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Realistic, generalized, and regularized, velocity-dependent one-boson-exchange potential
models of the nucleon-nucleon interaction are applied to calculate the low-lying energy levels
of the nucleus 0 in the harmonic-oscillator shell model. In these calculations, we neglect
(a) the short-range correlations which, if they were included, would suppress the repulsive
core, and (b) core-polarization effects, which take account of the excitations of the O' core.
It is found that the shell-model matrix elements are too repulsive, and the energy levels lie
too high. Good agreement with experiment is obtained after weakening the cu-meson interac-
tion to compensate for the neglect of the effects (a) and (b). This also provides a simple way
of incorporating the effect of the nuclear medium upon the nuclear interaction.

1. INTRODUCTION

In recent years the one-boson-exchange-poten-
tial model (OBEP) has emerged as a reasonably
simple and accurate description of the nucleon-
nucieon (N-N) interaction. This model is based
essentially on meson field theory, and many pseu-
doscalar, vector, and scalar meson models have
been found which explain the major features of the
N-N scattering data. ' This kind of approach en-
aMes the previous almost entirely phenomenolog-
icaI analyses of the N-N interaction to be replaced
by analyses based more directly on knomn interac-
tions. All OBEP approaches to date involve some
phenomenological modifications, but whereas the
purely phenomenological potentials employ 30-50
adjustable parametex's in fitting the N-N scatter-
ing data, generalized forms of one-boson-ex-
change potentials (GOBEP) achieve comparable
fits to the data with fewer than 12 adjustable pa-

rameterss.

Only a few attempts have been made thus far to
apply OBEP to the nuclear many-body problem.
Kiang, Preston, and Yip' have calculated the state-
by-state contributions to the t matrix, using veloc-
ity-dependent OBEP derived by Wong, 3 which they
have adjusted to be in reasonable agreement with
N-N scattering data. They find that these are very
similar to those found by Bhargava and Sprung for
phenorhenological potentials. Their work thus in-
dicates that reasonable results mill be obtained in
nuclear-matter calculations. Ingber4 and Brueck-
ner and Ingber' report excellent results for nucle-
ar matter using a velocity-dependent OBEP as-
sociated with n, co, o, g, and p mesons, and an ad-
aptation of Brueckner, Bethe, and Goldstone tech-
niques in their nuclear-matter calculations. Koh-
ler and McCarthy, 6 using the highly velocity-de-
pendent one-parameter OBEP of Green and

Sawada' with corrections for the 'P, phase shift,
obtain a binding energy of 7.2 MeV per nucleon for
0", in close correspondence with the experiment-
al value of 8 MeV. They used the same reaction
matrix, Hartree-Fock calculational methods
which for various hard-core phenomenological in-
teractions yielded only 2-3 MeV per nucleon bind-
ing. These few studies indicate that a major at-
tack on the nuclear many-body pxoblem should be
feasible mith OBEP N-N interactions.

In this paper we examine for the first time the
applicability of OBEP in the shell model of a nu-
cleus. We have chosen O" as a specific example.
We consider the GOBEP models I and III of Ueda
and Green, ' referred to as UGI and UGIII, the two-
parameter model of Green and Sawada, a referred
to as GSII, and the most recent model of Bryan
and Scott, ~ referred to as BSIII. All these models
have p2 velocity-dependent forces and no hard
cores. In Sec. 2 we exhibit the various GOBEP
models explicitly. In Sec. 3 we briefly describe
the technique for calculating the harmonic-oscil-
lator shell-model matrix elements from velocity-
dependent GOBEP. In Sec. 4 we present the re-
sults of our calculations and compare them with
the results from phenomenological potentials.

2. ONE-BOSON-EXCHANGE POTENTIAL

MODELS

The UGI, UGIII, GSII, and BSID models employ
generalized and regulax ized Yukawa functions of
the form'

pg U2 +2 A?' A2 2 Qg

v-~ ~ +v



AG'=, , g' for UGI and UGIII
A2 p2

A2
g' for BSIII

(2.2)

=g' for GSII.

