x'&2 or x, -&. We see that to extend the BE to
higher orders one needs to take larger values of
Ix, I. This leads to a severe limitation of the KT
techniques, namely, when Ix, I increases the bos-

t

on vacuum IO) diverges considerably from the
fermion vacuum since n~ n, I0) =—0 while (.a~ n, ) I0B)

=x, IO)40. According to this Kishimoto and Tam-
ura' have suggested some approximate solutions
to KT4 and KT6, respectively, noted A4 and A6.
These approximations are obtained by removing
the terms coming from the contractions in the
previously mentioned equations. More precisely
A4 leads to a = 0 and b = -(1/2x) with the only con-
dition x0& &. The approximate sixth order A6 uses
the exact solutions (12) for a and b and the approx-
imate values



20 MULTIPHONON E"=0+ STATES IN EVEN -EVEN. . . . III. ... 1 l65

g 1
2x 128x7 '

aQ 1
x 16x' '

Q2

2x Bx' '

KT2: x, «p, KT4: x, -0, KT6: x, » --';
A4: xo& p, A6: x, «0.

C. Hamiltonian in boson operators

The general procedure consists, first, in writing
the chosen Hamiltonian in terms of quasipartiele
operators, second, in replacing the fermion pairs
o.to.~ and o.~e by their expansions (11). Since we
are mainly interested in a comparison with the
methods developed in Sec. II, we then introduce
collective Tamm-Dancoff phonons of the form

Bt=- —.
' g X„,Ct, .

It is easy to invert Eq. (14) and finally to express
II in terms of the collective operators in the nor. -
mal order as in relation (8).

Such a procedure presents some ambiguities on
the part of the Hamiltonian containing two body
interaction since there exist several possibilities
of forming pairs of fermion operators. In this part
of our work, and mith the simple force we shall
introduce, it is possible to use a rather "natural"
way of selecting these pairs. This implies that me

shall not necessarily use the normal ordered form
(2) for H The aim is .to postpone the contractions
to the final step of the procedure (see Ref. 7). We
end up with a Hamiltonian written in the form (8).

Explicitly expansions of order 4 contain terms
with coefficients c(0, 0); c(1,0) =c(0, 1); c(1, 1);
c(2, 0); c(2, 1) =c(1,2). Expansions of order 6 add
terms with c(2, 2); c(3, 1) = c(1, 3) and c(3, 2)
=c(2, 3). We point out that contrary to the modified
Marumori BE, the present one contains a linear
term &~+ Bbut no terms ggt'L" in the fourth order nor
Bt'B in the sixth order. As a consequence the direct
comparison of these two boson Hamiltonians is mean-
ingless. We finally mention here that the deter-
mination of the coefficients c(i, j) needs the know-

s=0,
implying simply x, «0. We note that these approx-
imate BE have coefficients the asymptotic behavi-
ors of which only slightly differ from those of the
exact solutions. Finally we summarize the con-
ditions of existence of the different boson expan-
sion we shall conside:

ledge of quantities which also arise, at least par-
tially, in the multiphonon approach.

IV. APPLICATION AND DISCUSSION

A. Choice of the model examples and parameters

The general formalism developed in Secs. II and
III is applied to a realistic model of two kinds of
particles in a Nilsson potential interacting by a
constant monopole pairing plus charge independent
quadrupole-quadrupole residual force. Since we
restricted the formalism to K'=0' collective pho-
nons only, this model will not yet allow any rea-
sonable comparison to the experimental results.
However, it is sufficiently realistic and tractable
to allow an interesting comparison of the three
suggested methods.

For such a type of model the detailed form (2)
of the Hamiltonian is well known. Therefore we
shall not give the explicit expressions of the quan-
tities P, R, 8 nor the form deduced for the Hamil-
tonian in the KT expansion. They can be found in
Ref. 7.

As usual, the pairing force is treated within the
BCS approximation. This introduces some fluc-
tuations in the number of particles. We suppose
that these have similar effects in the three pro-
posed approaches. Various examples of real nu-
clei are chosen in the rare earth region: '"Gd,
6~Er ~ and 2W for their diversity. They

present the following characteristics: The density
of the individual levels around the Fermi surface
are quite different and so are the pairing gaps, the
measured energies of the two first collective 0'
states, and the observed anharmonic effects. Fur-
thermore, these examples cover practically. the
whole well deformed rare earth region. Table I
summarizes the experimental data.

