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A theorem is proved which states that the energies E,- of a general translation-invariant system of N
identical particles interacting by pair potentials and obeying nonrelativistic quantum mechanics are bounded
below one by one by the energies E' of a related model system consisting of (N-1) noninteracting particles of
the same symmetry type bound to a fixed center. The theorem is applied to a three-fermion harmonic
oscillator test system whose exact eigenvalues are found. The ratios E~/E, . for this problem satisfy E',. /E,
& Eo/Eo = Q3/4 for at least the first twenty three-body states.

NUCLEAH STRUCTURE Lower energy bounds provided by exactly soluble atom-
like model. Justification for shel. l theory. Applicatioh to harmonic oscillator

test system.

I. INTRODUCTION

We shall be concerned with a system of N identi-
cal particles which interact by pair potentials and
obey nonrelativistic quantum mechanics. The
translation-invariant Hamiltonian H for the sys-
tem is as follows

where v;) depends on the pa, ir distance
~ r; —r, ~ &

the spins, and the isotopic spi. ns of the particles
i and j. For clarity of presentation we shall as-
sume throughout that the particles are identical
fermions although an exactly similar treatment
is also possible for bosons.

A great deal of physics is encompassed by Ham-
iltonians with the form H. Our purpose here is
to exploit the necessary permutation symmetry
of the eigenstates to relate the energies E; of H
to those of specially constructed two-body prob-
lems. The methods we establish yield energy
lower bounds E; = E, which complement the upper
bounds available by var iational calculations.

Method I (Ref. 1) which can be .. egarded as a
rigorous formulation of Wigner's equivalent two-
body method' gives some excellent results for a
wide variety of nonsaturating boson systems [e.g. ,

(E —E,)E, '40 as N)i~ for the square-well po-
tential]. For N-fermion systems our Method II
(Ref. 3) 18 sensitive to the choice of relative co-
ordinates: with a suboptimal set of (N 1)pair-—
distance coordinates [with "coefficient of ortho-
gonality" X = 2(N —1)/N] this method yields a bound

E, which is equal to the lowest energy of an atom-
like Hamiltonian R corresponding to (N —1) non-
interacting identical particles bound to a fixed

center [see Eq. (4) below]. We shall prove in Sec.
II that the exact energies E, of H are bounded one
by one by the energies E, of ; that is to say, we
can immediately extend method II to the excited
Ã-body states.

In an earlier brief outline' of this approach to
the excited-states problem, we gave no estimate
of the quality of the bounds. If the bounds are
good, then the theorem provides, for example,
a very general justification for the success of
nuclear shell theory [the total relative angular
momentum operator is exactly the sum of the
angula. r momenta of the (N —1) particles of the
model BC]. While the success of method I can be
understood a Posse& Ori on physical grounds, we
have as yet no such intuitive understanding of
method II or its present generalization. Instead
we offer an example, the exact solution of a three-
fermion harmonic oscillator problem. For this
test system the lower-bound method gives as good
results for the energies of the first twenty many-
body states as for the ground state; the ground-
state bound itself improves with increasing N for
we have'

Eo /Eo =' &3(N —1)/2(N+ 1) .

II. LOS(ER-BOUND SPECTRAL THEOREM

We denote by A.„the Hilbert space of translation-
invariant wave functions which are antisymmetric
in the indices I to N and by A „,the correspond-
ing Hilbert space of wave functions antisymmetric
only in the indices 2 to N: Thus A. ~ is a subspace
of A.~,.

throughout this section of the paper we use a
set of relative coordinates ti, which are propor-
tional to (N —1) pair distances, thus
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p(= ~(r( —r~), i =2, 3, . . . , N.

For these coordinates the coefficient of ortho-
gonality' A. has the value A. = 2(N —1)/N. By the
argument of Hall' we can write

(2)
space spanned by the eigenfunctions of X, does
not contain A~ as a subspa. ce a,nd the Rayleigh-
Ritz theorem is therefore not applicable in the
sense required. Furthermore, the conjecture that
the spectrum of K, (as in either method I or II)
provides lower bounds to the spectrum of H is
easily falsified by the harmonic oscillator.