Here p, is the meson mass, and A and U are the
regularization masses. The quantity G' is related
to the meson-nucl. eon coupling constant g' by

The regularization in Eq. (2.1) is such that the

singularities at the origin of the functions J, J„
r'&„and (V'&) are all removed.

The four GOBEP models under consideration
are based upon the exchange of pseudoscalar (P),
vector (V), and scalar (8) mesons. The particu-
lar mesons used in each model, and the associat-
ed parameters, are listed in Table I. The con-
tributions to the N-N potential due to the I', V,
and S interactions are given by the following pre-
scriptions from meson field theory': (In what fol-
lows the symbol P' refers to the operator -V'. )

The factor v, ~
r2 is suppressed in the case of I=0

mesons. For I = 1 mesons it has the values

(i) P contribution

V " = (~a' (V't) ) o ~ a + ( —' a'r'J ) 8

v, ~ 7, = 1 for T= 1 nucleon-nucleon states
(2.3)

= -3 for T= 0 nucleon-nucleon states.
TABLE I. GOBEP models.

(2.3)

U=A for UGI and UGIII

for BSID

=20M for GSII,

(2.4)

Since 0"is a 7= 1 nucleus, the relationship (2.3)
implies that in calculating the 0" levels we may
take v; ~ 7=1 for all mesons.

The regularization mass U is given by the con-
ditions P

P
V
V
S
s
s

14.01
2.73
0.78
8.02
4.11
4.44
1.96

Meson Tensor g 2

(a) Ual

4.76
0

138.7
548.7
763
782

1016
1070
416.1

2532.4
1184.3
1184.3
1184.3
1184.3
1184.3
1184.3

p, A

(Me V) (Me V)

where M is the nucleon mass.
We define various derivatives of the function

J (r) given by Eq. (2.1).

1dJ 1 dJ,
rdy~ ' year '

0')
0'p

Oc

V
V
s
s
s

14.61
0.65
9.68
1.01
7.32
1.52

(b) Uolte

5,06
0

(o) GSu

138.7 1299
763 1299
782.8 1299
763 1299
782.8 1299
416.1 1299

U2-A2

P
V
V
s
s
s

14.7
0.65

23
14.7
0.65
2.35

3.75
0

138.7
763
782.8
782,8
763
416.1

782.8
1500
1500
1500
1500
1500

U2e-Ur
+ 2U -A' y

These derivatives are interrelated

(V j)=3Ji+r t2.

(2.6)

(2 7)

P
P
V
V
s
s

12.55
2,6
1.81

17.26
1.65
8.19

(d) BSm

1.13
0

138.7 1500
548.7 1500
763 1500
782.8 1500
600 1500
550 1500
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(ii) V' contribution

V("& = J+~a' 1+- (V'Z) + ~a' 1+— (V'Z) a a+~am(p'Z+Zp')

+ —3+4—a2J 1 S — —1+— a2r2J 8f ~ 1, f 2

2 g 1 12 g 2 122 (2.9)

(lli) 8 c Gilt 1'ibutioll

V&'~ = J+ ,'-a*(v-'Z)+ ,'a'(p-*a+up*)+(-,'a'&, )1 (2.1O)

In the above, 8» is the usual tensor operator, and u=M '. To obtain the total N-N potential we sum the
various one-meson-exchange contributions given by (2.8)-(2.1O)

p.=g yb) + g y(v) + g @f8&.
0 S

Eq. (2.11) may be placed in the form

(2.11)

V=V, (r)+V..(r)B, 5, +V„,(r,p*)+V„,(r)I S+V, (r)S„. (2.12)

It is instructive to write out the potential in full for one of the models under consideration, say UGI, %'e

have

—Z„+~4 a' (V'Z„) . (2.13)

V (r)= a a'(vV )raa'(V'a )+aa'()r —a) (v'a )ra a* ()+—
) (vV ) (2.14)

