
SCATTERING RESONANCES AND R FUNCTION. ..

or quasibound states, and that therefore the reso-
nance level density does not keep increasing expo-
nentially at higher energies. 9 Similarily, there is

therefore no reason to expect that cross-section
fluctuations due to resonance terms in the S ma-
trix continue to very high energies.
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The Wigner-Eisenbud 8-matrix theory is applied to the calculation of neutron total and in-
elastic scattering cxoss sections for a system consisting of two neutrons interacting with an
inert ~O core through a spherically symmetric Woods-Saxon potential and interacting with
each other through a 6-flection force. The calculational method employed has the advantages
that it includes the effects of sheQ-model configurations in which both neutrons are unbound,

that it presents no obstacles to inelastic or reaction calculations, that it permits antisymme-
trization of the compound space wave functions, and that it requires only one shell-model
diagonalization for the computation of cross sections up to 5-MeV neutron energy. Use of
antisymmetrized wave functions is shown to reduce substantially the number of compound-
nucleus resonances and to xeduce the magnitude of the inelastic cross section. By-the cor-
rect calculation of the distant resonance contribution to the A matrix, it is shown that the
calculated cross sections are independent of the choice of channel radii. The application of
the method to more complex systems with larger numbers of neutrons as well as protons and
holes and also with diregt coupling between channels is discussed. A selection rule encoun-
tered in the calculations suggests a possible J dependence of the absorptive part of the opti-
cal-model potential.

I. INTRODUCTION

The nuclear shell model is the basic theoretical
tool for the description of atomic nuclei and has
been used to calculate the properties of nuclear
bound states. More recently, there has been con-
siderable interest in the application of the shell
model to tlie calculation of nuclear continuum
states. ' This paper deals with the analysis of the
R-matrix method for the application of the shell
model to nuclear cross-section calculations.

A bound-state shell-model calculation proceeds
by the following five steps:

(1) A single-particle potential U is chosen. Most
simply this is a spherically symmetric harmonie-
oseillator plus spin-orbit potential.

(2) The single-nucleon spectrum of U is calculat-
ed by solving the single-particle Schrodinger equa-
tion

~ &+~14.i, =&.'ig 4ni,

where K is the kinetic-energy operator, and Q„»
is the single-nucleon state with principal quantum

. numbers n, orbital and total angular momentum
quantum numbers I, j, and z-component m. The
energy of the single-particle state $„» is denoted
by E„&,. The Q„» are orthonormal.

(3) A set of N-nucleon independent-particle states
or configurations ~PJM) is formed as the antisym-
metrized product of N single-particle states, cou-
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pled to total angular momentum quantum numbers
J, M.

where C~ is the appropriate normalization con-
stant and A indicates antisymmetrization of the
product.

(4) The shell-model Hamiltonian is constructed
by adding to K+ U a two-body interaction V acting
between all pairs of nucleons:

H =K+ U+ V.

(5) The matrix of P with respect to a limited part
of the independent-particle configurations is
formed,

(PJM IHIP'JM),

and diagonalized. Its eigenvalues are the energies
E„~„ofthe shell-model states, and the corre-
sponding eigenvectors give the expansion coeffi-
cients of the shell-model wave functions I p JM) in
terms of the independent-particle basis states
IPJM).

The above procedure yields only discrete states.
In order to calculate cross sections, it is neces-
sary to modify the procedure so as to yield a con-
tinuous spectrum with wave functions that do not
vanish at infinity. One way of doing this is to re-
place the single-particle harmonic-oscillator po-
tential with a realistic finite collective potential,
such as a Woods-Saxon well. Then the single-par-
ticle spectrum has both a discrete part and a con-
tinuous part. Next it is necessary to generalize
the above shell-model calculational procedure in
order to permit the calculation of continuum N-
particle shell-model wave functions. The asymp-
totic behavior of such wave functions yields the
scattering amplitude from which the cross section
can be computed.

A number of detailed procedures for carrying
out such calculations have been discussed by Fesh-
bach, ' MacDonald and Meckjian, ' Bloch and Gillet, '
Weidenmuller, ' Weidenmmler and Dietrich, '
Glockle, HGfner, and WeidenmQller, ' and Homo. '
Using Feshbach's projecton-operator theory, '
cross-section calculations have been carried out
by Lemmer and Shakin, "Lovas, "Afnan, "and
Payne. "

Such calculations are subject to a number of lim-
itations:

(a) The N-particle basis states can have at most
one nucleon in a continuum state. This may in
some eireumstances constitute an undue restric-

tion on the shell-model basis.
(b) It is difficult to antisymmetrize the wave

function with respect to the continuum nucleon,
particularly when more than one channel is open.

(c) A separate complete shell-model calculation
is required at every energy at which the cross sec-
tion is required. This can become very laborious,
particularly when many resonances are involved.

(d) Only single-channel calculations have been
possible so far; that is, only elastic scattering
and radiative absorption cross sections below the
threshold for nonelastic nucleon channels have
been calculated.

To overcome these limitations we have under-
taken a study of the application of Wigner's R-ma-
trix theory" "to the calculation of shell-model
cross sections. In this method the single-particle
states are again calculated for a Woods-Saxon po-
tential but now the additional requirement is im-
posed that the logarithmic radial derivatives of the
single-particle states with given l,j have a cer-
tain fixed real va.lue (boundary condition) at a chan-
nel radius a beyond the range of U and V. The
complete set of boundary conditions for all chan-
nels gives us an infinite complete discrete single-
particle spectrum, just as in the case of the har-
monic oscillator. We can then carry through steps
2 through 5 of the ordinary bound-state shell-mod-
el procedure described above. The resulting spec-
trum E„z~ and eigenfunctions IpJM) constitute the
spectrum of R-matrix states, their energies, and
wave functions.

The true continuum wave function is then ob-
tained by expansion in terms of the orthogonal set
of R-matrix states. In this way the continuum part
of the calculation is separated from the shell-mod-
el calculation of the R-matrix states.

This method does overcome some of the limita-
tions inherent in the methods that employ single-
particle continuum wave functions. The size of the
shell-model basis is limited only by the size of the
problem that can be handled computationally. Each
R-matrix state can be fully antisymmetrized, as in
the bound-state shell-model calculations. A single
set of R-matrix states can yield an adequate expan-
sion of the true wave function over a wide range of
energies, so that only one shell-model calculation
needs to be performed within that energy range.
Cross sections for any number of open channels
are easily computed. This involves only the cal-
culation of the surface overlaps of the R-matrix
wave functions with those of each of the open reac-
tion channels.