X=(N 1) '(3C, +3C, + ~ ~ ~ +X„),
Xz'R. =(N —1) — b;. + ',NU .-
2m~

and the wave function for the expectation values
is chosen in the Hilbert space A~. We note that
X2 is just the reduced Hamiltonian of our method
Q 3

%e now consider the finite dimensional sub-
space U„of A„spanned by the first n eigenfunc-
tions of the full N-particle Hamiltonian JJ, i.e. ,

gW U„, (=P Cg, ,
1=1

(6)

where the C& are constants. Since U„c A. ~ c A~ „
we may consider P given by Eq. (6) as a "trial
function" for the problem R in A~, Thus we are
using the (unknown) exact N-particle wave func-
tions to construct a trial function for the model
systems inA„, . The Rayleigh-Ritz theorem
(e.g. , Weinstein and Stenger (Ref. 6, p. 13); other
accounts of the general theorem, including the ex-
cited states, may be found in Refs. 16, 1V, 18,
and 19) tells us that the n (not necessarily distinct)
minima of (P, Kg)/(g, g) are one by one upPex
bounds to the first n energies E;, i = 1, 2, . . . , N,
of our model3C in A», . Since g H U„c A»,
(f,Kp) = (g, Hg), and we see that the minima, of

(g, X()/(P, g) are just the first n energies E„ i
= 1, 2, . . . , n, of H in A&. Therefore, since n is
limited only by the number of bound states of JJ
in A„, we have proved the louver bound spectral
theorem:

III. THE EXACT SPECTRUM OF A THREE-FERMION
PROBLEM

It is difficult, even for the harmonic oscillator
intera. ction, to find exact many-body solutions
which satisfy both the translation invariance and
the permutation symmetry requirements. More-
over, in order to test the theorem of Sec. II we
must find the correct degeneracies for the eigen-
va, lues. The simplest system which has the fea-
tures of an X-fermion problem consists of three
scalar particles interacting in one spatial dimen-
sion and restricted to spatially antisymmetric
states, i.e. , a system of "scalar fermions. "' In
this section of the paper we use only Jacobi ortho-
gonal relative coordinates (x, y) which are given
by

x = (I/v2)(x, -x,)

(8)

y = (I/v6)(x, +x, —2x,),
where (x„x„x,) are the individual-particle co-
ordinates. In terms of Jacobi coordinates the
Hamiltonian II [Eq. (1)] separates for the harmon-
ic oscillator' so that we may write

8' 8' 8'H=- 2+ 2+
2m Bx) Bx& Bx3

h 8 8 8

Gm Bxy Bx2 Bxg

+ k'[(x, -x,)'+ (x, —x,)'+ (x, -x,)']

H = —,
' (R„+3C,), (10)

The model energies E; can be found as in zeroth
approximation atomic physics (noninteracting elec-
trons) by considering all linearly independent
(N —1)x (N —1) Slater determinants of eigenfunc-
tions of the Hamiltonians R& [Eq. (6)]. The proof
of the corresponding theorem for bosons is ob-
tained by replacing antisymmetry by symmetry
in all the above steps.

If one uses instead of 3C the tzeo-body reduced
Hamiltonian X, of method I, ' or that of method II, '
then the above proof of the lower bound spectral
theorem will not go through because the Hilbert

where

8X„=—,+6k'X',
BX

e; = (2i+ I)e, ,

where i is a positive or zero integer and

(12)

and similarly for K,. We see that K„ is just the
reduced Hamiltonian of method I.' In the present
problem the eigenfunctions Q& of 3C„are Hermite
functions with corresponding nondegenerate eigen-
values given by
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.,= 2&2(k 'k'/2m)"'.