~v p(r f ') = 4 a'(f '~(,+~pP*)+ la*(P'~ +4 P')+-.' a'(P'~. „+~.„p')

+.a*A'&.+&..P*)+'.a'(P'&.,+&.,p'). (2.15)

P M

(2.16)

V (r)=~a r 4 +~a r 7 ——1+—~ a r Z ——1+— a r 72 2 ss 1 f '22 1 f~ '22
T 12 2 if(' l2 2~/ y2 eP I2 g 2gQ) '

The radial components for the other three models are given by similar expressions to Eqs. (2.13)-(2.1V).

3. CALCULATION OF MATRIX ELEMENTS

FROM OBEP

In the calculation of low-lying states, the nu-

cleus 0"may be considered basically as an inert
0'6 core plus two valence neutrons confined in the
s-d shell. Then to obtain the spectrum we sim-

ply diagonalize the two-nucleon secular matrix in

the s-d shell. As is conventional to assume, the

0" core provides harmonic-oscillator potential
well for the two valence neutrons. As a first ap-
proximation we take the residual interaction to
be the one-boson-exchange potential.

On account of the regularization in Eq. (2. 1), the
total potential, Eq. (2.12), is nonsingular at the

origin. For a nonsingular potential V, the she11-
model matrix element in jj coupling can be writ-
ten as
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(2j, + 1)(2j,+ 1)(2j,+ l)(2j, + 1)
(1+~., )(1+»)„)

x Z [(2I.+l)(2I.'+1))"'(28+1) E —' j E —' j (-1) "

I. S J I'SZ

~BrI. n. E.n, E, L, n'l. 'XZJ. ' n, E,n„E, I,'
nln'l '

x+EI(sEzs I g)v(zE zs I u)(nEsru[v[n'E'sru)

The 1ndex 0 stands for the Quantum numbers 8~ y

E„j,of a spherical oscillator orbital. '0 The ket
[abZr) represents a normalized and antisymmet-
rized state where a and b couple to total angular
momentum J'and isotopic spin T. The arrays in
large curly brackets are 9j symbols xx The brac
et (»»EXZL[n, E, n, E, I ) is the Brody-Moshinsky
transformation bracket between the lab frame and
the c.m. and relative frame; nl and NZ are, re-
spectively, the relative and c.m. oscillator quan-
tum numbers. " We note that E(E') and 8 couple to

The U coefficient is the normalized Racah co-
efficient

EI(nzs w)=[(2I.+i)(28+1)]'~'w(zus I.g)

(3.2)

The integral (nlsr8 [V[n'E'sr8) may be conven-
iently separated into an angular-spin par t and a
radial part, namely,

(sESrx[ V[s E Srg)

=g (ESe[~,[E Sa)(nE[V, (~) [n E ),

state, and J(r) is a regularized Yukawa potential.
This interaction is constructed to act only in even
states for the practical reason of improving the
fits to the 'D, RIll 'D, phRse sh1fts Rt high energy.

The angular-spin parts can be readily obtained
for the GQBEP models.

(Esz[~, q[E sa) =(~„-3~„)~„,. (3.5)

(ESg[T S[E'Sg)=5 5 +[/(/+1) —E(E+1)-2].

(3.6)

(E88[8,2[E'8l) = 5$,(-1)' ~ [24(2E+ l)(2E'+ 1)]"'
X iv(ESE S a2)&E200[E O& (3 7)

(E88[1 [E'Sl) =
E%»» E(E+1). (3.8)

Here (E200[E'0) is a Clebsch-Gordan coefficient. "
The relative-motion matrix elements (nE[v(r)[n'E')
are very conveniently evaluated by obtaining their
Talmi integral expansion

(3.3) {nE[v(r)[n'E') =Q IE(nE, n E, p)I, [V]. (3 9)

vis(&) = ~2(1+&)J(~) (3.4)

Here I' is the parity operator for the two-nucleon

where all the radial dependence of the ith compon-
ent of V is contained in V, (r) The ind. ex r has
been absorbed in V» (r) as usual.