The R-matrix theory has long been useful for the
parametrization of resonance cross sections and
for their statistical analysis. Specific dynamical
content of R-matrix resonance parameters was in-
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troduced in the calculation of strength functions
from the optical model by Lane, Thomas, and
Wigner" and in Robson's analysis of isobaric ana-
log resonances. " The use of R-matrix methods
for the solution of coupled-channel models of nu-
clear reactions was proposed by Haglund and Rob-
son" and studied in greater detail by Buttle. "

While the use of R-matrix theory for shell-mod-
el calculations yields the advantages outlined above,
it also entails some problems and difficulties. The
most serious of these is the familiar question of
whether the results of R-matrix calculations de-
pend on the choice of channel radii and boundary
conditions. Such questions arise because in prac-
tice it is not possible to expand the wave function
in the complete infinite set of R-matrix states, but
only in terms of a finite incomplete set, and be-
cause such partial R-matrix expansions do not con-
verge uniformly in a. To overcome this difficulty,
Tobocman and Nagarajan, '2 Tobocman, "and G3,r-
side and Tobocman" have proposed generalizations
of the R-matrix theory, and these were further
studied by Lane and Robson. " These authors have
noted that Wigner's channel radius a fulfills two
separate functions. First, a defines a finite "in-
terior" region within which the Hamiltonian has a
complete discrete R- matrix spectrum. Secondly,
a defines the boundary of the region in which the
wave function is expanded in terms of R-matrix
states, and at which this expansion is fitted to the
exterior channel wave function. By allowing chan-
nel radii to assume different values for these dif-
ferent functions, the convergence difficulty could
be ameliorated, either by treating the additional
channel-radius values as free parameters or by
optimizing their choice according to variational
principles.

We choose a different approach. Retaining a sin-
gle Wigner-Eisenbud channel radius for each chan-
nel, we calculate a finite number of R-matrix
states and include the slowly convergent contribu-
tion of the remaining states in the "background R
matrix" which is calculated from the collective
part of the nuclear Hamiltonian. We verify the
channel-radius independence of the resulting cross
sections by calculating cross sections for several
values of channel radii.

In addition to testing the channel-radius indepen-
dence of the method, we demonstrate the ease of
nonelastic cross-section calculations and the effect
of complete antisymmetrization of the wave func-
tion. For this purpose we have calculated the sim-
plest kind of a problem which illustrates all of the
above features. This is the case of two identical
neutrons in the field of an inert core. For the sake
of definiteness we chose the parameters appropri-
ate to the elastic and inelastic scattering of a neu-

tron by "Q. We proceed to present the details of
the method in terms of this specific case in Secs.
II-VI. Conclusions and application to other cases
will be discussed in Sec. VII.

II. SINGLE-PARTICLE PROBLEM

A. Potential

We begin by considering the motion of a single
neutron in a spherically symmetric potential U

whose radial dependence is given by

(4a)

where

and

R =r,A'"+r„

and where we have chosen the particular numeri-
cal values

r, =l 16 fm, ry 0 6 fm, a=0 938 fm,
(4d)

V„=42. 4 MeV, V„=9.60 MeV.

B. R Function

If we were interested only in the single-neutron-
potential scattering problem, the numerical solu-
tion for the bound states and the phase shifts would
yield all the observable consequences of the prob-
lem. However, since we will want to use the sin-
gle-particle wave functions for the solution of a
two-neutron problem, we now proceed to discuss
the R-function solution of the potential scattering
problem.

In order to express the neutron wave function in
terms of the R function, we must assign a channel
radius a & 7 fm and a boundary-condition value 8 f

for each partial wave. " Then the R function R»
can be defined in terms of the logarithmic deriva-
tive f» at a of the radial part of the wave function

P» which satisfies the Schrodinger equation with
the potential U and is regular at the origin; thus

The potential was cut off at r = 7.0 fm. This poten-
tial with A = 17 has two bound states above the P
shell: a ld, I2 state at -4.146 MeV and a 2sf/2 state
at -3.266 MeV. These correspond to the 2' ground
state and the ~' first excited state in "O. The
phase shifts generated by this potential were corn-
puted and their properties have been discussed in
detaj. l.
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and

Ri,. = (f,„.-Bi) ',
du

lj—
ug~ &' r =a

M„=ry„ji'I', (~).

(5a)

(5b)

(5c)

where now the sum is taken only over the N» eigen-
states which must be calculated individually from
the Schrodinger equation. The contribution of the
remaining resonances is contained in the "distant
pole" contribution R» which is calculated from

N
I Sp %2

(gxgCt) ~ 'Lyn 1i &

rg= t, —~Esp E
n=l nlj

Clearly, f» and hence R„are defined for all posi-
tive and negative energies. At positive energies,
R» is related to the scattering phase shift 6» by
the relation

tan�

(5 g, + Q, ) =P, R „j(1—S, R„), (6)

where S„P„and fIt), are the shift function, the
penetrability function, and the hard-sphere phase
shift at a, as defined in Ref. 15. Alternatively, we

may write

2ibl j
Lj—

„~, I —(S', -iP, )R„
1- (S, +iP, )R„

The great virtue of the R function is that it can
be expanded into terms corresponding to the eigen-
functions of the Schrodinger equation with the po-
tential U, subject to the boundary condition B, on
the radial logarithmic derivative at a:

where the E„,& are the discrete real eigenvalues
and the y„„are related to real radial parts u„» of
the corresponding eigenfunctions Q„» evaluated at
r=a:

y„,~
= (5' j2Ma)'~'u„„(a) .

The pole terms in the sum of Eq. (8) will play
the crucial role in constructing the scattering res-
onances of both the one-neutron and then the two-
neutron problems. However, within a restricted
energy range we do not need to know all pole pa-
rameters, but only those that contribute to the for-
mation of resonances within the energy range of in-
terest. Nor are we able, in practice, to calculate
all terms of the series. Unfortunately this series
(8) converges extremely slowly, so that no set of
finite terms gives a good approximation of R».
For this reason it is essential that R» be repre-
sented as

C. Potential Scattering Cross Sections

The scattering cross section due to the potential
U (4) was calculated by a numerical-integration

TABLE I. Boundary values for a =7 and 10 fm.

B,(7 fm) B, (10 fm)

The exact R function R„'"'" is calculated from
Eqs. (5), using the exact wave function obtained by
numerical integration of the potential scattering
problem. In practice this procedure is useful only
within an energy range in which all important ener-
gy variations of R are produced by the finite sum.
Within that range, the object is to approximate R„
by a constant. For greater precision R,", can be
fitted by a linear or other simple function of the en-
ergy without seriously affecting the calculational
method. The test of the validity of this method of
calculating R» is to see whether the resulting
cross sections are independent of the choice of
channel radius a both in the single-particle prob-
lem and later in the two-neutron problem. For this
purpose, we will compare cross sections calculat-
ed with channel radii set at 7 and 10 fm.