The parameters of the Nilsson model are taken
from Lamm, ' the deformation fixed to &, =0.25,
and the single particle matrix elements of r'Ygp
calculated according to the prescriptions of Bois-
son and Piepenbring. ' The usual BCS equations
are solved using 30 active levels, 15 on each side
of the Fermi level. The strength of the pairing
force G is obtained by fixing the gaps of Table I.
The TDA secular equation is solved for different
values of the strength pe

" of the residual quad-
rupole force. It is convenient to express the
lengths in (h/m&o)'~' units and y, in MeV. The
choice of the number of active particles may be of
some importance. It must be chosen in a suitable
way —sufficiently large to give stable results and
not too large to avoid effects of states which mould

be unbound in a finite potential well. Our present
choice is a good compromise.



1166 B. SII.VESTRE-BRAC AND R. PIKPENBRING 20

Nucleus

i 54
640d90

i64
68E 96

E(o, ) E(0')

680.64 1214.6

1246.0 1698.0*
1766.0
2172.0
2185.0

1020.0 1110.0

900.0 940.0

TABLE I. Experimental data for the chosen nuclei.
All energies are given in keV. When there are several
candidates for the two-phonon state we indicate the pos-.
sible energies E(02), the most probable one being indi-
cated by an asterisk. One observes that E(02)( 2E(0i).
The gaps E are deduced, as usual, from the odd-even
mass difference (H,ef. 10).

pose we consider the variable

(5I„)„=(X„')'/(iV'„)=-n! X„,
introduced by Holzwarth et al. ' to measure the
deviation of the fermion state (Qt)" [0) from a pure
boson (Bt)"[0) . In the case of '"Gd where the
basic phonon is strongly collective we get typical
values

(X,)„=0.057,

(K„)„=0.0025 .
On the other hand, for "'Yb, where the TDA pho-
non is less collective, the corresponding values of
XH are, respectively, 0.0017 and 0.000004 6.

i 72
70+bi02 1042.9 1404.0*

1794.0
1896.0

830.0 700.0

2. Some remarks on the different matrix e1ements of H

i 82
74Wi08 1137.0 2239.5 830.0 660.0

B. The "exact" multiphonon approach

The norms of the multiphonon states and the
matrix elements of the model Hamiltonian be-
tween them are calculated according to the form-
alism of Sec. II. The eigenstates of Il are obtained
by the diagonalization in a basis containing all col-
lective multiphonons up to n =9. The stability of
the three lowest eigenstates are checked by com-
paring the results obtained with a basis using one
state more.

/

1. Some remarks on the norms

As for the simple example treated in I, we again
find that the exchange term in relation 5, due to
the Pauli principle, is mainly sensitive to the col-
lectivity of the phonon we introduce. To this pur-

Two parts of II, H», and Il» contribute to the
diagonal matrix elements. As expected, the ele-
ment (n [H» [n) is always positive and increases
regularly with n; the contribution of (n [H» [n) is
always negative and much smaller than (n [H„[n)
leading to positive values of (n [H [n) which are
always found greater than n times (1[H [1). In the
four studied cases the deviation from the harmonic
situation increases with n. It is only in the case
of "'W that this deviation remains small. Con-
cerning the nondiagonal matrix elements
(n[H»[n —1) and (n[H«[n —2), it is worthwhile
to note that the pairing and quadrupole forces con-
tribute with opposite signs. Consequently, for a
fixed value of the pairing strength, it is possible
to change considerably these nondiagonal terms by
varying the quadrupole parameter yp Typical
values of the exact matrix elements of II are given
in Table II.

TABLE II. Exact (m[H[n) and approximate (m[H[n)i~' matrix elements of H obtained in the muitiphonon and modified
Marumori approaches for the case of Gd. The strergth of the quadrupole-quadrupole interaction was Xp = Xp = 0,035
MeV. All elements are given in MeV.