The GOBEP models under consideration have
central, spin-. spin, spin-orbit, tensor, and p2
velocity-dependent components. Ueda and Green
have also introduced a phenomenological 12 com-
ponent into some of their models. "' lt has the
form V~~(t)1' where

General alegbraic formulas for the B coefficients
are given by Brody and Moshinsky. '2 The func-
tional I~[V] is called the Talmi integral and is de-
fined by

I»,[V] =
~ »

e " x'»'"V(&2&x)dh,
2

2 ' 0

(3.1o)

where A is the size parameter of the harmonic
oscillator. The value A = 1..71 F is commonly
used in calculatxons of t:he 0'8 levels x4'5

The relative-motion matrix elements for P~
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velocity-dependent forces can also be evaluated
from a Talmi integral expansion

, Q G(nl, n'l, p)fp[V]. (3.11)

TABLE II. Ta].mi jntegrals from OBKP for 0 . Units
are MeV.

p
0

2

4

(a) Singlet even Talmi integrals I& fV&-3
UGI UGIII BSIII GSII

-0.4506 -1.6375 +3.8003 +1.2641
-1.8765 -1.7475 -1.4241 -1.4190
-0.5714 -0.5423 -0.4597 -0.5204
-0.2298 -0.2258 -0.1871 -0.2263
-0.1161 -0.1177 -0.0968 -0.1180

V,l
AMG

-6.8883
-1.7283
-0.5368
-0.2175
-0.1094

(b) Triplet odd Talmi integrals I& fV+ V«]
UGI UGIII AMG

-6.0719 -7.1361 +0.6624
-0.0080 -0.0156 +0.2243
-0.0120 +0.0132 +0.1033
+0.0125 +0.0249 +0.0563
+0.0181 +0.0234 +0.0330

(c) Spinorbit Talmi integrals I& [V„sl
P UGI UGIII AMCr

0 -13.9040 -16.7940 -5.1374
1 -0.6632 -0.7342 -0.8052
2 -0.0492 -0.0504 -0.1262
3 -0.0052 -0.0050 -0.0198
4 -0.0008 -0.0007 -0.0031

The G coefficients are expressible in terms of
the B coefficients. "

We see finally that the shell-model matrix ele-
ments from a regularized one-boson-exchange
potential are calculated by obtaining the Talmi
integral expansions of the potential components.
Thus, we can compare the effects of different
potentials in the shell model by making a direct
comparison between their Talmi integrals. In
particular, if the corresponding Talmi integrals
from two potentials are equal, then the two po-
tentials give rise to the same matrix elements
and the same energy levels.

4. RESULTS AND DISCUSSION

The aim of the present calculations is to deter-
mine whether the velocity-dependent one-boson-
exchange potentials (UGI, UGIII, GBD, BBIII) are
applicable in the shell model of a nucleus, 0"
being chosen as a specific example for discus-
sion. We are interested in comparing our results
with those from a velocity-dependent phenomen-
ological potential, e.g. , that of A. M. Green.
This potential has been extensively applied to the
shell model' ' and is referred to hereafter as
the AMG potential.

For 0'8 only the singlet even (BE) and triplet odd
(TO) potential components contribute. We have
computed the Talmi integrals from the definition
(3.10) and the radial dependences (2.13)-(2.17).
Our results are displayed in Table II. With the
exception of p =0, the Talmi integrals from the
GOBEP models substantially agree with one an-
other, respectively, and with the values obtained
from the AMG potential. Since the TO matrix ele-
ments are independent of the p = 0 Talmi integrals
(by virtue of the condition" p ~ l), we expect the
TO matrix elements from the GOBEP models to
be rather similar to one another, respectively,
and to the TO matrix elements from the AMG po-
tential. On the other hand, the SE matrix ele-

l20

BS III

80

40

0
b

~b
Kl

I

+ -~o

(d)
UGI

4.4872
0.8479
0.3236
0.1503
0.0792

Tensor Talmi integrals I& fVzj
UGIII AM 6
0.7172 2.6051
0.7763 0.8821
0.3374 0.4063
0.1589 0.2215
0.0839 0.1300