Besides specifying the potential and a channel

radius, we must also specify boundary-condition
values B, . For reasons that will become apparent
later, we choose for B, the logarithmic derivative
at a of the 2sy/2 bound single-particle state of the
potential U at -3.266 MeV, and for B, we choose
the logarithmic derivative at a of the 1d», bound

state of Uat -4.146 MeV (see Table I). In this way

we assure that these two bound states of U are
identical to the corresponding R-function states.
The remaining boundary conditions may be chosen
arbitrarily for our problem. We adopt for these
the convenient choice 8& =-I, which is the logarith-
mic derivative of the zero-energy solution of the
zero-potential wave equation. Wherever a bound-

ary condition is not used to make an R-function
state coincide with a bound state it may be as-
signed any negative value. Positive values may
lead to unstable calculations.

s)~ sp(r.r; )R,„=R„.+~ . sp
n=X nl j

(10)
-2.8621
-3.9210

-4.0888
-5.1537
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J

I

ACT

7fm
IQ fm

I/2

method. As examples, the total cross sections of

sy/2 Pg/2 and d~I2 waves are shown by curves in
Figs. 1(a)-1(c). Next, the R-matrix procedure of
Sec. II B was carried through using channel radii
a=7 and a=10 fm. The resulting cross sections
are shown as points in Fig. 1.

In doing the R-matrix calculation, the logarith-
mic derivatives as determined by the bound states

of the potential are listed in Table I. The energies
of the R-matrix states included in the finite sum of
Eq. (10) for the case a =7 fm are shown in Fig. 2.
The familiar shell structure of the single-particle
levels is apparent also in the positive-energy re-
gion, although the gaps between shells are less
pronounced than in the case where the shells are
bound in the Woods-Saxon potential. "

Table II contains the values of the R-function en-
ergies and reduced widths for the s,&„P,/„and
d~/2 waves. The distant-pole contributions as cal-
culated by Eq. (11) are also shown in the table.

Next, the I functions of Eq. (7) were calculated,
and from them the cross sections

ESP

7fm o„.= w it'i I —S„.[', (12)

5
E (MeV)

IO

I I I I I I I I

b
I

I

5
E (M8V)

10

l5

IO

I

IO fm
—0.5
—0.4

0
0.3 0.5

7fm

s I s

2
E(MeV)

EXACT
a=7fm
a =IQfm

I

6 S

'0.3 ~
—0.2 b

—O. I

IQ

(c) E Sp d5/2
2

IO fm

which are plotted as points in Fig. 1, together with
the exact cross sections as solid curves. In order
to illustrate relations of the R-function poles and
resonances, the energies of the R-function states
are indicated by arrows.

We see that the R-function method with a = 7 fm
yields excellent results over the entire energy
range. A small error in the R-function d-wave
cross section for a =10 fm is taken as an indica-
tion that, for more precise results with such large
channel radii, a larger number of R-function states
must be included in the sum of pole terms of Eq.
(10). This is entirely reasonable, since Table II
shows that the a = 10-fm calculation includes states
up to 20 MeV, while the a=7-fm calculation in-
cludes all states up to 40 MeV. As a matter of
fact, the agreement is excellent below 5 MeV.

We see also that while R-function energies vary
a great deal with changing channel radius, cross
sections are quite independent of the choice of ra-
dius when the distant-pole contribution is correct-
ly taken into account. The R-function poles are
not always closely related to the resonances, For
example, there are no resonances in the s-wave
cross sections near the R-function pole positions.
However the P,&, resonance at 1.2 MeV md the dsi,
resonance at 0.39 MeV are both associated with R-
function states. These points have been discussed
elsewhere. "

III. INDEPENDENT-PARTICLE STATES

FIG. 1. (a) Single-particle neutron potential. scattering
cross sections for the s~/2 wave. The exact cross sec-
tion is compared with the R-function results for channel
radius a = 7 and 10 fm. R-function-state energies E„SP

are shown by arrows. (b) Same as (a) for the P3/2 wave.

E3 for a=7 fm is at 19.7 MeV. (c) Same as (a) for the

d3/2 wave. Below 1 MeV the a = 10 fm. R-function cross
section agrees with the exact result.

From the single-neutron states satisfying the
boundary conditions defined in the last section, we
now construct independent two-neutron states
which will serve as the basis for the shell-model
calculation of the next section. To simplify the no-
tation we label the single-particle states by Greek
letters e, P, y, . . . :
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ln)=ln I~ m &,

E„=E„,„&, (single-particle state),

(13a)

(isb)

P
I /2 3/2 5/2 l/225—

t/2 P 3/2 5/2 7/2 g 9/2 SHELL

where, as before, n is the principal quantum num-
ber of ln), and I, j„, m„are its orbital and total
angular momenta and the s projection of the latter.

The two-neutron states are products of two states
ln), lp) coupled to total angular momentum J,M
and having parity w. They will be labeled either
by lnPJMm) or by the letters P, P', etc. :

20—

l5—

IO—

pfh

sdg

lp) = la p z M vr ) = Z (j m j8mgl~M ) (ln)IP&k~ pf

(two-particle state), scI

where $ )~ indicates antisymmetrization of the
product with respect to the particle coordinates.
The energy of the two-particle state is defined to
be

IND IND SP SP
Ep Ea8 JNm =Ee +EB —Ezd s/2 '

where E,~,/
is the single-particle energy of the 2'

ground state of "O.
It is clear that the states lP) are orthonormal so-

FIG. 2. The R-function energies E„ for channel radius
a=7 fm.