0.6596
0.6596
0.6596
0.6596

0.0
0.0
0.0
0.0

(n H[ n)&2'

(n H[n)'»
(n H[n)
&n[HI n&

(n a[n
(n H[n - I)"'
(n H[n I)'4'-
(n[H[n
(n[H[n —2)"'
(n[H[n —2)

1.595
1.595
1.595
1.595

0.2110
0.2110
0.2110
0.2110

-0.1724
-0.1724
-0.1724
-0.1724

2.806
2.785
2.785
2.785

0.5169
0.4810
0.4810
0.4810

-0.2985
-0.1754
-0.1754
-0.1754

4.293
4.209
4.215
4.215

0.8953
0.7708
0.7709
0.7709

—0.4222
-0.0738
-0.0985
-0.0985

6.056
5.846
5.877
5.878

1.335
1.056
1.057
1.061

8.094
7.675
7.766
7.772

1.827
1,319
1.321
1.340

-0.5451 0 6675
0.1296 0.4340
0.0341 0.2003
0.0384 0.2224

10.41
9.675
9.889
9.897

2.369
1.545
1.549
1.599

-0.7899
0.8394
0.3786
0.4445

13.00
11.82
12.25
12.25

2.954
1.721
1.728
1.832

-0.9120
1.346
0.5473
0.6973

15.86
14.10
14.87
14.85

3.581
1.838
1.850
2.032

-1.034
1.952
0.6852
0.9742
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3. On the relative values of E(02) and 2E(0& )

Even if the restriction to K"= 0' modes does not
yet allow a comparison with the experimental sit-
uation, it is interesting to see whether the devi-
ation from the harmonicity introduced by the cor-
rect treatment of the Pauli principle is going in
the same direction as that observed in actual nu-
clei.

As mentioned in the previous subsection the
diagonal matrix elements are such that (n ~H ~n)
&n(1 ~H ~1). To obtain the observed situation
E(0,')&2E(0', ), the off-diagonal elements
(n (H» )n —1) and (n (H«(n —2) must play an im-
portant role. If the anharmonicity of the diagonal
elements is too large, it seems that the off-diag-
onal effects are not able to compensate the diag-
onal, one. It was suggested' that one may choose
for y, in H a value y," slightly different from that

"used in the TDA. This is possible since the
only condition for X in our formalism is to be a
unitary transformation. Such a choice may help to
obtain the expected effect. Figure 1 illustrates this
discussion in the case of "'W where for certain
appropriate choices of y," and poTD" the energy
E(0,') can be brought lower than 2E(0', ). A careful
observation of the. matrix elements of II seems to
show (empirically) that the conditions
(n)H )n —1) ~ (n)H [n —2) &0 and )(n)H (n —1))

&[(n]H [n —2)[ for rather low values of n favor
the expected effect. It has been further checked
that this situation is not affected by a slight change
of the deformation ~, of the Nilsson field.

C. The modified Marumori boson expansion

Using the formalism of Sec, IIC, we have

calculatedthe matrix elements (n~H'~~~@},

2

(n~H'~'~n —1), and (n~ H'~'(n —2) for the three or-
ders p =2, 3, and 4 and 1 &n &9. The eigenprob-
lem is solved by diagonalization of the matrix of
H'~', the dimension of which is varied from 3 to
10.

Comparison of the approximate solutions to the exact one

In Table II we give the calculated matrix ele-
ments of orders 2, 3, and 4 as well as their exact
values obtained in subsection 8 in the case of '"Gd
for y, "=go =0.035 MeV. In this example it is
seen that the diagonal matrix elements are very
well reproduced whatever the order of tIie approx-
imation (the largest deviation for n = 9 being of the
order of 7/g). The situation is much different for
the off-diagonal matrix elements. It is easily seen
that the second order approximation deviates very
rapidly from the exact value: The order of mag-
nitude and even the sign of these elements (e.g.,
(5~H"'~3)) can be wrong. The situation is im-
proved by the higher order approximations and it
appears that the fourth order one gives a satisfac-
tory overall agreement. These conclusions are
better illustrated in Table III where we give the
three lowest eigenvalues Z(0',. ). Peculiarly it is
seen that these eigenvalues are exactly reproduced
by a fourth order calculation where the basis of
diagonalization is restricted to the six lowest col-
lective phonons. Furthermore, for each order of
the approximation, one gets a stability of these
energies with increasing n, the values'of which may
be either less or greater than the exact values. It
is also interesting to see the values of the c(i,j }
coefficients of Eq. (8). In the case studied, one
has c(1, 1) = 0.6596; c(2, 2) =0.1379; c(3,3) = 0.0035;
c(4, 4) =0.00025; c(2, 1) =0.1492; c(3, 2) = 0.0104;
c(4, 3) =0.000011; c(2, 0) =-0.1219; c(3, 1) = 0.0503;
c(4, 2) =-C 0036 showing a certain convergence of
the expansion, since

c(i+1,j+1) c(i,j), Vi and j .

