
PHYSICAL REVIEW C VOLUME 2, NUMBER 3 SEPTEMBER 1970
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A calculation of the correction, second order in v/c, to the binding energy of nuclear mat-
ter in the first-order Hartree-Fock approximation yields a result of +0.5 MeV per particle at
k+=1.36. The correction becomes large very quickly as the Fermi momentum increases.
These results are based on the nonlocal separable potential of Tabakin.

1. INTRODUCTION

Most of the calculations in nuclear theory are
performed using a phenomenological N-N inter-
action, chosen to give agreement with the experi-
mental aspects of the two-body problem. These
calculations require a relativistic correction,
since the potential used to represent this interac-
tion is, in general, not a relativistic covariarit
quantity. Particularly in a tightly bound many-body
system, where nucleons can have large kinetic en-
ergies and can approach nearer to each other,
these corrections are expected to be important.

Though it is very difficult to estimate the rela-
tivistic corrections accurately, these are expected
to be very small. In this paper, the investigation
of these corrections is presented with the assump-
tions: the energy involved is relatively low so that
the expansion in powers of P/m is still valid, and
the number of particles is conserved. Under such
circumstances, one can calculate first-order rel-
ativistic corrections by the natural extension of
the concept of a potential in the nonrelativistic
Schrodinger equation. For this purpose, the anal-
ogy with the force between charged particles sug-
gests that an investigation of the Lorentz proper-
ties of interaction must be cg,rried out. .If it trans-
forms like a part of a four-dimensional vector, the
rest of this vector must be included in some such
cove, riant manner just as P and eA are replaced by
p-p —eA and E-E -egin the electromagnetic in-
teraction. If it is an invariant with respect to
Lorentz transformations, it can be included as a
part of the rest energy.

In the literature, it is the second approach which
has been discussed extensively. ' ' Here one iden-
tifies the Hilbert space of a relativistic system as
a representation space of the inhomogeneous Lor-
entz group (IHLG); then the problem of finding a
relativistic theory is equivalent to a search for a
set of Hermitian operators satisfying the well-
known commutation relations (C.R.) for IHLG:

[P;,P, ] =O, fP, , H] =0, [J,H] =0,

[O';, J)] =+ie;q„J), [J,, P,]=te,,~P.~,

[K;,K, ] =-ie;,„Jq& [H). K)] = iP, , -

[J;,K~] =ie, ,„K~, [P;,K, ] =i6, ,8,

wherei, j, 0=1, 2, 3, and H, P, J, and K are
infinitesimal generators of time translation, space
translation, space rotation, and pure Lorentz trans-
formation, respectively. The infinitesimal element,

1 —i6$ ~ J i6V K-i6x -P —i6t H,

operating on a state vector corresponding to a
given physical system at a time t gives a new state
vector corresponding to the same physical system
rotated by an angle 6$, given a velocity 6V and dis-
placement 5x at a time (+at. One constructs these
operators at a common time, the instant form of
dynamics, ' by considering coordinates, momenta,
and spins of individual particles as the basic vari-
ables. The theory should also incorporate the
following requirements':
(1). The interaction of two particles should be the
same when they are alone or when other particles
are present at a large distance.
(2). Since a particle system may break up into two
or more noninteracting clusters, a dynamical de-
scription of the entire system must also contain
the correct Lorentz-invariant description of each
of the clusters. Coester constructed such a two-
particle interaction in the presence of a distant
third particle incorporating the above-mentioned

requirements.
In this paper, as our aim is to estimate the rel-

ativistic corrections to B.E./A of nuclear matter,
we shall confine ourselves to the lowest order
beyond the nonrelativistic case. In other words,
the correction calculated by Foldy' and Shirokov'
is the most suitable for our purpose. This approach
has a further advantage that one can easily identify
the phenomenological potentia1 and lump together
arbitrary functions of the internal variables re-
sulting from intergration. The remainder is a
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correction of the next order to this phenomenologi-
cal potential. For the sake of continuity we shall
present in Sec. 2, briefly, the calculation of the
correction as given in Refs. 2 and 3. The applica-
tion of these corrections to nuclear-matter calcu-
lations is presented in Sec. 3. The last section
contains results and discussion.