TABLE II. Single-particle R-function parameters.

a=10 fm
SP

Eni j SP
~nl j SP

&nij
SP

~n lj

S1/2

P 1/2

P 3/2

3/2

d5/2

fS/2

fu2

g 7/2

g 9/2

-3.66
11.58
36.45

3.73
22.25

1.97
19.70

0.83
14.91
39.12

-4.71
11.42
34.78

S.47
25.54

4.03
1'9.74

18.06
39.40

12.80
31.49

-0.458
0.942

-0.973

-0.994
1.052

-0.932
1.076

0.374
-0.854

0.930

0.255
-0.821

0.942

0.716
-0.948

0.511
-0.980

0.822
-0.919

0.644
-0.947

0.0570

0.0668

0.0731

0.0551

0.0584

0.0693

0.0745

0.0588

0.0637

-3.66
4.60

15.53

1.86
8.97

1.13
7.50

0.51
7.06

18.07

-4.71
5.70

15.58

6.25
12.97

3.50
9.19

10.25
20.70

9.19
16.11

-0.108
0.565

-0.651

-0.62S
-0.745

-0.538
0.776

0.131
-0.527

0.608

0.0425
-0.475

0.609

0.542
-0.617

0.261
-0.692

0.620
-0.614

0.506
-0.603

0.0587

0.0797

0.0844

0.0552

0.0601

0.0714

0.0806

0.0592

0.0661
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I c) =
I of jJMv& = g (fm, 2m Ijm)(j„m„jmI&M)

mO(m

)r+s

x Io, )Y, , (Q)S (16)

where Y, (0) is the spherical harmonic of the an-
gular coordinates of the unbound neutron and S 1

is its spin function, and I n) can be either of the
two bound single-neutron states of "O.

To obtain independent-particle-model R-matrix
y coefficients y~, , we calculate the overlaps of
the channel wave functions

I c) with the two-neu-
tron wave functions IP), with the latter evaluated
for one of the neutron radial coordinates having
the value of the channel radius r, =a:

r,',",' = (2a'/2Ma)"'& c Ip),, =. ,

where

(cIP& =g&o.c Ec j c ~c Mc ac I P,r,~,m&m&) „=. (18)

and where the extra factor of M2arises from the
fact that either of the two antisymmetrized neu-
trons may have an overlap with the channel wave
function; that is there is a second contribution
from r, =a. In other words, Eq. (17) compensates
for the fact that our channel wave function (16) is
not explicitly antisymmetrized.

Because we have chosen our boundary conditions
so that the first two single-neutron R-function
states Ilcf»,) and I2s»,) are identical to the 2' and
2+ bound states of 0 which define the two-neutron
channels I

c.) of interest, the evaluation of the y~",

coefficients is exceedingly simple. The orthogonal-
ity of the R-function states Io.) assures that y~,
vanishes unless either I P~) or Iy&) in Eq. (14) is
the same as I n, ) which may be either I Icf», ) or
I 2s», ) . Furthermore, assuming that I P ~) = In, ),
the orthogonality of the vector coupling coefficients

lutions of the Schrodinger equation for two noninter-
acting neutrons moving under the influence of the
potential U and satisfying the boundary conditions
&, at x=a for either neutron. We can use these so-
lutions to define an independent-particle R matrix.
This requires the introduction of the concept of a
channel, that is, the definition of two fragments.
In our case the fragments considered are a neu-
tron and "0 in one of the two bound single-neutron
states of our model; that is, either the 2' ground
state or the 2' first excited state. We define the
channel wave functions to be products of one of
these two bound-state single-neutron wave func-
tions and the angular part of the free-neutron wave
function coupled to a total channel angular momen-
tum &M:

IND
g g g SP

yPC f)f C t P ECSy JCgyyllylygy (19)

We can now write down the independent-particle
R matrix

IND IND

CC' CC' +~ gIND (20)

If the sum is extended over all two-neutron states
IP), then R'" '" vanishes. In that case we find
from Eq. (19) that the diagonal elements R', ", are
identical to the corresponding single-neutron R
function R» evaluated at a shifted energy accord-
ing to Eq. (15):

(21)

where

I c) =
I
~f j&Mv&.

If we now cut off the sums of R'" and R„ in the
same way, we are also left with the same remain-
ing distant-pole contribution for the diagonal ele-
ments:

(22)

Next we turn to the off-diagonal part of R'
which connects the channels in which "0 is left in
its ground state to the channel in which it is in its
first excited state. According to Eq. (19) only one
two-neutron state IP) contributes, namely, the one
in which one neutron is in the 1d5~2 ground state
and the other is in the 2s~, first excited state:

Rcc ~ =r&c r&c /(R& R), -IND IND IND (23)

where

I n c ~ &
= Ir, & =12s».&, (24)

or vise versa. Since there are no other off-diago-
nal contributions, there are no contributions from
distant resonances, and we see that R ' is diag-
onal. This is rigorously so in our model and does
not depend on any additional physical assumption,

assures that y&, vanishes unless the channel neu-
tron quantum numbers (l, ,j, ) are identical to (l&j &)
of the state Iy~). Of course the total angular mo-
mentum (Z, M) and parity w of the channel I c) and
the two-neutron R-matrix state Ip) must also agree
The nonvanishing independent-particle y~, are
then just identical to the single-neutron y„,~ of Eq.
(9):
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sd through pfh shells

~ IND 0 ~IND ~0

sdgi shell

~IND~0

0
0+

1.
1+
2
2+

3
3+

4
4+

5
5+

6
6+

7
7+

Total

9
17
24
18
32
37
32
28
27
30
19
15
10
12
0
3

223

3
4
9
7

10
11
10
9
7
8
3
4
2
2
0
1

1
2
1
5
2
7
2

1
6
1

0
2

0
1

42

TABLE III. Numbers of independent-particle
configurations.

I

5/2
EL

the channel-spin scheme" and include the contribu-
tions of all the single-particle states through the
sdgi shell. The numbers of the resulting antisym-
metrized two-neutron states are listed in Table III
according to their total angular momentum and

parity. The first column lists the 223 two-neutron
states with neutrons through the Pfk shell, but with
neither neutron in either the

~ ld»2) ground state or
in the ~2s», ) first excited states. Since these
states have all vanishing y~,", they will clearly
not contribute to the independent-particle-model
R matrix, but they will be included in the later
shell-model calculation. The second column lists
the 90 antisymmetrized states with one neutron in

~ 1d»,) or ~2s», ) and the other neutron in any one of
the states through the Pfh shell. Listed separately
in the third column are the 42 states with one neu-
tron in ~1d»,) or ~2s,l,) and the other in the sdgi

such as random signs, etc.
On the other hand, the strict diagonality of R

is a consequence of the j-j vector coupling scheme
of angular momenta, that we have adopted above.
If one adopts the channel-spin labeling scheme, in
which the target angular momentum is first cou-
pled to the-neutron spin to form the channel spin
8, then R' '" does have some trivial off-diagonal
elements that connect states with different channel
spins. It is therefore important to realize that one
cannot arbitrarily assume vanishing off-diagonal
elements of R' '" in all channel labeling schemes.
The channel-spin wave functions are given in terms
of the j-j-coupling channel wave functions of Eq.
(16) by

