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The relationship between scattering resonances and R-function states is explored by investi-
gation of the separate properties of the "hard-sphere" and "R-function" portions of the phase
shift. The R-function states are found to be good models for bound states and for some reso-
nances below potential barriers, but they have no direct relation to scattering resonances
above barriers. An R-function proof and explication are given for Levinson s theorem, ac-
cording to which the number of scattering resonances is in general finite and small even
though the spectrum of R-function states is infinite. Implications of the lack of high-energy
resonances for the many-body problem are mentioned.

The purpose of this paper is to discuss the re-
lationship between R-matrix states and scattering
resonances in single- channel potential scattering
and to note the implications of these results for the
case of many channels.

The fact that R-matrix states do not bear a one-
to-one relation to the scattering resonances was
brought out very early by Wigner and Eisenbud's
demonstration' that an infinite spectrum of dis-
crete R-matrix states could be constructed which
corresponds to no scattering at all and, hence, to
no resonances. Nevertheless, in most R-matrix
calculations, the number of resonances calculated
equals the number of R-matrix states included in
the calculation and, indeed, the infinite discrete
spectrum of R-matrix states has often served as
a model for resonance spectra. For example, the
resonance density' up to quite high energies in the
compound system has commonly been calculated
as if resonances resulted from the distribution of
nucleons among the states of an infinite dhscrete
spectrum of single-particle states such as R-ma-
trix states. Other properties, such as resonance
widths, are frequently estimated by arguments
which consider the compound-nucleus resonances
as bound R-matrix-like states whose decays are
treated by perturbation theory.

In addition, the R-matrix theory provides a pow-
erful tool for resonance reaction calculations em-
ploying shell-model wave functions for the con-
struction of R-matrix states. ' In principle, such
an R-matrix shell-model spectrum can be arbi-
trarily large. In practice, the number of R-ma-
trix states used is limited according to the nature
of the phenomena under investigation and the size
of the computational problem that can be handled.
However, the number of resonances computed is
usually equal to the number of R-matrix states in-
cluded in the calculation.

Other recent calculations of resonance reactions'
employ only the finite spectrum of single-particle
states in a finite shell-model potential well to con-
struct a strictly finite number of compound-nu-
cleus resonances. Since such theories work with
incomplete sets of basis states (only one nucleon
at a time can be in the continum) it is of interest
to discover, using the complete R-matrix theory,
whether the actual number of resonances is finite
or whether resonance densities continue to in-
crease at high energies.

In the single-channel case it is well known that
for a finite mell-behaved single-particle potential
of finite range each scattering phase shift ap-
proaches a constant value at high energies. This
implies the absence of resonances at sufficiently
high energies. Let us see how this lack of reso-
nances arises from the infinite sequence of R-func-
tion states.

We consider scattering by a potential V(r) that
is zero beyond a certain radius ~,. In R-matrix
theory the phase shift 6 for any partial wave is the
sum of a "hard-sphere phase shift" 6H and an "R-
function phase shift" 5~:

& = &a+ &a

where 5„ is given in terms of the R function R, the
penetrability P, and the shift function S by

5„=tan '[PR/(1-SR)] .
This separation of the phase shift is accomplished
by separating coordinate space into an "interior"
with r & c and an "exterior" with r )a at a channel
radius a which can be freely chosen so long as
a )~,. All the quantities defined depend on angular
momentum and energy. Most of them also depend
on the choice of a and on the choice of a real bound-
ary-condition value B For exa.mple (S+B+iP) is
given by the logarithmic derivative of an outgoing
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5~ = =-5~=kg(V=0)

and from Eq. (2)

R "=' =(ka) 'tan(ka).

(4)

Consequently the R-function spectrum for zero po-
tential is given by'

E&r=o& = (n ~)~ (7fI)~/2Ma2 =EH

This is identical to the spectrum E„of the hard-
sphere resonances where 6„passes through (n —~z)v.

The only difference between 5 ~=' and 5„ is that the
former ascends through (n ——,')n at E = "„=EE~~,
while the latter descends. Thy consequent cancel-

wave evaluated at r =a, and e" & is given by the
ratio of the value of an incoming to that of an out-
going wave at r =a. The R function itself is defined
by saying that R '+B equals the logarithmic deriv-
ative of the radial part of the actual scattering
wave function at r =a.