2. (e/c) CORRECTION TO PHENOMENOLOGICAL
N-N INTERACTION

For a single particle characterized by mass m„
spin s„momentum p„and position r„ the reali-
zation of the algebra of the IHLG (1.1) is achieved
when the generators are identified with the Hermi-
tian operators

problem of the relativistic extension now reduces
to a search for V and U such that C.R. (1.1) are
satisfied. To solve the problem up to the order
(v/c)', we begin with the expansibility assumption:

H =34 +H +H" + ~ ~ ~

(2. 5)

K=K +K"+ ~ ~ ~

with M =m, +rn, . In lowest order, the Lorentz
group reduces to the Galilean group, the genera-
tors of which satisfy the C.R. as given in (1.1)
except

[Jf' ff'] =o
(2.6)

H =H, = (m,—+p, )' =E„P=p, ,

J:—J~ =r~xp~+sq —-jpqx —+s
Bp~

PIK= K, —tpo, ——
p~ Po~ + pal~

(2.1)
Because of these commutation relations, Foldy'
has shown that one can take, without loss of gen-
erality, K to have the same form as in the case
of free particles, even though an interaction is
present. Thus one has

where Po, =&,. The generators for two noninter-
acting relativistic particles I and 2 are given by
the sum of the individual generators of the form
(2.1) in the direct-product Hilbert space. Thus,
using the subscript 0 to denote operators refering
to a system of free particles, we have

H, =pa, ,
2

P, =gp, ,

2

Jo=g J, ,

(2.2)

To introduce an interaction, one lets Ho-H with

H =Ho+ V, (2.3)

where V is a Hermitian operator. To maintain the
relativistic covariance, one must supplant H with

the operators P, J, and K such that the C.R. of
the IHLG given in (1.1) are satisfied. If, as in the
instant form of dynamics, one also demands P=PO
and J=J„' the C. R. (1.1) leads to

H = (1/m)(gP'+p )+ Vc,

K = 2im 8/sP,
(2.7)

where we have taken the equal-mass case rn, =m,
=m, p=-'(P. -p.).

[ V„K']=o (2.8)

and is independent of the total momentum of the
system. On substituting (2.5) in C.R. (1.1) and

using (2.6), (2.7), and (2.8) one gets in the next
order:

(a.) [P,a"]=[J,a"]=O,

(b) [J;,IP, ]=ie,,„K»,

(c) [li', a"]=[a',K"],

(d) [K;,K",]+ [K";,KG] = ie, , j,-
(e) [P,, Z; ]=i6,,H'. .

The equation (d) can be satisfied by taking the form
of K +K" as that of a, free particle.

[v, p]=o,
[v, J]=o,

(2.4a.)

(2.4b)
m 8P 2 8p 2

expressing the translational and the rotational in-
variance of V. In other words, if these commuta-
tion relations are valid, then parts of the C.R. in
(1.1) involving H, P, J are automatically satisfied,
and only those parts which involve K need further
attention. However, in view of the last commuta-
tion relation in (1.1), K cannot be identified with Ko,
but should be modified to K=K + U, where U is a
vector function of the dynamical variables. The

+—(o' —P) xp ~—(P+ v') xp

where 8' is the Pauli spin matrix for particle i.
But to satisfy expression (e), one should modify

Kf«, to

K'=K~,«+i Vc 8/BP. (2.9)

The vector nature of K" implies the validity of (b);
for (2.9).

To determine H", we note that Eq. (a) restricts
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H" to only those forms which are translationally
and rotationally invariant, and conservation of
total c.m. momentum and total angular momentum
is assured. From Eq. (c) one gets

-2im —,-a"(P, p, p') =
& P, pi[aoK"- K"ff']( P, p'}.

(2.10)

4
8~3 ~I 8~3 ~2 r (2.11)

Using Eqs. (2.11), (2.7), and (2.9), we get from
(2.10)

Since H", in part, should contain the kinetic energy
terms corresponding to those of the free particles;
we write

8V„(P, p, p') -1 P 1 8,8, 1,. I
8p m' 2 4 8p 8p I

' ' Sm'
=—,—+— (P.p) =+(P.p') ~ V(p, p')+, (-V(p, p')[i(o' —o')

xp'+ —,
' i(P+o 2) xp] +[i(o' —o~) xp+~ i(P+o'}xp] V(p, p')) . (2.12)

To solve (2.12), V„(P, p, p') can be split into two
parts V„= V„,+ V„„where V„, does not depend on
the total momentum P, and V„, reduces to zero for
P-O.