CO
R
IL

I-
0

b

(25)=Xi SW(lb~i ~ v'S)l oft ~ME&),

where j = (2 j+1)"' and similarly for S, and W is
the Racah coefficient. Correspondingly, the y co-
efficients and distant-pole contribution become

0—
INELASTIC CHANNEL

where

(26)

0
I.

E(MeV )

R,', '"=6 6„Qj'SS'W(l —Zj; jS)

x W(l& Jj„;jS )Rg), (27)

where S,S'=j
Our actual computations have been carried out on

FIG. 3. Elastic scattering cross sections 0& accord-
ing to the independent-particle model in the elastic
{ground-state) and inelastic {first-excited-state) chan-
nels of ~ O. The cross sections for each 4" peak together
at the d3~2, p3~2, and f&~2 single-particle resonances
indicated by vertical lines. The same resonances appear
in the inelastic channel, shifted by the threshold energy.
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nflf jf, n2l2j2 E IND
& IND(elS)

(033) (111)

gII 0

(2su22pud
(1ds/2 1fs/2)
(2s f/23P f/2)

(1ds/22/;/, )

g II 0+

(1ds/2)

( f/2)'
(1ds/2 2d s/2)

(2s f/23s f/2)

(1ds/~ 3ds/2)

1
2
5
7

18
19

4.78
9.47

23.29
25.54

-4.71
-2.62
11.42
12.62
34.78
37.49

0.716

-0.948

0.361

-0.821

0.942

-0.994

1.052

-0.648

0.942

-0.974

TABLE IV. Independent-particle R-matrix
parameters.

resonances that appear are just the single-particle
resonances of Fig. 1. These independent-particle-
model scattering cross sections are shown in Fig.
3 separated according to 4'. The d,i„P»„and
f,i, single-neutron resonances appear at about 0. 5,
1.2, and 3.5 MeV in the elastic channel and are
shifted up by the threshold energy (1.045 MeV) in
the inelastic channel.

IV. SHELL-.MODEL R MATRIX

The independent-particle R matrix yields only
single-particle resonances. In order to obtain
more complicated compound-nucleus states, we
must introduce a neutron-neutron interaction V
which we choose to have the form

shell. Energies E~ and y~, values for the 32 states
in columns 2 and 3 having E"=0+,1+ are given in
Table IV and the values of R '" for these 4' are
given in Table V.

Using the complete results for the 132 states in
columns 2 and 3 of Table III, we constructed the
independent-particle R matrices, and from them
obtained by standard methods the independent-par-
ticle-model cross sections.

Since there is no inelastic process, one obtains
only elastic scattering cross sections in the ground-
state and first-excited-state channels but no inelas-
tic transitions between them. Furthermore, the

~ 0
b

TABLE V. Constant part of R~~i(g =7.0 fm).

(&is)

(133) (211)
0 2

E (MeV)

(133)
(211)

g II 0+

(122)
(200)

J II

(112)
(132)
(133)
(210)
(211)

J II 1+

(122)
(123)
(143)
(201)
(221)

0.0693
0.0668

(122) (200)

0.0584
0.0570

(112) (132)

0.0731

(133) {210) (211)

0.0743 0.001 12
0.001 12 0.0695

0.0710 0.002 97
0.002 97 0.0689

(122) (123) (143) (201) (221)

0.0582 0.000 80
0.000 80 0.0554

0.0588
0.0570

0.0551

o+

I

J 2+
le IX IX

IW

i' 02I IOB

R-MATRIX STATES

FIG. 4. Total shell-model scattering cross sections
for neutrons bombarding f~O is its ground state, sepa-
rated according to 4". The positions of the d3/2, Ps/2,
and f~/2 single-particle resonances in the elastic and in-
elastic channels are indicated by solid and broken verti-
cal lines, respectively. The positions of the shell-model
R-matrix-state energies are indicated at the bottom for
~=0+, 1, 2, 3, numbered according to their order-
ing starting from the lowest state. A circle around the
number indicates that the predominant configuration of
the state has one neutron in Jds/2). A square indicates
that predominantly one neutron is in I 2 sf/ 2 ) . A plain
number indicates that in the principal configuration
neither neutron is in Idsi2) or t2sfi2).
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V(1, 2) = (Vc+ V,P,)6(r, —r2),

where

Vc = -582.3 MeV/fm~,

V, = 314.4 MeV/fm~,
(28b)

where &,= c(1 —a', ~ o,) is the projection operator
for the singlet states. This potential, which was
originally suggested by Brown, Castillejo, and
Evans' to fit the low-lying spectra of P-shell nu-
clei, has been applied to elastic scattering calcu-
lations by a number of authors. " "

With this interaction our shell-model Hamilto-
nian then becomes

than 5 MeV. The matrix elements of V connecting
states more than 5 MeV apart have magnitudes
that are 3 orders of magnitude less than those of
the diagonal matrix elements of ~. Since we are
interested in cross sections in the energy range of
0-5 MeV, we should therefore retain all configura-
tions up to 10 MeV. Actually our shell-model cal-
culations of Eq. (31) include all configurations in
columns 1 and 2 of Table III, that is those having
neutrons up through the Pfh shell as shown in Fig.
2.. These constitute all the configurations up to 20
MeV when the neutron channel radius a is 7 fm and

up to 10 MeV when a is 11 fm. As seen from Table
III the maximum dimension of the calculated shell-
model matrices is 48 in the case of J"=2'.

Using this set of configurations, the shell-model
R matrix for «5 MeV can be represented by

H =Q [If(i)+U(i)]+V(1,2), (29) ~ Yuc~uc'Rcc' =Rcc'+
P

(33)

where K(i) is the single-neutron kinetic-energy op-
erator and U(i) is the single-particle potential of
Eq. (4). The shell-model R-matrix states ~„with
energies E& are the solutions of the Schrodinger
equation with the shell-model Hamiltonian (29) sub-
ject to the boundary condition &, which were speci-
fied in Sec. II.