TDA
= 0.030

TDA
= 0.035

TDA
= 0.040

2. Discussion of the cuto ff factor N,

In Sec. IIC we proved the existence of a cutoff
factor, i.e., a critical value of n noted N, such that
the approximations fail for n&N, . In paper I we
suggested that N, is intimately related to the pa-
rameter

FIG. 1. Comparison of the relative values of E(0+&)

and 2E(0+&) in the case of the case of %. The' full and
horizontal double-dotted lines represent, , respectively,
the calculated and observed energies E(0&) and E(0+&);
the single-dotted lines represent 2E(0+&). These dif-
ferent quantities are plott d for three values of XTODA

versus y"o varying from 0.8 yo
" to 1.2 go

D" . All quan-
tities E and g are expressed in MeV.

and in paper II we plotted N, as a function of g. In
the example treated in Tables II and III, Tr(X')
=0.135 and no cutoff factor appeared, at least for
p =3 and 4, within the studied range of n. In Table
IV, which corresponds to Table III for '"% with
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TABLE III. Exact E and approximate E~ values of the energies (in keV) of the three lowest
eigenvalues of H in the same case as in Table II.

10

E(2) (0+)

E(3)(0+)

E(4) (p+)

E(pg)

E(2) (0+)

E(3) (p+)2

E'"(o,')

E(02)

E(2) (0.)
E&3&(0+&

E(4) (0+)

E(0,')

635.4 562.6 539.9 528.4 524.3 522.9 522.5 522.4

601.5 597.4 597.3 597.3 597.3 597.3

1677.0 1545.0 1397.0 1336.0 1306.0 1295.0 1291.0 1290.0

1677.0 1540.0 1502.0 1500.0 1500.0 1500.0 1500.0 1500.0

1677.0 1540.0 1497.0 1493.0 1493.0 1493.0 1493.0 1493.0

1493.0 1493.0

3038.0 2780.0 2541.0 2428.0 2371.0 2349.0 2341.0

2981.0 2679.0 2644.0 2644. 0 2642.0 2642.0 2642.0

2981.0 2688.0 2636.0 2634.0 2634.0 2634.0 2634.0

2635.0 2635.0

635.4 601.5 597.0 596.8 596.8 596.8 596.8 596.8

596.8 596.8

y, n"
=XOH =0.030 MeV and Tr(X') =0.239, there is

some evidence for N, = 6 in rough agreement with
the estimate N, =N, (q) of II. In the cases where
the exact solution is not reachable for computation-
al reasons it is necessary to have an estimate of

The value of the parameter q, or more simply
the Tr(X'), still seems to be, in this realistic
model, a good criterion for fixing N, .

3. On the observation of intruder states

In analyzing the energy spectra obtained in the
modified Marumori approach we also found in some

cases (e.g. , "'W, y, =0.040 MeV, and p =3) some
intruder states. They appeared for n =8 (and n =9)
between 0,' and 0', (0', and 0,"), respectively. These
states were composed predominantly of a great
number of phonons and may be due to the fact that
for n &N, the modified Marumori approach is mis-
leading.

D. The Kishimoto and Tamura boson expansion

Following the theory summarized in Sec. III we
studied the different boson expansions KT4, KT6,
A4, and A6 for several values of the convergence

TABLE Ip. Same as Table III but for W and X =X+0= p.p30 Me/.

10

E(2) (p+)

E(3) (p+)

E(4) (P+)

E(pg)

E(2) (p+)

E'"(0,')
E(4) (0+)

E(0')

E(2) (0+)

E(3) (p+)

E(4) (P+)

E(o,')