In view of E(ls. (10) and (12) we see that every
eigenfunction of H is either a single product of
the form

0;;(x,y) = 4;(x)4', (y) (14)

or a linear combination of such products with
constant total order n = (i+j). A single product
can never be antisymmetric" but suitable linear
combinations may so be. Thus, for example, the
ground state of H in'. , is given' by

4.= (~2/2) 4,. k&t ..-.
and consequently

(15)

A =&(1—QP —Q'P)(1 —P) .

Since PP = —Q for Q E A„ the projector from A. ,
to A, becomes

a =&(I+ q+ q') =&(I+2T),

where

T =k(Q+ 0') =k(Q+ 0') = Tt.

We have studied inner products of the form

Our problem at present is to determine the higher
eigenfunctions and eigenvalues of H in A, The
analysis of Post' tells us how to arrange the cor-
rect permutation symmetry for certain "suspect"
excited states but does not guarantee their trans-
lation invariance. For example, if (i+j) = 4,
Post's "suspect" state has the factor detIP, (x,)
Q, (x,) Q, (x,) I but this Slater determinant turns out
not to be translation invariant. Our approach
therefore will be to work initially with translation-
invariant functions and project them into A3.

Since the coordinate y is invariant under the
permutation (12), a single product P,&

will be
antisymmetric under the operator I' correspond-
ing to (12) if and only if i is odd; we shall now

therefore only consider single-products with first
index odd, i.e. , single products inA, . If the three
cycle (123) has corresponding operator Q (see
the Appendix), then the projector A onto A, may
be written

Q ~(n)~(n) ~(n) (21)

and the normalized eigenstates of H in A. , are
therefore given by

~&( -3) ~ ~( ) y (g( ))- /

II&((;(. ) II

(22)

The number of linearly independent functions for a
given value of n is just the dimension trA. " of the
subspace defined bye("). From E(I. (22) we find,
for example, the following first three eigenfunc-
tions of H in A. , which correspond, respectively,
to the nondegenerate eigenvalues Eo:4&0, .E,
=6eo, and E,=7c,:

g. = b~/2)4, .--.'4...

0, = —', 0„+(~2/4)((, .—(~5/4) 4 ...
4.= (~~/4)e „(~&o/4)0-,.+ (~2/4) 4 „

(22)

The degeneracies of the first few eigenvalues
(n+ 1)c, of H inA, which occur (i.e. , n40, 1, 2, or
4) are shown in Table I. Hence we have in Table
I the first 20 exact eigenvalues of the translation-
invariant three fermion problem with Hamiltonian
a IE(l. (9)].

(Q;;, TP~ ) and we find (in the Appendix) that they
vanish unless i+j = k+m. Hence A(I);I yields a
linear combination of single products with the same
total order (i +j) .(of Hermite polynomials in x
and y). We have found IE(l. (A5)] an explicit ex-
pression for the elements

~&)' = (4';(. ;) ~4'g. -a)) (2o)

and we denote by T"' the corresponding matrix
(note that i and k are odd because we only consider
single products which lie in', ). Thus A. , is di-
vided into subspaces (of fixed total order) by pro-
jectors with matrix representations A. "
= —,'(I+2T(")). The dimensions of the subspace (n)
is given by trA" which is also the degeneracy of
the corresponding eigenvalues (n+ l)c, of II: the
dimensions of the subspaces are at least 1 unless
n=0, 1, 2, or 4 for which values the dimensions
are zero (see the Appendix).

SinceA "A. "' =A" we have

TABLE I. The exact eigenvalues of H and their degeneracies for the three-fermion har-
monic-oscillator problem: the units are &0 ——2 vW" k /2m); the positive integer n is the
total order of Hermite polynomials in x and y in the corresponding eigenfunctions, and n

&0, 1, 2, or 4.