These shell-model R-matrix states are obtained
as expansions in the independent two-neutron
states, Eq. (14),

x, =pc„,Ip), (30)

where the coefficients C» are the elements of the
eigenvectors of the matrix of H in the independent-
particle basis IP) and the energies E„are its ei-
genvalues

Q(PI&IP')~pp =Ep~pp.
pl

(31)

Eq(max) =Ec(max) -Dy (32)

are correctly computed.
In our calculations the mixing range D& is less

This procedure works, of course, only when the
sums are limited to a finite set of hvo-particle con-
figurations IP). We require therefore an assump-
tion that is shared by all shell-model calculations;
namely, that the interaction V(1, 2) mixes a con-
figuration I P) into the shell-model state X& only if,

IEc —E&I is less than some finite mixing range
D„. Then, if all states IP) with energies Ec" up
to some E~ (max) are included in the sums of Eqs.
(30) and (31), the shell-model assumption implies
that all X& with energies E& up to

where

(34)

IND IND

R {s) ~ ~ ~cc~cc'Ycc )c'c'
cc' jV

p p, .p'~in(s) P
(35)

If all the states occuring in this sum have E„-&
»D&, that is to say, if the mixing range &I is
small compared with the distance from the exclud-
ed configurations to the energy range of interest,
then we may make the approximation

Because of Eq. (26) only the 90 states listed in
the second column of Table III contribute to the
sums of Eq. (34), but all 313 configurations listed
in the first two columns of Table III contribute to
the determination of the E„and the C» through the
solutions of Eq. (31). Therefore the R matrix (33)
does reflect the entire shell-model configuration
space up through the Pfh shell, including many con-
figurations with two neutrons having positive sin-
gle-particle energies. The latter are difficult to
include in some other computation schemes. ' "

Next, we must consider the configurations which
are excluded from the shell-model calculation (31).
These produce R-function states that are not con-
tained in the sum of Eq. (33), and their effect must
therefore be included in R,",. Let us consider the
contribution of a certain set {s)of highly excited
configurations IP), all of whose E~ are greater
than E~(max). They will yield the following partial
contribution to R" that can be obtained from an ex-
panded shell-model calculation of the type of Eq.
(34):
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~ EIND
p (36)

Applying also the orthogonality relations

QCq~ Cq~. ——6&~. ,
P

we obtain

I ND IND

R„,(s]=—Q ~"„~"' .
P In(S)

(37)

This is identical to the contribution of the same
set of configurations (s) to R„'". We conclude
therefore upon summing over all sets (s) that

R RIND,
cc cc ~

The background R matrix obtained in this way is
again diagonal except for trivial off-diagonal spin-
flip terms. One also obtains a diagonal background
R matrix by invoking the assumption of random and
uncorrelated signs of the y„, coefficients. We have
not used this assumption here, but rather we have
relied on the common assumption that shell-model
states have negligible contributions from very dis-
tant independent-particle configurations. In the
last section we shall discuss how this assumption
can be relaxed.

We have included the contributions of all config-
urations with neutrons above the Pfh shell by in-
cluding their effects in R as prescribed by Eqs.
(30), (22), and (11). In order to improve the ac-
curacy of the calculation, particularly for the
larger choices of channel radius, we have approx-
imated by a constant only the contributions to R
from above the ski shell. For the contributions
of the ski shell configurations listed in column 3
of Table III, we have used R ' as an energy-de-
pendent contribution to R .

VI. S MATRIX AND CROSS SECTIONS

Having obtained the R matrix, we calculate the
S matrix by standard R-matrix inversion proce-
dures according to the formula'

S=QP' (1 —RI, ) '(1 —Rf. *)P ' '0, (40)

where , I', and L' are the diagonal matrices giv-
en in Ref. 15. This procedure is best adapted to
cases in which the number of asymptotic channel
states for each J' is less than the number of inde-
pendent-particle configurations, In cases of many
channel states but few configurations and energy-
independent R ", the level-matrix inversion proce-
dure may be more efficient. '

From the S matrix we calculate total and inelas-
tic cross sections by

o,'., =2''g, &[1-Re(S„)J
ZS

(41)

and

states is unaffected by the presence of zero-range
two-body forces. While this selection rule does
not hold exactly for finite-range potentials, we
may still expect that the unnatural-parity matrix
elements are reduced compared with the natural-
parity elements. If we suppose that a partial se-
lection rule also holds for finite-range off-diago-
nal matrix elements, we must conclude that the
spreading of independent two-neutron or two-pro-
ton unnatural-parity states is reduced. Therefore
we may expect reductions in the strength of the
imaginary optical potential for the unnatural-parity
states, resulting in parity and 4 dependences of
the nuclear strength function. '2 The latter effect
has been seen experimentally. "

V. MATRIX ELEMENTS AND PARITY SELECTION
RULE

&~ipse
= v& g zZZ ISc ~ c I»' ss' (42)

Details of the calculation of the two-body matrix
elements (PlVlP') occuring in Eq. (31) are dis-
cussed in the Appendix where they are expressed
as radial integrals multi. plied by vector coupling
coefficients.

It is shown in the Appendix that for zero-range
interactions the two-body antisymmetrized ma-
trix elements (pl Vl p') vanish for unnatural-parity
states having v= (—) ''. This selection rule, which
has previously been known for diagonal matrix ele-
ments, "is here shown to hold also for the off-di-
agonal elements. Consequently, the independent-
particle states of unnatural parity do not spread
over the R-matrix states, and hence the contribu-
tion to the cross section of the unnatural-parity

where c = (Id,&2) lSJ", and c' = (2s„,)l'S'J'. For
neutron scattering by oxygen in the energy range
0-5 MeV, it is sufficient to include orbital angular
momenta up to 4. Channel spins are 2 and 3 in the
elastic channel (2'), and 0 and 1 in the inelastic
channel (2'). Thus, the total angular momentum
ranges from 0 to 7. Actually, we have carried out
calculations of R-matrix constants in 60 different
asymptotic channel states lc) and lc').

A. Resonances

The contributions of the various total angular mo-
menta and parities to the total cross section are
shown in Fig. 4. These curves were calculated us-
ing a neutron channel radius of 7 fm. For compar-
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ison the positions of the single-particle resonances
of the independent-particle model of Fig. 3 are in-
dicated by vertical lines. Due to the residual in-
teraction, the natural-parity cross-section reso-
nances are shifted from their independent-particle
positions.

The residual interaction also introduces a second
sharp 2' resonance at 1.3 MeV due to the d»2 wave
single-particle resonance in the inelastic channel.
In the continuum shell-model theories, the appear-
ance of such a resonance is ascribed to "continuum-
continuum interactions. ' " In our calculation the
1.3-MeV 2+ resonance arises from configuration
mixing of the independent-particle A-matrix states.
In the independent-particle model, the 2' state hav-
ing ' 0 in its 2s»2 excited state plus a 1d,&, neutron
has a vanishing y~, in the elastic channel (which is
a quasibound state in the inelastic channel). There-
fore, this state does not appear as a resonance in
the independent-particle ground-state channel, but
it does cause a sharp quasibound state resonance
at 1.4 MeV in the inelastic channel. The residual
interaction mixes the 1d», ground state plus 1d,»
neutron configuration into this 2s,&2-1d», quasi-

bound state, giving it a finite y~, in the elastic chan-
nel and resulting in the second sharp 2' resonance
at 1.3 MeV. The 2.3 MeV 1 and 4.3 MeV 3 reso-
nances are of the same type.