These relationships are such that $' and R depend
on the choice of both a and B, while P, 6~, and 5„
depend only upon a. The dynamical details of the
potential enter only through the R function R.

The R function so defined is an increasing func-
tion of E with an infinite sequence of poles at the
energies E =E„, where the logarithmic derivative
of the scattering wave function at r =a equals B.
These energies E„comprise a complete spectrum
of solutions of the Schrodinger equation in the "in-
terior" subject to the boundary condition B on the
logarithmic derivative of the radial wave function
at r=a. The states associated with that discrete
spectrum are the R-function states.

Associated with the spectrum E„ is an infinite
discrete spectrum E„of "R-function resonances"
at the poles of PR/(1-SR), where 5s passes through
(n —2)n for every positive integer n Since S. is a,

finite continuous function of the energy, the values
of E„alternate with those of E„. We want to com-
pare this spectrum E„with the spectrum S„of
bound states of the potential V and its scattering
resonances which are defined as occurring when-
ever 5 passes through (n —2)v for every positive
interger n.

We consider first the case of s-wave scattering
of an uncharged particle of mass M by a spherical-
ly symmetric potential V. In that case S =-B, and
we may choose B=S=O, so that E„=E„corre-
sponds to a pole of PR. We also have for s waves

P=-5~ =ka,

where k =(2ME/k')'". is the wave number of the
particle.

We first note that for zero potential, V=0, there
is no scattering and 5~v='~=0. Hence from Eqs. (1)
and (3)

lation of 5„and 5„leads to no resonances in 5 and

indeed to no scattering, as required.
We can now extend this result to the case of high-

energy scattering with finite V by applying first-
order perturbation theory to the eigenstates of the
zero-potential R function

E =E(v=0) +

dr V(r) sin'(k"„r)
0 ap

"0
dr V(r), as n- ~,

a

(7)

's the wave number at E =E„"=' =E
Adopting the convention that at E = 0, 5 = 5~ = 5~

=0, we find that

5s(E =E„)= (n —~ —N)v,

where N is the number of negative-energy R.-func-
tion states of the potential V. On the other hand,
from Eqs. (3) and (7) we have that to first order in

~„/E"„

5„(E=E„)= (n —2)w —(Ma-/k 8s') A„,
and hence

5(E =En) = -(Ma/k"„I') 6„-Nv

-a
dr V(r) —Nv,k„k'

which will be recognized as the first Born approxi-
mation for wave number ks =k(E =E„). Assuming
that the Born approximation is valid not only at
E =E„but at all sufficiently high energies, we see
that 5 approaches the value -Nm, and does not con-
tain any high-energy resonances. The reason for
this is seen in the fact that at high energies the R-
function resonances are "cancelled" by the hard-
sphere resonances. Except for the weakly energy-
dependent Born term, 5„decreases at the same
rate as 5~ increases. Thus while both 5„and 6~
continue to pass through (n —2)w at high energies,
their sum does not. Moreover, even though in the
high-energy limit both 6~ and 5z depend strongly
on the choice of channel radius a, their sum 5

does not, provided that V=0 for r & a.
The result of Eq. (10) is equivalent to Levinson's

theorem, which states that between zero and infi-
nite energy the phase shift must descend through
Nw, where the number N of negative-energy R-
function states equals the number of bound states
of the potential V. This is so because on the one
hand an R-function state with zero derivative at
r =a must have a lower energy than the correspond-
ing bound state. Qn the other hand, if a zero-
boundary-condition R-function state falls at zero
energy its wave function is identical to the corre-
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tan5„ =-tan(ka) (12)

tanbs ——(k/k') tan(k'a) . (13)

sponding "zero- energy" bound state. Consequently,
the bound-state spectrum lies above the negative-
energy R-function spectrum, but the difference
goes to zero at zero energy.