The operator V„, cannot be determined uniquely
from (2.12); however, it satisfies the nonrelativis-
tic condition (2.13). Hence we can always consider
it to be included in VG, which can then be identified
with the phenomenological potential

shape with a certain number of parameters to fit
the two-body data, which already include some
relativistic effects. This justifies our inclusion of
V„, in Vz and lumping our ignorance in the phenom-
enological potential.

Once this identification is accepted, (2.12) gives
a unique determination of V„,. Since we are only
interested in the corrections of order (v/c), we
can write V~ as a polynomial of second order in P:

= ~a+ VI. V„2 =P,A, +P; P)B,, . (2.13)

This identification is the result of our inability to
have a theory which gives the shape and parame-
ters of a two-body potential from first principles.
At the present time, one only takes a particular

Substituting (2.13) in (2.12), one can uniquely de-
termine A; and B;; by using the fact that VpI„, and
V„, satisfy (2.4b), i.e., they are invariant under
rotation in three-dimensional space. This leads to

Vra(p, p, p'}= a P'+-. (P p} P = +(p p') p -, Vs~en(p, p')4m' Bp Bp

+
3 [Vp&„(p, p')i(o —o ) ~ (p xp') —i(o' —o ) ~ (p xp) Vpa„(p, p'} ] . (2.14)

The operator V„, does not satisfy the Galilean in-
variance and contains all the relativistic correc-
tion up to (v/c)' needed for the Phenomenofogical
potential.

3. CALCULATIONS OF CORRECTION TO B.E.jA
FOR NUCLEAR MATTER

I

of by the very nature of the determination of pa-
rameters from the two-body data. This operator
~V is a nonlocal integral operator. To apply this
correction to estimate its effect on B.E./A of nu-
clear matter we use Tabakin's potential.

(3.1)

From the analysis of the earlier section, we
note that the correction term 4V=—V„2 given by
(2.14} is completely determined once the phenom-
enological potential V=—Vp~„ is chosen. The cor-
rection term vanishes in the c.m. system of the
two-body system (P=0). However, it does not in-
clude all the corrections of order (v/c)', but those
it does include are the only ones required for the
phenomenological potential, which has already a
part of the (v/c)' correction effectively taken care

where & =h /m, m is the nucleon mass, u denotes
the quantum numbers JTS for the two-body system.
Further, the function 'JJ„z,(P) is a normalized eigen-
state of the total angular momentum J with ~ com-
ponent I, and is
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&4'(P) = Sg+$(P)PT

=pc(l.sz; m„M m, )-y „(p)x,

The function Xz& is a total spin state, and I'&
is a projection operator for total isospin T and z
component T, for the two-body system.

The total correction to the phenomenological
Hamiltonian for the two-body system, up to second
order in (I)/c), is

(3 2)

where the correction to the kinetic energy is

AT = (-1/8m')(p, '+p, ')

where the summation over (ilv) implies summa-
tion over spin and isospin states only, and p~, p,
p are the exchange operators in ordinary, spin,
and isospin space, respectively. The reduction
(3.5), is achieved by making use of the fact 5(P-P')
-fi/(2v)' and Qq -0/(2&)'Jd3pqg(), ). At this stage
we fll'st pel'fol'111 'tile P llltegl'a'tlon ln (3.5), ills.
details of which are given in the Appendix. These
integrals are

PP P' = 2'vn, '& P'&,„,
l P~' P I=k~

3 - - 8I,= d9(P p) P =
)p~&P )~k ep

and to the potential energy in momentum space,
using (2.14) and (3.1), is

(p, )iia)'Ip, )i&=a . )a+-*'()'5)()'&)

+l(p )I')(P', -,
Bp

+-'[&pl Vip'&f(o'-o') (Pxp')

-f(o'- o') (»&p)&pl Vlp'&]

(s.s}

=a' a 'i()' (i)'),„{)I=Bp

I, = (f'P o (P xp) = 0
tp~l PI-k&

(s.e)

(3.7)

Without being too unreasonable, we expect this cor-
rection to be sma11 enough, and treat it perturba-
tively in the first-order Hartree-Fock approxima-
tion. Kith this assumption, the contribution of
(3.2) to B.E./ai of nuclear matter is given by