1176 0 847 3 867 0 800 3 802 0 791 0 790 9 789 6

1176.0 875.1 892.7 847.6 849.2 845.2 845.2 845.0

1176.0 875.1 893.1 842.2 844.2 837.1 837.2 836.4

840.0 840.0

2463.0 2444.0 1926.0 1914.0 1793.0 1787.0 1765.0 1763.0

2463.0 2455.0 2008.0 2008.0 1935.0 1934.0 1928.0 1928.0

2463.0 2455.0 1995.0 1993.0 1898.0 1897.0 1881.0 1880.0

1898.0 1897.0

3933.0 3891.0 3155.0 3122.0 2937.0 2920.0 2884.0

3896.0 3909.0 3291.0 3291.0 3191.0 3187.0 3180.0

3896.0 3904.0 3237.0 3234.0 3075.0 3071.0 3038.0

3109.0 3109.0
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parameter xp This one was varied from xo 0 to
x, =-0.6 by steps of -0.1. In the region -0.5&x, -0
the sixth order coefficients p, q, r., and s of the
boson expansion are not defined; we put them equal
to zero. This method permits us to evaluate the
effects of the terms of H~ with coefficients
c(2, 2), c(3, 2) = c(2, 3) and c(3, 1) = c(1, 3) due to the
contractions of- higher order terms depending on
the fourth order coefficients a and 5, and to de-
fine an expansion hereafter noted KT4'.

1. Comparison of the different expansions

TaMe V illustrates a typical case '~Er, where
"=y,"=0.040 MeV, and from which some defi-

nite conclusions can be drawn. First of all, it is
seen that for the same value of the convergence
parameter x, the different expansions give com-
pletely different results. Only the lower order ap-
proximations KT4 and A4 can give values of E(0', )
and E(0', ) which have something in common with
the exact values obtained in the multiphonon ap-
proach. The approximate calculation A4 gives an
agreement for small values of xo 0 1 and it is
worthwhile to note that it is just for this approxi-
mation and this order of magnitude of x, that Kish-
imoto and Tamura got their good agreement with
the experimental results. ' Another possible way
of getting an agreement is to take x,& -0.6 in the
approximation KT4. But an examination of the
wave function then shows clearly that one has very
strong mixing of the multiphonon states, even if
the energy spectrum seems very near to harmon-

TABLE V. Approximate values of the energies of the
two lowest eigenvalues (in keV) of H obtained in the var-
ious boson expansions of Kishimoto and Tarnura. The
results are given for ~ Er and Xo

——Xo
——0.040 MeV for

which the exact values of the multiphonon approach are
E(0&)=.809 keV and E(02) =1789 keV.

icity. We also observe that the latter pi.operty is
only possible for fourth order expansions, and that
in some cases one may have E(0', )(2E(0', ). For
-0.5&x, ~0 the results of KT6 =—KT4' and A6 are
quite equivalent, showing that the values of the

p, q, r, and s coefficients in A6 are small enough
to introduce only slight differences with KT4' where
these coefficients are arbitrarily put equal to zero.
For -0.5&x„&0 the comparison of KT4 and KT4'
show that the contributions of the contractions of
higher order terms mainly affect the energy of the
second (and higher lying) 0" state. It may be that
contractions of eighth order terms, but depending
only on sixth order coefficients, also alter the re-
sults of KT6.

For x, ~0.5 where the KT6 expansion is, a Priori,
expected to be the best, we are forced to note that
it is the worst solution, showing clearly that the
boson expansion does not converge. A comparison
of A4 and A61eads to the same conclusion for the
approximate boson expansions. This confirms
Sgrensen's conclusion' for the case of the low de-
generate orbitals.

In Table Vl we give the c(i,j ) coefficients of the
different boson expansions of KT's type for differ-
ent values of x, in the case discussed above. We
note again that c(0, 0) and c(1, 0) are common to
all studied expansions and that c(1, 1), c(2, 1), and

c(2, 0) are the same in KT4, KT6, and A6. The
present study clearly shows that a convergence of
the coefficients of the boson expansion where

c(i,j )&c(i+1,j+1)&c(i+2,j+2)

absolutely does not mean that the boson expansion
method itself converges. Finally, we also want to
note again that we do not have at our disposal any
serious criterion to select the appropriate value of
the convergence parameter.