An easy way to illustrate the behavior of 6, 5H,

and 5~ is to consider a square well of depth -V
and radius a, equal to the R-function channel radi-
us. The R function follows directly from Egs. (3)
and (5) and the fact that R depends only on the

boundary condition and the Hamiltonion in the in-
terior:

R =(k'a) ' tank'a,

where

k' = [2M(E+ V)/I ']'i'
and therefore

Corresponding to these two poles of the collision
function there are two peaks in the cross section
as shown in the top part of Fig. 1. Resonances of
this type have been called "echoes" by McVoy be-
cause 5 descends rather than ascends where they
occur. ' %'e note that the "width" of the resonance
depends only upon the slope with which 6 passes
through (n —~)w and not on whether 5 is ascending
or descending. Thus in this case, 5 passes steep-
ly down through -v/2 producing a fairly narrow
"echo" resonance at ak= 0.5. Qn the other hand,
5 descends at a shallow angle through -3w/2, re-
sulting in a broad "echo" resonance at ak = 2.8.

In contrast to these two bound states and two

resonances, there are infinitely many R-function
states at the energies E~ indicated by light arrows
in Fig. 1. Two of these states occur at the nega-
tive energies F", and E", corresponding to the two
bound states 8, and 8,. On the other hand the in-
finite sequence E„of hard-sphere resonances has
only positive energies. Thus, while at zero ener-

For large values of k, Ec(. (13) yields

6~ = -Nm +k'a+d,

where

Idl&(1/2ka)Ika —k'al.

(14)

(15)

-3.I5 -I.O 0

I.O

2Ma'E/4'
5 IO

I I

20 30 00
I I I

For 2ka»l, the R-function phase shift becomes

= -¹'+k'a
Nv +ka +-M Va/gk, 9'

2

~-8„(2a)
-SH(a)/

g SR'(2a)

SR (a)
whose second line is again the Born phase shift.
The values of 5~, -58, and 5 are plotted for all
energies in Fig. 1 for the case of a square-well
potential of depth V =3.15m'k'/2Ma'. The curves
labeled 5s (a) and 5„(a) are computed according
to Eqs. (12) and (13). For large values of k, 5s
approaches a line parallel to -5„=ak and a dis-
tance 2~ below ak. As a result, 5 approaches -2m

for large k when its zero-energy value is chosen
to be zero. This limit is in accordance with Lev-
inson's theorem because the above potential has
just two bound states at the energies indicated in
Fig. 1:

h, =-2.43 g'/2Ma
bound states.

h =-0 50 k'/2Ma'

Since the value of 5 has a range of 2r and 6 is a
monotone function of k, there are just two reso-
nances, as indicated by the heavy arrows at the
energies where 5 passes through -v/2 and -3v/2:

8, =+0.22 5'/2 Ma'
resonances.

S,=+ 1.80 k'/2Ma'
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FIG. 1. Phase shift 6=6&+6+ and cross section o as a
function of momentum k or energy E for an s-wave neu-
tron of mass I scattered by a square-mell potential of
radius a and depth V= 3.157t A /Ma . The bound states
are at energies ~& and 42, the scattering resonances at
83 and S4. The 8-function states for matching radius a
have energies E„+and the hard sphere scattering reso-
nances occur at E„+.
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gy the EH start out two levels behind the F."„, they
must eventually catch up, because according to
Eqs. (8) and (7) E„-E"„for large n. The resulting
shift of 2m between 6~ and 5„accounts for the two

resonances 8, and 84 and for Levinson's theorem.
The equation for bound-state momenta in a

square well is well known to be

R '=(k'a) cot(k'a) = —IkI a, (bound state). (17a)

tered wave at the same energies where total re-
flections at r =a would produce the R-function
states.

When the edges are not sharp, as in a diffuse
Woods-Saxon potential, these size fluctuations dis-
appear. For example, s-wave phases of 6~ -6~,
and 5 were obtained by numerical integration for
the Woods-Saxon potential:

Using Eqs. (12) and (13) to calculate the poles of
tan5 as given by Eq. (1), we obtain a similar equa-
tion for the positive-energy resonances of a square-
well potential

R '=(k'a) cot(k'a) =-(ka)tan(ka), (resonance).