—=-—I~'+a& ' Z &~~IAVlu~ ~u&. (3.4)A 56

The symbols p, v denote the single-particle states
below the Fermi sea with Fermi momentum kz.
The states are characterized by the product of
plane wave, spin, and isospin states for infinite
matter. The number of nucleons & in the normal-
Izlng volllxlle 0 ls given lly (2kl) /sv )Q. Tile fll'8't
term in (3.4) arises from the contribution of the
kinetic energy correction AT in (3.2), while the
second is due to A V. In Eq. (3.4), we have usedI= m = 1. Therefore, (K4/m'c'} = 1.835356 +8V fm'
is the required factor which should multiply (3.4)
to get the energy per particle in MeV instead of
the usual factor 41.497.

The second term on the right-hand side (R.H. S.)
in the expression (3.4) can be rewritten.

,, '„,P (xp If a'pa*.a'

{pv)

x& P, pl A V(1 —p'p p') I P, p& I&@.&

(s.5)

Thus, the integration over P leaves us with the
terms which, at the most, involve the derivative
with respect to the magnitude of P, and no spin-
dependent terms survive. The exchange term,
therefore, gives as usual the same contribution to
the summation in (3.5) as the direct term. Follow-
ing a similar procedure to that in the work of Ta-
bakin7 we finally get

ky + g (2ar+ 1)(2T+ 1)f girl, ) (3.8)

4. RESULTS AND CONCLUSIONS

To calculate AE/at as given in (3.8) we have
taken only two-body forces in ~, P, D, waves only.
The correction to B.E./4 for the saturation value
of the Fermi momentum k+=1.36 fm ' is found to
be +0.50 MeV. This seems to decrease B.E./at of
nuclear matter in the first-order Hartree-Fock
approximation. Further, the saturation value of
B.E./ai to first order becomes -7.1 MeV instead

k~
4srl, =«dPP'I&P'&a. fi'I, (PIP}

+P&(P p)'&.,dpfgi"(PIP')I, =p].
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of -8 MeV as quoted in Ref. 4. The continuous
curve in the figure shows the new results for

FIG. 1. B.E./A (in MeV) versus kz (fm). The continu-
ous curve represents present results, and the dashed
curve represents Tabakin' s first-order results.

B.E/& versus the Fermi momentum, and reflects
the importance of the correction for higher values
of the Fermi momentum. Most of the correction
from the potential term arises from (P2)», which
accounts for 95'fo of the total correction. The sign
of the numerical result would not have been possi-
ble to guess a Priori, as the contributions from
I2T and the second term in (3.3) are opposite in
sign to that of P'. The correction considered here
is completely different from the one calculated by
Brown, Jackson, and Kuo. ' As a matter of fact,
one should perform a self-consistent calculation
using Brueckner-Bethe- Goldstone' theory. But
these calculations will involve enormous amounts
of algebra, since in the second-order calculation,
there will arise a tremendous amount of coupling
between different partial waves because of the pres-
ence of o and derivative terms in (3.3}. But a
crude calculation, taking average values of the
total momentum and assuming that the (P'}„term
is dominant, gives

~/A = -0.336 —e ( P')» x ',",' & (-36)= +0.52 Me V.

Finally, we cannot guess the sign of the applica-
tion of this correction to other potential models
involving a hard core.

Finally, the author would like to thank Profes-
sor A. H. Morrish and Professor K. G. Standing
for providing the facilities to do this work, and
for their constant encouragement.

AppENDIx

To evaluate the integrals

I, = d2PP', I, = deP(P p) P —,I, = d'Po (P&p),
i P+l P I—~g I P+3 P I-&P- [ pe'. P

~
-2„

we shall take p along the z axis and make use of the property of the step function.

(A. 1)

1 " e'" 1 for n&08u =
~ T

2rri „r—ie 0 for n&0 '

This allows us to write

(A. 2)

d p dP+2. . . d cos 8p&

where 8» is the angle between P and p. Thus, we have

xexp(i(u, [k~2 —(p+ 2 P}2]+i&a [k~ 2(p 2—
2 P)']]. ,

(A.3}

I, = d2PP'= dePP2 . , ' ' exp(i&u, [kz' —(p+ —,
' P}']+i~2[k+' —(p ——2'P)2]],

~
pet p)~2 over ( v2) ~ ~1 ~22

who'
space

= 2v dP . 2
' ' dy exp [i(&u2 —u,)I2py e]xp(i(ur, cu )+[kz2P2

ep2])2-
o 2W2
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dPP k~ — P —~P — k~ —P+~P 8 k~ — P —~P 8 k~ — P+~P

+2[k''- (p'+ 'P')]-8(kz' p'--'P') -[8(kz'-(p —zP)')~(kz'- (p+kP}')).