A third type of resonance is the very weak 0'
peak at about 5 MeV. This is due to the two-par-
ticle excitation (ld», )' which is weakly coupled to
the ground-state channel by the residual interac-
tion. Such a resonance might be called a doorway
state, although i.n our model it is the most compli-
cated kind of a compound-nucleus configuration
leading to a resonance. Since there are no more
complicated states, we might call this state a
closed doorway.

For comparison with the resonances, the posi-
tions of the R-matrix states are indicated at the
bottom of Fig. 4 and in Table VI. As has already
been pointed out in the single-particle case, only
a few R-matrix states correspond to scattering res-
onances. " Here we see the same situation in the
two-particle case. For example, there are four
1 R-matrix states in the energy range up to 5
MeV but only two 1 resonances. The number of
resonances does in fact appear to be equal to the

TABLE VI. Shell-model 8-matrix parameters for channels in order of increasing l and increasing 8 for same l.

0.14

yp, (el) Zyp, (el)

0.980

0.020

y~, (inel)

c =2

-0.07

(inel)

0.005

1.46
2 +23

2.94
4.62

0.83
1.88

1.97
3.02
3.73
4.03

-0.901
0.113

-0.048
0.005

-0.096
0.0

-0.822
0.0
0.469
0.0

0.056
0.273

-0.328
0.034

0.361
0.0

-0.440
0.0

-0.877
0.0

0.018
0.083

-0.089
0.006

0.0
0.0
0.0
0.0
0.0
0.474

0.0
0.0
0.0
0.193

0.815
0.094
0.118
0.001

0.140
0.0

0.869
0.0
0.989
0.262

-0.042
-0.456
-0.483
-0.675

0.0
0.0

0.0
-0.932

0.0
0.0

-0.055
-0.472
-0.381

0.714

0.0
0.374

0.0
0.0
0.0
0.0

0.005
0.431
0.378
0.965

0.0
0.140

0.0
0.869
0.0
0.0

0.66
1.68

-0.033
0.030

0.180 -0.316 0.017 0.008
0.021 -0.045 -0.016 -0.008

0.134
0.004

0.020
-0.224

-0.044
0.291

0.002
0.135

1.81
3.51
3.57
4.86

0.83

1.97
4.03

-0.551
0.353

-0.710
-0.042

-0.932
0.0

-0.740
-0.205

0.545
0.093

-0.236

0.0
0.370

0.013
0.345
0.165

-0.120

0.0
0.353

0.013
0.253
0.117

-0.055

0.0

0.852
0.350
0.842
0.033

0.139

0.869
0.262

0.011
0.070
0.008
0.355

0.0

0.0
0.0

0.023
0.102
0.011
0.336

O.O01
0.015
0.001
0.239

0.0
0.0
0.0

4.03

-0.302

0.340

0.511

0.187 -0.009

0.441

0.127

0.310

0.261

-0.004 -0.014
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number of single-particle resonances in all chan-
nels of our model. We see total-cross-section res-
onances corresponding to ground-state single-par-
ticle resonances, as well as 2', 1, 3 resonances
corresponding to single-particle resonances of the
first excited state, and finally we see a 0' reso-
nance corresponding to a two-particle one-hole
state relative to "O.

B. Antisymmetrization Effects

The total and inelastic scattering cross sections
obtained by summing Eq. (41) over J',

(43)

are plotted in Fig. 5. The relative magnitude of
the total and inelastic cross sections are compar-
able to the measured ratio, "which suggest that
the strength of the residual interaction is approxi-
mately correct.

In order to see the effect of using antisymme-
trized wave functions, we have calculated these
same cross sections without antisymmetrization.
The R matrix is calculated by the formula

where R is the antisymmetrized R matrix and
R ' is the R matrix obtained from the symme-
trized wave functions of the Appendix. The factor
2 is due to the fact that so far as R '~ and R are
concerned, the two neutrons are indistinguishable
in the channels, while for R"' the channel wave
functions must be defined with distinguishable neu-
trons [see discussion below Eq. (17)1.

The resulting total and inelastic cross sections
are shown in Fig. 6. They differ from Fig. 5 by
the appearance of more resonance peaks resulting
from the additional resonance states contributed
by R". The increased coupling of channels
through these new states is reflected in an inelas-
tic cross section that is about twice as large as in
the antisymmetrized case. The parity selection
rule of the Appendix does not hold, and the effect
of each independent-particle state is spread over
many more resonances than the case when the
Pauli principle is obeyed.

C. Channel Radius Effects

To check the consistency of our calculational
method, in particular the procedure for determin-

R" = —(R+ +R '), (44)

sg

M

O

4J
CA

CA
V)
O
IK
O

0.08

0.06—
0.04—
0.02—

3
(A

O

O
LJ
(0 2—
~~ O.I4-

O. I 2—
O.IO—

0.08—
0.06—
0.04

0.02—

IN

2 3
E (Mev)

FIG. 5. Total and inelastic shell-model cross sec-
tions for neutrons scattered by ~~O, calculated with anti-
symmetr ized wave functions.

2 3
E ( MeV)

FIG. 6. Same as Fig. 5 but calculated without antisym-
metrization of the wave functions.
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FIG. 7. The 2+ resonance at 1.3 MeV calculated for
channel radii a = 7, 9, and 11 fm. The energy of the
fourth 2+ R-matrix state responsible for this resonance
is indicated for each value of a by a vertical line.

ing R, we have performed the above calculations
for neutron channel radii of 7, 8, and 11 fm. De-
tailed results are shown in Figs. 7 and 8. In Fig.
7, the 1.3-MeV 2 resonance in the total cross sec-
tion is plotted for the three choices of channel
radii. At the bottom of the figure are indicated the
corresponding positions of the R-matrix state re-
sponsible for this resonance. We see that as a is
shifted from 7 to 11 fm the R-matrix state shifts
by over 300 keV from 1.68 to 1.37 MeV. In con-
trast, the resonance curve is almost unchanged.
The actual computed resonance shift is about 30
keV in the oPPosite direction from the R-matrix
shift. This small reverse shift arises from the
fact that in this calculation the single-neutron
bound R-function states were normalized to unity
in the space x( a. The resulting a-dependent nor-

malization of the independent-particle states pro-
duces a-dependent shell-model R-matrix states,
resulting in the observed small a dependence of the
cross section. A similar small shift in the 1 res-
onances is shown in Fig. 8.