-80

(e) Velocity-dependent-potential Talmi integrals I& lVvDp j
P UGI UGIII AM 6
0 0.1341 0.1596 0.1701
1 0.0116 0.0125 0.0130

"120
0.5 1.0

r (fm)

FIG. 1. The singlet even static potential.
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TABLE GI. Decomposition of (ld&g2 4)Vjld&g2 J). Units are MeV, The symbols CSE, VSE denote the static singlet
even and velocity-dependent singlet even contributions, respectively. The symbols CTO, VTO, TTO, LS denote respec-
tively the static central triplet odd, velocity-dependent central triplet odd, tensor odd and spin-orbit contributions.

AMG AMG UGI AMG

CSE
VSE
I, force
Total SE
CTO
VTO
TTO
LS
Total TO
Total

+ 1.797
1.191

-0.001
2.987
0.015
0.138
0.750
0.419
1.322
4.309

-3.461
1.568

-1.893
0.093
0
0.732
0.451
1.276

-0.617

+ 0.099
0.243

-0.009
0.333
0.017
0.159
0.049

-0.226
-0.001

0.335

-1.080
0.316

-0.764
0.144
0
0.055

-0.240
-0.071
-0.835

-0.071
0.058

-0.001
-0.014

0.002
0.050
0.140

-0,072
0.120
0.106

-0.552
0.074

-0.478
0.112
0
0.132

-0.102
0.142

-0.336

— 0

0'

X
Q

C9

La!
R
ld

2
0

UG U 6 III EXP MO Dl F IED
OBEP

DTN MO 0 IF IEO
AMG

FIG. 4. Level schemes for O~ .
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TABLE IV. Energy matrices for 0 . The first row of each block corresponds to GOBEP model UGIII, while the sec-
ond row corresponds to the AMG potential. Units are MeV.