Thus if we define o. =kz' —(p ——,'P)' and P =k~' —(p+-,'P)', we have

k2 . 2 &P2
), 4&)')"=&(a)&(P) ~ '

~
'

&( 2
)l&(~)-&())I)

0 Pp

Now we shall make use of the property of the 8 function which yields

8(n) =8((k~-p+ ,'P)(k~+-p ——,'P))=1

when both (kz- p+ ,'P) an—d (kz+p ——,'P) are positive. This is true for kz+p & ,'P beca—use the other factor
(k~- p+ ,'P} is a-lways positive as k~&p. Similarly, we have

8(P) =8((k -p —,'P)(k +p—+,'P))=1 -for k -p ~P

as the other factor is always positive. This leads to

2(&&-&)
dP 8(n) 8(P}- dP

0

because the arguments of both 8 functions are positive in this domain. Further

8(kz' P'- cP') =-8([(kz'-P') '- 2P] [(kz'-P')"'+kP] )=1 «r (kg' P')"'-kP, -
as kF &P makes (kz'-P')' '+ ,'P always p—ositive Ther. efore the remaining two integrals are

~+p & g

as a is always positive in this domain; and

QPg gP - dP,

since the first 8 function requires (kz —P )'I2 & ~P, whereas the second requires kz-P & ~P and (kz'-P')'~2
&k~-P because k~&P. Finally we have

I -4~ dPP4 N P' " ~ ' yPP4

=4& HAPP + dPP

The expression (A.6) can be recognized as the one often used for an angle average approximation in the
nuclear matter calculations. However, the technique employed permits easy extension to the cases which
involve complicated dependence on the magnitude as well as direction of the c.m. momentum. For example,
the f, integral in (A. l) can be evaluated by writing

This reduction was possible because we have taken p along the ~ axis and y~ integration yields the result.
Thus

2m dPP', , ' ' exp[i(&u, +(,)(k„'-p' ——,'P2)] dy Ppy exp [i(u), —~,)Ppy ] p ~ p2.
27f2 (d &(d2 Bp

performing the integration over y, and then over u„m we get
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f, =4~ d~~' e(n)S(P) »p 2 (lp)' a (~p)'

)i
n+P 1 n' —P' 1 (n+P)(n'+P'+-, 'nP)
»p 2 (~p)' 3 (f.f)' ' sp

=—~k' 1 —— 1+—— p— (A. S)

Similarly, one now sees that the third integral (A. 1) is zero.
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Electron scattering experiments from oriented nuclei have so far been carried out for one
heavy nucleus only, that of holmium. Scattering from light nuclei has the advantages that the
elastic scattering is unencumbered by unresolved low-level excitations and that the small distor-
tion of the electron wave function renders orientation effects relatively quite pronounced despite
small quadrupole moments, thus permitting the use of the Born approximation. Assuming 100'fp

alignment, we calculate large orientation effects for elastic and also for inelastic scattering
from oriented ' B, as well as for 180' magnetic elastic scattering; for more realistic align-
ments we predict easily measurable effects.

I. INTRODUCTION

The first experiments on elastic electron scat-
tering from intrinsically deformed nuclei' (Hf, Ta,
W, Th, and U) indicated a departure from the usu-
al diffraction pattern. This departure was a filling
in of the minima and was ascribed to the form fac-
tor of the quadrupole part of the charge distribu-
tion. A theoretical calculation' for "'Ta con-

firmed this conjecture and, by fitting the experi-
mental data, led to a value for the intrinsic qua-
drupole moment Q, = 10 & 10 "cm', in rough agree-
ment with spectroscopic and Coulomb excitation
values. Characteristic features of this calculation
were a.s follows: (a) Since the Born approximation
was deemed too inaccurate for such heavy nuclei,
a high- ener gy distor ted- wave Born approximation
had to be used; (b) these deformed heavy nuclei