E/~, = (n+1) 4 6 7 8 9 10 12 13 14 15 16

Degeneracy 1 1 1 1 1 2
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An arduous part of this work has been to find
the explicit recipe [Eq. (A5)] for the matrices
T;"I, .' with this formula all the eigenfunctions and
eigenvalues of H for the three-fermion harmonic
oscillator can readily be obtained. The author
feels that there must be an easier route to these
results, perhaps via the properties which matrix
representations of T =-,'(Q+ Qt) must necessarily
have. The three-body harmonic oscillator func-
tions which are doubly orthogonal" are also use-
ful as trial functions for other interaction poten-
tials. For example, if we use g, [Eq. (23)] we

. have

Eo- (4i &4i) = (4 K.ki)

and the integrations required for this variational
upper bound are only with respect to the single
variable x. If linear combinations of the (; are
used, K„will in general connect different Q~,
however, the double orthogonality will eliminate
many terms and the remaining integrals will
again all be over a single variable.

IV. AN EXPLICIT LOWER BOUND SPECTRUM

TABLE H. The eigenvalues of the model K and their
degeneracies for the three-fermion harmonic oscillator
problem: &p is the same as in Table I; the positive in-'
teger n is the total order of Hermite polynomials in x
and & in the corresponding eigenfunctions, and n~ 1.

2E /W3&p=(n+1) 2 3 4 5 6 7 8 9

Degeneracy 1 1 2 2 3 3 .4 4

the ratio E~/E& (determined from Tables I and II)
in terms of the ratio E~o/E, =v 3/4, i.e. , the ratio
we get by applying method II' to estimate the
ground-state energy of the three-fermion problem.
Thus, as far as we have calculated (the 20th three-
body state), the lower bound spectral theorem
of Sec. II gives results for the excited state en-
ergies of the harmonic oscillator test problem
which are at least as good as method II' applied
to the ground state energy, i.e., E, /E, ~ &3/4
= 0.433. The degeneracies for the model eigen-
values (Table II) appear to increase faster than
the degeneracies for the exact eigenvalues (Table
I) so that the quality of the lower bound may de-
teriorate as we go to eve higher excited states
of the system.

x = (I//2)(x, -x,),

a = (I/&2)(x, -x,) .
(24)

The eigenvalues e', of the operator K, [see Eq. (5),
X= —,'], i.e. ,

3k' 8

4m Bx
(25)

are given by

e,' = (2i+1)(v3/2)e„ (26)

where c, is the same as in Eq. (13) a.nd i is a
positive or zero integer. The eigenfunctions of K
in A. , are therefore 2&&2 Slater determinants of
eigenfunctions of X, and R,, and the corresponding
eigenvalues E~ have the form E~ = (n+ I)(W3/2)e,
where n ~ 1 is a positive integer. The first few
of these eigenvalues along with their degeneracies
are presented in Table II. In Table III we give

We now apply the theorem of Sec. II to the three-
fermion problem which we have solved exactly
in Sec. III. For the lower bound spectrum we
must find the eigenvalues of K =-,'(K, +K,) [Eq. (4)]
in the space A, of translation-invariant wave
functions which are antisymmetric under the per-
mutation (23). We use (x, z) to represent the pair-
distance coordinates (p„p,) for the three-particle
problem in one dimension, i.e.,

V. CONCLUSION

We have proved that the spectrum F.; of a trans-
la, tion invariant nuclear or molecular physics
type of N-particle Hamiltonian H is bounded below
by the spectrum E; of an atomic physics type of
(N —1) particle Hamiltonian

4=2

i.e. , F.; ~ E;. The theorem we have proved re-
quires a model Hamiltonian which, for fermions,
satisfies (K) =(H) in A„, and whose eigenfunctions
span a Hilbert space which includes A„as a sub-
space (for bosons A„ is replaced by S„). The
quality of the lower bounds in the case of our
fermion harmonic oscillator test problem is as
good as was method II' for the lowest eigenvalue
E, alone.