J=0

ds/ 2
2

2S~/2

d3/ 2

ds/2
2

3.394
-0.616

S)/2
2

0.852
-0.545

3.218
-0.080

d3/ 2

0.256
—3.110

0.696
-0.445

13.450
10.813

S/2S1/2

ds/2d3/2

J=3
s/2 t/2

0.670
0.680

ds/2d3/2

-0.114
-0.087

4.717
4.768

ds/ 2

ds/ 2d3/2

J=4
ds/ 2

2

0.009
-0.336

ds/243/ 2

-0.229
-1.027

4.746
3.203

ds/2 ds/2 sf/2

J=2
S/2 3/2 s1/2d3/2 3/2

ds/ 2

ds/2sg/2

ds/243/ 2

S)/2d3/ 2

d3/
2

0.094
-0.834

0.138
-0.479

0.821
-0.106

0.212
-0.396

0.352
-0.087

5.390
4.915

0.019
-0,553

-0.695
-1.543

-0.298
-0.699

6.185
5.604

0.126
-0.623

-0.256
-0.815

-0,250
—0.801

0.457
0.128

10.567
10.127

Meson p = 0
(a) UGI

P=l P=2

rl

+V

~V

0c
P

Total
AMG

+2.7986
+0.0959
-4.5089
-4.4081

-11.0588
+2.3051

+14.3254
-0.4506
-6.8883

-0.6261
-0.0487
-0.2281
-0.2139
-1.4142
-0.3571
+1.0116
-1.8765
-1.7283

-0.3066
-0.0094
—0.0158
-0.0142
-0.2633
-0.0561
+0.0941
-0.5714
-0.5368

-0.1657
-0.0018
—0.0014
-0.0012
-0.0626
-0.0079
+0.0108
-0.2298
-0.2175

-0.0981
—0.0004
-0.0001
—0.0001
-0.0176
-0.0012
+0.0015
-0.1161
-0.1094

Meson
(b) UGIII

p-1 p-2 p=3

0'g

0'0

0'c

P

Total
AMG

+2.8007
-1.9297

-13.3261
-8.6457
+2.0254

+17.4378
-1.6375
—6.8883

-0.5601
-0.1169
-0.7848
-1.0653
-0.3617
+1.1413
-1.7475
-1.7283

-0.3195
-0.0101
-0.0658
-0.1959
-0.0513
+0.1004
-0.5423
-0.5368

-0.1754
-0.0011
-0.0071
-0.0464
-0.0068
+0.0111
-0.2258
-0.2175

-0.1040
-0.0002
-0.0009
-0.0130
—0.0010
+0.0015
-0.1177
—0.1094

TABLE V. Decomposition of Talmi integrals from
OBEP for 0 . Units are MeV. search routine. Starting from UGIII and letting

g~' vary, we obtain an optimum fit to the 0"lev-
els for g '= 5.81, which corresponds to a 407o re-
duction. The corresponding energy levels are
shown in Fig. 4 under the label "modified QBEP."
They are correctly ordered and the spacings are
reasonable. They are similar to the levels ob-
tained by Dawson, Talmi, and Walecka (DTW)"
from the Brueckner-Gammel- Thaler potential,
and also the levels obtained by Ganas and McKell-
ar' who modified the AMG potential. We find that
the same levels are obtained by letting g ' and

g,~ vary together. The optimum values in this
case are g '= 8.16 (a 15% reduction), and g„'
=9.88 (a 351o increase). It is noteworthy that these
modifications are of the same order as those
made by Ganas and McKellar"'" to the phenomen-
ological AMG potential in order to fit the low-en-
ergy spectra of light, medium, and heavy nuclei.

The calculations with the GSII and BSIII models
were discontinued when it became apparent from
Table II that agreement with experiment would be
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even more unlikely with these models than with
UGI and UGIII.

S. CONCLUSION

The aim of the present calculations has been to
test the applicability of the one-boson-exchange
potential in the shell model of a finite nucleus.
The potential models which we have considered
are velocity dependent and nonsingular. On com-
puting the s-d-shell matrix elements for 0"using
the standard method of calculation for nonsingular
potentials, we find that the matrix elements ex-
hibit too much repulsion, mainly on account of
the soft core. This suggests that it would be more
desirable to work with tbe Brueckner reaction
matrix rather than the potential matrix as we
have done. In other words, even though the one-
boson-exchange potentials are nonsingular, they
have sufficiently strong short-range repulsion
that it becomes necessary to use Brueckner theo-
ry. When this is done, the short-range correla-
tions suppress the repulsive core. Another
major effect which has been neglected is core po-
larization; the 0'6 core is not inert, and correc-
tions due to its excitation must be taken into ac-
count. Extensive Brueckner -type calculations on
finite nuclei, including core-polarization effects,
have been performed by Kuo and Browne for a
phenomenological hard-core potential. It would
be interesting to repeat the calculations of Kuo
and Brown using a meson-theoretic velocity-de-
pendent potential.

W'e have attempted to compensate for the omis-
sion of short-range correlation effects and core-
polarization effects by readjusting the coupling
constants of the potential so as to give agreement
with the experimental spectrum of 0". We find
empirically that it is necessary to reduce the ~-
meson coupling constant by 40% in order to
achieve good agreement with experiment. This is
not a surprising result, because the co meson is
mainly responsible for the repulsive core of the
potential. This result is suggestive of the Scott-

Moszkowski separation-method technique which
has proved so useful in the treatment of hard-core
potentials.