2. Some remarks on the intruder states

Xo

-0.1

-0.2

—0.3

-0.4

-0.5

-0.6

KT4

2158.0
4275.0

1579.0
3150.0

1368.0
2734.0

1221.0
2443.0

1107.0
2214.0

1007.0
2014.0

912.0
1858.0

KT6

2165.0
5192.0

1613.0
4162.0

1490.0
3814.0

1522.0
3733.0

1655.0
3853.0

2493.0
5950.0

2546.0
5602.0

1039.0
2050.0

884.0
1745.0

717.0
1412.0

530.0
1044.0

308.0
693.0

81.0
540.0

503.0
1482.0

2166.0
5242.0

1615.0
4349.0

1502.0
3970.0

1552.0
3880.0

1703.0
4008.0

1906.0
4282.0

2128.0
4641.0

In subsection C the analysis of the energy spec-
trum was always rather simple and we observed
few intruder states. In the present method there
are sometimes so many of these that it is not easy
to select the three lowest physical eigenstates
whatever the chosen expansion. Furthermore, in
some cases, their characteristics are completely
different from those of the intruder states ob-
served so far. As an example, we find for "'Gd,
po =0.035, xo =-0.2 in the KT4 expansion a spurious
ground state of a curious "collective" nature: 8 of
the 10 components of its wave function are of the
order of 0.3. As a consequence, this kind of in-
truder state is certainly of a different nature from
those seen in the modified Marumori approach. It
may be a spurious state due to the violation of the
Pauli principle. We may also add that there are
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TABLE VI. Values of the coefficients c(i,j) in MeV of the different KT boson expansions of
0 discussed in the text for the same case as in TaMe V and different values of the convergence
parameter xp.

Xp c(0,0) c(1,0) c(1,1) c(2, 1) e(2, 0) e(2, 2) c(3,2} e(3, 1)

KT -1.007 -0.158 2.141
1.046

O 13O O OV13 O 45O OOZev O Oell
0.086 4 0.137 0.476 -0.022 7 -0.0713

-0.1 KT -38.9
A

0.144 1.618 -0.053 5 0.130
0.979 -0.078 0 .0.164

-0.0141 -0.0535
-0.020 4 0,0575

-0.2 KT
A

-0.3 KT
A

-77.7 0.498 1.429
0.911

0.899 1.286
0.843

0.021 6 0.164 0.415 -0.0110 0.0470
0.0714 0.191 0.481 -0.018 6 -0.0493

0.001 83 0.196 0.381 -0.009 1 -0.0421
0.066 0 0.218 0.431 -0.0167 -0.0436

-0.4 K'T -158.0
A

-O.5 KT -2OO. O

A

1.342 1.165 0.0116 0.226 0.352 -0.007 87 0.0382
0.774 0.061 5 0.246 0.392 -0.0151 -0.0392

1.823 1.056 -0,021 3 0.255 0.843 -0.108 -0.067
0.706 -0.057 7 0.273 0.361 -0.013 8 -0.0358

-0.6 KT -242.0
A

2.342 0.956 -0.028 5 0.284
O.638 O.O543 O.3OO

0.522 -0.051 5 -0.0444
0,336 -0.012 7 -0.0331

also many dangerous states in the sense previously
defined. This observation clearly demonstrates
that for a deformed basis the Kishimoto-Tamura
approach is not a clean one and that it leads, at
least in some cases, to a very delicate interpre-
tation of the obtained results.

V. CONCLUSIONS

The formalism of the multiphonon appears to be
well suited for the study of the anharmonicities of
the collective K"=0' vibrations in deformed nuclei.
When this approach is numerically tractable it con-
stitutes the best choice. The only recommendation
consists of checking the stability of the wanted
eigensolutions versus the number of basic states
in order to test whether the chosen basis is large
enough. When such a calculation is not feasible
one can use a modified Marumori boson expansion
to the fourth order, which gives a much better
estimate than the second order initially suggested
by Holzwarth eg gl. In such an approach one should
be restricted to a basis limited to N, multiphonons.

An indication for this cutoff factor N, can be ob-
tained from the value of Tr(X'). Finally, a treat-
ment using the boson expansion techniques of Kishi-
moto and Tamura has to be avoided in deformed
nuclei.

According to these conclusions further develop-
ments can be expected:

(l) The coupling of collective-noncollective pho-
nons, as well as the coupling between collective
vibrations K"=0' and K~=2' can now be studied.
The formalism must be slightly extended and one
has to solve the technical problem of the use of a
nonorthogonal basis.

(2) A comparison with the experimental results
may also be considered. It may then be necessary
to introduce more sophisticated forces than in the
currently used model.

Finally, there remains one fundamental open
problem, the importance of the fluctuation of the
number of particles.

We are very much indebted to Dr. G. Holzwarth,
Dr. F. Sakata, Dr. P. Schuck, and Dr. Z. Szyman-
ski for fruitful discussions.
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