It is both surprising and interesting that a nu-
clear (or molecular) type of Hamiltonian H should
be so closely related to a simple atomlike Hamil-
tonian K (i.e., with noninteracting "electrons" ),
whereas the corresponding lower-bound results" "
for general atomlike Hamiltonians themselves
appear to be less impressive. For atomlike sys-
tems we have the following comparisons with the
results of this paper: (a) the "reduction" of the
(N+ 1)-body problem" is only to a three-body
problem so that the many-body difficulty has not
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TABLE III. The ratio of the lower bound E; to the exact energy E; for the first 20 states of the three-fermion har-
monic oscillator problem.

i=eigenvalue index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(E~/E;) x 4/W3 1 1 ~ 1 ~ 18 10 6 12 12 7 7 14 16 8
, 7 9 5 ii 0 6 6 13 13 7

8
7

16
15

6 9 9
7

been removed; (b) the exact results'for the ground-
state energies of appropriate harmonic-oscillator
test systems show that the lower bound may be-
come arbitrarily bad as N increases"; (c) an ex-
tension of the ground-state energy bound for atom-
like systems to the excited states does not appear
to follow immediately" from the theorems of
Coleman '0 Calogero, "or Hall"; in fact, the
natural analog of the main result of the present
paper is falsified for atomlike systems by the ex-
act harmonic oscillator solutions. ' Therefore,
although it runs counter to our usual expectations,
we are tempted to ask the general question whether
"shells" may not be a more fundamental feature
of nuclear type systems than they are of a,tomlike
systems. If this were really the case, we should
expect that method II' could be sequentially im-
proved so that the exact solutions were approached
without losing the shell structure of the model.
Improvements to method II to date, however, are
still rather modest": for the ground-state of the
N-fermion harmonic oscillator test system we
still obtain at best about 86% of the exact energy
for large N.'"

(a'+b')" ' ax+by ~ a'b'
Hn

(
2 b2)i)2 =Z !,&;(x)&j(y),n. lg f+)=n

(A3)

where a and b are constants and H„(x) is an nth-
order Hermite polynomial. Meanwhile by adapting
from Erdhlyi" (p. 290, No. 15) we have

Oo

e "2H„(x)H (x)H„(x)dx
m 00

p ~~2$ f @pe t n t2&~+ n+»i 2

(s —k)! (s —m)! (s —n)! ' (A4)

provided 0+m + n = 2s is an even integer, and s
~ k, nz, n; otherwise the integral vanishes. By
applying (A3) and (A4) in (A2) we find after a very
lengthy calculation that T~~I, is zero unless i, +j
= k+m and, in this case, a.ssuming i and k are
odd and i~ k,

(n) (n)T i(n- fQn-4) Ti k T&i

is given by the following expression:

(A5)
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APPENDIX

The operator Q corresponding to the 3 cycle
(123) acting on the individual-particle indices is
defined for functions of Jacobi coordinates (x, y)
by

vY W3
(Qt)) (

—-*'~ —
2 v, —~ —*' v )

= )')&, v)

The matrix elements we need are

(Al)

Tij&m 4;(x)4;(y)T4~(x)4.(y)dxdy, (A2)

where T =-,'(Q+ Q') =Tt, and Q;(x) is an ith-order
Hermite function. Now from Jahnke, Emde, and
Losch" (p. 102) we have

The author would like to thank Barry Simon for
his comments on an earlier version of this paper.
This work was supported in part by a Natural
Sciences and Engineering Research Council
Canada Grant No. A3438.

where ("„) is the binomial coefficient n!/m!(n -m)!.
The matrix representation A" of the Hermitian
projector from A, to A, is given by

~(n) x (2T(n) +f) (A6)

We have used (A5) and (A6) to find the antisym-
metric wave functions with total order n of Her-
mite polynomials in x and y and also the degen-
eracies trA" of the corresponding eigenvalues
(n+ 1)e, of H. The diagonal elements T(;";~ can be
expressed as the values of certain Jacobi poly-
nomials but we have not found this relationship
to be very helpful.

In order that trA" =0 it is necessary in par-
ticular that AQ,(„»= 0 and therefore also that
T~,"~ = ——,'. Now from (A5) we find

(A7)

Therefore T,", = ——,
'- for n = 1, 2, and 4 only, a,nd

consequently the subspace defined by A'"' is non-
empty for all other positive integer values of n.
By direct computation we find trA" = 0 for n
=0, 1, 2, and 4.
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