The one-boson-exchange potentials are deter-
mined by fitting the two-nucleon data with phase
shifts found from the Schrodinger equation. Amdt,
Bryan, and MacGregor" have discussed the one-
boson-exchange potential in the Born approxima-
tion, and have determined coupling constants
which give good fits to the two-nucleon data in the
Born approximation, S waves being excluded.
Since we have calculated the s-d-shell matrix ele-
ments in the lowest-order Born approximation,
we might expect to obtain better agreement with
experiment by using the parameters of Amdt,
Bryan, and MacGregor. " Indeed the co-meson
coupling constant quoted by these authors is quite
close to the value which we have obtained by fit-
ting to the 0"levels.

We have seen that the various one-boson-ex-
change models as well as the phenomenological
model behave in a similar way except in the re-
gion of the repulsive core. However, such differ-
ences are expected to manifest themselves only
weakly in the shell-model matrix elements if the
potentials are treated in the Brueckner G-metrix
approximation. In these circumstances it seems
likely that the various potential models will all
lead to essentially the same results when applied
to the nuclear shell model.
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Magnetic hyperfine structure in muonic x rays is calculated for several models of the nu-

clear magnetism and compared to experimental values for In, I, Cs, La, Pr, Eu,iis i27 i33 i39 ' i4i isi

03T]. 20~Tl, and 209Bi. The results are excellent for the realistic models in most cases, and

all but one of the nine cases agree within better than two standard deviations with the experi-

ments. For the realistic models, the hyperfine energy is substantially reduced (by about 30%

in most cases) from its point-nucleus value. In these models, the single-particle magnetism

distribution is modified by the addition of configurations resulting from various residual nu-

clear interactions, the interaction strength being adjusted in each case to produce the experi-

mental value for the magnetic moment.

I. INTRODUCTION

The hyperfine splitting of levels in electronic
Rnd muonlc atoms ls due to the intel Rctlon of the

nuclear magnetism with the magnetic field of the

orbiting electron or muon. The energy of interac-
tion depends on the relative orientation of the nu-

clear magnetism and the field. For a point dipole

of strength p, in R field B the energy is

8'= -p ~ B.

Two isotopes have a nearly identical electronic
structure, and therefore the magnetic field at the

nucleus is the same for each isotope. The hyper-
fine splitting mill be different for the two isotopes
because the nuclear moments are different. How-

ever, the ratio of the nuclear moments should

equal the ratio of the splittings if the nucleus is a
point dipole.

In j.947 Bittex"' made a very accux'ate measure-
ment of the ratio of the magnetic moments of two

rubidium isotopes using magnetic-resonance tech-
niques. This ratio diffex'ed slightly from the x'atio

of the hyperfine structure splittings, indicating
Eg. (l) is incorrect. Bitter' suggested that the
dlscx'epRQcy was due -to RQ extended distribution of

nuclear magnetism. Bohr and VYeisskopf3 made

the first detailed calculations of this "hypexfine
anomaly" in 1950, and the effect is sometimes
called the "Bohr-Vfeisskopf" effect. Since then,

many mox'e hyperfine anomalies have been mea-
sured, making possible a systematic investigation
of t.he effect. '

More recently, the hyperfine structure of muonic

atoms has been measured for several cases. ' 9 A

muonic atom is formed by stopping negatively
charged muons in a target. The muon is captured
by an atom and makes Auger and radiative (x-ray)
txansitions dorm through the atomic orbits until it
xeaches the 1s state. It is then either captured by

the nucleus via the weak interaction, or it decays.
Since the muon is 206 times heavier than an elec-
txon, its orbits are 206 times closer to the nucleus
than the equivalent electron orbits. The muon en-
ergy levels are thus quite sensitive to the nuclear
structure. By observing the x rays given off in the
tl RnsltloQS one cRQ 16Rrn something Rbout QucleRx"

structure. In particular, the hyperfine structure
of the x rays depends on the distribution of mag-
netism of the nucleus and differs from that calcu-
lated for a point nucleus by as much as 50%.

The hypex'fine structux'e in muonic atoms is usu-
ally observed as a broadening of the x ray given