This effect can be removed by giving the bound

single-particle R-function states the correct bound-
state normalization regardless of channel radius.
Subsequently the shell-model R-matrix states have
to be normalized to unity within the interior space
r & a, and these correctly normalized R-matrix
states must be used for the calculation of the y„,.
It is not clear whether this additional labor in nor-
malizing all R-matrix states is warranted in prac-
tice. Another way of minimizing the normalization
error is to choose the channel radii a as large as
possible consistent with keeping the size of the
shell-model problem within managable bounds.
Figures 7 and 8 shows that the cross sections cal-
culated from single-particle bound states normal-
ized in the interior converges rapidly with increas-
ing channel radius.

VII. CONCLUSION

We conclude that the usual R-matrix method does
present a convenient method for carrying out nu-
clear -structure calculation in the continuum. We
have demonstrated its advantages in minimizing
the required number of shell-model calculations,
in permitting complete antisyrnmetrization of the
wave functions, in permitting the use of arbitrarily
large shell-model bases and in carrying through
multichannel calculations. The difficulty of possi-
ble channel-radius dependence of the cross section
has been seen to be removed by the correct compu-

0.8

0.6

0.2

FIG. 8. The 1- reso-
nances at 0.9 and 2.5
MeV calculated for chan-
nel radii a=7, 9, and
11 fm. Energies of rel-
evant R matrix states
are shown.

E (MBV )

a= 7fm OI; 2 4

a= efm OI'
I

2 I 0&,'
I

4 I

a = lifm OII

R- MATRIX STATES
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tation of the distant-pole contribution R ".
The method described and applied here to a core-

plus-two-neutron system can be immediately gen-
eralized to more complicated systems. For exam-
ple, in a. three-nucleon problem, or a two-nucleon-
one-hole problem, one must first carry out a shell-
model calculation for the target system to deter-
mine its bound states. From there on, the calcula-
tion proceeds analogous to the two-neutron case.
Such calculations will be facilitated by use of (l,j )

quantum numbers to specify asymptotic channel
states, rather than the channel-spin classification
employed here. This permits separate specifica-
tion of boundary conditions B„ for each (l, j) wave.
Each single-particle state contributing to a bound

target state must be assigned its "natural" bound-

ary condition as in the case of the Id„, and 2s„,
states of the above two-neutron problem. Only if
two single-particle states with the same angular
momentum quantum numbers but different princi-
pal quantum numbers contribute to bound residual
states, does the present method require modifica-
tion.

Finally, direct reactions can be introduced into
our calculational procedure by replacing the sepa-
rate single-particle models for each of the chan-
nels by a coupled-channel model which correctly
represents the direct transitions between collec-
tive states. Employing the subtraction procedure
of E(l. (11) in matrix form, one then obtains off-di-
agonal elements in R which correspond to off-di-
agonal contributions of the distant R-matrix states.

APPENDIX. MATRIX ELEMENTS AND SELECTION RULES

A two-neutron state fP&(o) without symmetry properties is written in terms of the single-particle states
fo(1)& of neutron 1 and fP(2)& of neutron 2 as follows:

f P& (, )
=

f j) (c(P)& (» = Q &j „m j 8m(()l &I& f
o. (1)& f P (2)& . (Al )

(A2)

The corresponding symmetrized state will be denoted by f P)(+), while the antisymmetrized state is de-
noted by f l)&( ). These are given by the expression

I p&(, )
=

~2 Q & j.m. j()m81&l(f&l Io(1)& la(2)& ~
I ~(2)) la(1 )&1,

z(')

where the normalization constants K('j have the values"

Z."a) =1

1 1~ (-)~' '
W2 2

when (nlj) c (nlj )8

when (nlj )„=(nlj )(). (A3)

The matrix elements of V(1, 2) formed with the symmetrized and antisymmetrized states (A2) are ex-
pressed in terms of the states fP&(, ) of Eq. (Al) by

&ply'(1, 2)I j '&(.) =ff."a)A",.) f&P(oP)fl'I j '(rd)&(. )* (-)') "& '&P(~jt)fl'I j '(r8)&(.)l. (A4)

The ()-function interaction of E(l. (28) yields two contributions to the matrix elements &P f Pf j)'&(o) that have
been given by Newby and Konopinsky" as follows: The spin-independent contribution is

&j (oj3)lpoe(r, —r, )l j '(r())&(, )
=

2&, j i ()j,i~&j~"'j() "'I~o&&j,"'j(; '"I~o&

The singlet contribution is

&P(o(P)ll. I'. ()(r, —.-,)IP (rO)&(. )
= -2 ~.~;j f(-)"-"r"-")'"'&j.j() "'I«&&j)j-(; "'I«& (A8)

if 4+5 +l~ is even, and zero otherwise. In addition, these matrix elements vanish unless parity is con-
served, i.e. , unless l + l&+ l&+ Ez is even. We have used the notation
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j = (2 j„+1)"'

and

& Q~QgQ Qg
Ch,

4w

where aj, is the potential cutoff radius beyond which also &(1, 2) is set equal to zero.
Substituting these expressions (A5) and (A6) into Eq. (A4), we obtain

(Pll'a|)(r) —r )IP')(~)=&'8&yg j~iaisi yjj(i ' is ' 1~0&(jy'

b '+(-)'- ' "j 'j b '+(-) y'"'" j 'j Ix )( )ja+ jy+ )a+yj+a [1+ ( ))a+ ) j)+ j)
4J(J+ 1)

and (A8)

(j)l&j.&(r, -r, )l p'&~, )=&")&"~) ~.j jsjyj~&ja"'j 8 "'l~o&(jy"'j~ "'IJO&

y($&+l g+ Z)
x ( )(ja+ js+l a+)8+1)ll ( )I a+ )8+ j] ( I

2
(A9)

We see immediately that both the spin-independent contribution (A8) and the singlet contribution (A9) to
the antisymmetrized matrix element (PIVIP )& ) will vanish unless the condition that

(l +l8+J) is even (Al0)

is satisfied. Assuming the zero-spin inert core to have positive parity, this condition implies the selec-
tion rule that the matrix elements of V vanish unless

or
J is even for even-parity states

4 is odd for odd-parity states.

This selection rule has been previously stated for only the diagonal matrix elements of the two-body 6-
function interaction by de-Shalit and Talmi. " The only selection rule operating for the matrix elements
with symmetrized functions is that they vanish for ~' =0'.

*Work performed under the auspices of the U. S. Atom-
ic Energy Commission.
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