'» »1dp
U(r) = Vo p(r) +V„—1 ~ s ——,

pc rdr'
where

p(r)(1+e(PR)/c)1
and

(18a)

(18b)

(17b)

The solutions of Eq. (17a) have been studied ex-
haustively by Nussenzveig' to obtain the poles of
the scattering function e" . However, as we see,
the high-energy poles do not lead to scattering res-
onances. Their effect on the scattering amplitude
is largely cancelled by the influence of the hard-
sphere factor's essential singularity at infinity.
General expressions for the asymptotic distribu-
tion of poles have been given by Humblet and Regge. '

Note added in proof: It is important to distin-
guish between the "resonances" 8„, which are the

subject of this paper, and the poles of the scatter-
ing function which are discussed in Refs. 6, '7.

Changing only the boundary condition does not

change either 5„or 5~ and hence also does not

change 5. Different boundary conditions change R
and S so that PR/(I —SR) in Eq. (3) remains the
same as I'R for the zero boundary condition.

Changing the R-function matching radius does
change both 5„and 6~, but in such a way that their
sum 5 is unaffected. This is illustrated by the
curves 5s(2a), 5e(2a) in Fig. 1 which were com-
puted for the same potential but with the matching
radius at twice the potential radius a. Even though

5 and therefore the cross section is the same as
before, the new R-matrix states indicated by the
dashed arrows at the bottom of Fig. 1 are more
closely spaced than those of 5„(a). At high ener-
gies these more densely spaced R-function states
are compensated by a correspondingly denser set
of hard-sphere resonances.

One interesting feature of the square-well phase
shift and cross section in Fig. 1 is that they dis-
play structure that is correlated with the positions
of the R-function states for a matching radius at
the hard-sphere radius a. This structure does not

correlate, however, with R-function states ob-
tained with other matching radii, such as 2a. This
is due to the sharp edge of the square-well poten-
tial, which causes strong reflections of the scat-

a =0.94 fm, R =3.58 fm,

V, =42.4 MeV, and V„=9.6 MeV. (18c)

The values of the phases are shown in Fig. 2.
Though no size fluctuations are evident, all other
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FIG. 2. Phase shifts &=6++ 6H and cross section o for
the scattering of s-wave neutrons by the Woods-Saxon

potential of Eq. (18).
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FIG. 3. Phase shifts 6=6@+6z and cross section 0 for
the scattering of d3~2-wave neutrons by the potential of
Eq. (&8).

features discussed in connection with the square-
well case remain the same.

Next we turn to the relation between R-function
states and resonances in the presence of a poten-
tial barrier. As an example, the phase shift 6 =6~
+5~ and cross sections for d„,-wave neutron scat-
tering by the Woods-Saxon potential (18) are shown
in Fig. 3. There appears a sharp "resonance"
where 5 abruptly rises through w j2 and a wide reso-
nance "echo" where 5 slowly descends through w/2.
The potential does not have a bound state of this
particular partial wave, so that 6 -0 at large k, as
seen in Fig. 3. The arrows indicate the positions
of k„and k„ fo a=V f

In this case, where a potential barrier is present,
the behavior of 5~, 5~, and 5 differs from the s-
wave-neutron case in two important ways. At low
energies 5„ is very small because the repulsive
centrifugal barrier keeps the neutrons away from
the potential well. Therefore at low energies we
have 6=5~. In our example the first R-matrix
state lies in this low-energy region and therefore
corresponds closely to the location of the first
scattering resonance. Moreover, because of the
centrifugal barrier, the d-wave penetrability P is
also very small at the first resonance. It follows
from Eg. (2) that 5s rises through v j2 very steeply,
almost like a step-function, rather than almost lin-
early with ka, as in the s-wave case. The same
behavior is shared by 5, resulting in the very nar-

row first resonance. Such narrow resonances be-
low potential .barriers are therefore closely asso-
ciated with the corresponding R-function state and

may be thought of as quasistationary states.
The close association of a sharp resonance be-

low the barrier with an R-function state is quite
insensitive to a change in boundary conditions or
channel radius provided the channel radius is
small enough so that at the resonance both 5~ and
P remain small. In the case of the d», resonance
shown in Fig. 3 the first R-function state remains
close to the first resonance for channel radius up
to 30 fm.

Above the centrifugal barrier the qualitative re-
lationship between R-function states and reso-
nances is again the same as for s-wave neutrons.
In the example of Fig. 3, there is a second very
broad (echo) resonance at k =1.5 fm ', where 5
descends through v j2 on its. way to zero as re-
quired by Levinson's theorem. Again there is an
infinite spectrum of R-function states, causing a
steady rise in 5~ which is cancelled by an equal
rise ln —6~

We see that there are two kinds of R-function
states which have direct physical meanings. By
choice of a boundary value B = -l, the R-function
states with negative energies are related one to
one to the bound states of the potential. Further-
more, the wave function of such an R-function
state is very similar to that of the corresponding
bound state, as was pointed out by Mahaux and
Weidenmmler. ' Such an R-function state is there-
fore a good representation of the bound state. An-
other type of R-function state is one associated
with the sharp resonance below the peak of a po-
tential barrier. Here again the wave function of
the R-function state is very similar to the internal
wave function at the sharp scattering resonance.
The R-function state is therefore interpreted as
the quasistationary state giving rise to the reso-
nance.

Other resonances, particularly those occuring
at higher energies are diffraction phenomena that
are not associated with well-defined states in the
interior and are therefore also not associated with
particular R-function states. Such diffraction phe-
nomena have been called echoes by McVoy, ' and
they arise in R-function theory from the difference
in the rates of increase of the R-function and hard-
sphere phase shifts. These diffraction echoes are
also limited, as we have seen, to the number spec-
ified by Levinson's theorem. Thus the infinite se-
quence of high-energy R-function states does not
generate an inf inite sequence of r esonances. We
may conclude therefore that also in the many-body
case the number of resonances is effectively con-
fined to those generated by single-particle bound



SCATTERING RESONANCES AND R FUNCTION. ..

or quasibound states, and that therefore the reso-
nance level density does not keep increasing expo-
nentially at higher energies. 9 Similarily, there is

therefore no reason to expect that cross-section
fluctuations due to resonance terms in the S ma-
trix continue to very high energies.

*Work performed under the auspices of the U. S. Atom-
ic Energy Commission.
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The Wigner-Eisenbud 8-matrix theory is applied to the calculation of neutron total and in-
elastic scattering cxoss sections for a system consisting of two neutrons interacting with an
inert ~O core through a spherically symmetric Woods-Saxon potential and interacting with
each other through a 6-flection force. The calculational method employed has the advantages
that it includes the effects of sheQ-model configurations in which both neutrons are unbound,

that it presents no obstacles to inelastic or reaction calculations, that it permits antisymme-
trization of the compound space wave functions, and that it requires only one shell-model
diagonalization for the computation of cross sections up to 5-MeV neutron energy. Use of
antisymmetrized wave functions is shown to reduce substantially the number of compound-
nucleus resonances and to xeduce the magnitude of the inelastic cross section. By-the cor-
rect calculation of the distant resonance contribution to the A matrix, it is shown that the
calculated cross sections are independent of the choice of channel radii. The application of
the method to more complex systems with larger numbers of neutrons as well as protons and
holes and also with diregt coupling between channels is discussed. A selection rule encoun-
tered in the calculations suggests a possible J dependence of the absorptive part of the opti-
cal-model potential.

I. INTRODUCTION

The nuclear shell model is the basic theoretical
tool for the description of atomic nuclei and has
been used to calculate the properties of nuclear
bound states. More recently, there has been con-
siderable interest in the application of the shell
model to tlie calculation of nuclear continuum
states. ' This paper deals with the analysis of the
R-matrix method for the application of the shell
model to nuclear cross-section calculations.

A bound-state shell-model calculation proceeds
by the following five steps:

(1) A single-particle potential U is chosen. Most
simply this is a spherically symmetric harmonie-
oseillator plus spin-orbit potential.

(2) The single-nucleon spectrum of U is calculat-
ed by solving the single-particle Schrodinger equa-
tion

~ &+~14.i, =&.'ig 4ni,

where K is the kinetic-energy operator, and Q„»
is the single-nucleon state with principal quantum

. numbers n, orbital and total angular momentum
quantum numbers I, j, and z-component m. The
energy of the single-particle state $„» is denoted
by E„&,. The Q„» are orthonormal.

(3) A set of N-nucleon independent-particle states
or configurations ~PJM) is formed as the antisym-
metrized product of N single-particle states, cou-


