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Projected Hartree-Pock states are used as a representation in calculating nuclear wave func-
tions. The rotational energy is determined consistently through J(J+ I)/(J ), and the moment
of inertia thus obtained is compared with the expressions of other authors. The formulas of
Peierls and Yoccoz and Thouless and Valatin yield approximately the same results as ours, but
all of these formulas exhibit discrepancies with the Inglis independent-particle cranking-model
formula. We find that the spurious state J„)Q) plays a dominant role, in agreement with Baner-
jee, O' Oliveira, and Stephenson. Interesting observations are made for the case of the soluble
SU(3) model of Elliott.

I. INTRODUCTION II. REVIEW

Much has been written about the cranking mod-
el, ' ' and the resulting formulas for calculating nu-
clear moments of inertia, d. Much has also been
written on the projection method, or the Peierls-
Yoccoz (PY) method, ' '0 which leads to very dif-
ferent formulas for the same parameter. In this
work we study the relationship between these two
methods and their corresponding formulas.

We find that, by a logical extension of the PY
method, we can obtain a cranking-type formula for
the rotational energy which is consistent to order
J(8+1)/(Z') . At the same time, we see that the
new formula provides approximately the same val-
ue of 8 as that obtained from the PY formula. We
find that the spurious state, 4 J„~g) (~P) is the Har-
tree-Fock ground state), plays a dominant role in
determining the moment of inertia. This is in
agreement with Banerjee, D'Oliveira, and Stephen-
son. ' Under these circumstances, the self-consis-
tent cranking formula (not the Inglis formula) and
the PY formula give the same results, but the PY
formula displays more explicitly the importance of
the spurious state. This feature is obscure in the
cranking formulas and lost completely in the inde-
pendent-particle Inglis formula.

Before presenting our results, we briefly review,
in Sec. II, the essential aspects of both the crank-
ing and projection methods. This will serve to
establish our notation and provide a reference for
comparisons in later sections. In Sec. III, we dis-
cuss the extension of the PY technique, which al-
lows us to develop the link between the cranking
and projection methods. Finally in Sec. IV, we
present the conclusions to be drawn from the re-
sults of Sec. III. In order to facilitate reading we
have relegated several of the crucial proofs to Ap-
pendices at the end of the article.

We beg.'a this brief review with a discussion of
the cranking model. This work is generally associ-
ated with the names Inglis, ' and Thouless and
Valatin. ' The cranking model is a semiclassical
approach which assumes that the nucleus under in-
vestigation has a static deformed shape and that it
is rotating with an unquantized angular velocity cu

about a fixed axis, e.g. , the x axis.
The time-independent Hamiltonian in the rest

frame of the nucleus is

H =H —cokJ„,

and the wave function associated with H, iP ), is
the intrinsic wave function. The total energy of the
rotating system is then

(11.2)

and for small ~ this would have the form

(II.3)

Clearly, the moment of inertia may be extracted
by determining the coefficient of —,aP in the expres-
sion for the total energy.

One method" of obtaining a formula for s makes
use of

One then takes the Hartree-Fock (HF) solution for
H as a zero-order approximation to ~Q ), and
treats &uliJ„[see (II.I)] as a perturbation in obtain-
ing (Q ~H~g ) . To lowest order this leads to

(11.5)

where iso) is the HF ground-state solution for H
and where ~o) and E are states and energies in-
volving 1p-1h excited HF configurations; the sub-
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script GI denotes this expression as the "general-
ized Inglis" formula.

In the following we consider the case that lp,&,
the HF wave function, is symmetric about the z
axis; that it has J,=O; and that it has the follow-
ing time-reversal symmetry,

E (phlrlp'h')&p'h'I J.Ie.&

p'h'
= E (phlAlp h')&p'h'I J.I~.&,

pC pl

or more briefly

(II.15a)

(II.15b)

(II.6)

It is convenient to define the matrix I' as (H —E&)
in the space of 1p-1h excited HF configurations,
l, e. y

(phlrlp'h')—= (phl(H E@)l-p'h') . (II.7)

In the following we shall also use the symbolic no-
tation,

(phl». Iy.&
= E (phlrl p'h')&p'h'I J.Iy.& . (».6)

p'h'

Then, the expression for 8 in Ecl. (II.5) may be
concisely written as

e„=2@(@,IJ„r-'J„ling . (11.9)

Under the assumption that H is an independent-
particle Hamiltonian, Inglis obtained the cele-
brated formula,

ph ep —~h
(II.10)

where F is a one-body operator whose matrix ele-
ments are determined variationally from

(II.11)

This formula has also been used with HF solutions,
where the e~ and ~h are taken to the eigenvalues
of the HF Hamiltonian. (Note the distinction be-
tween using HF eigenvalues in the denominator
and using I' '.)

A more self-consistent treatment of the crank-
ing model is due to Thouless and Valatin. ' "
They set

a relationship to be used later.
Now we turn to the Peierls-Yoccoz, ' or angular

momentum projection, ''" method. Here, one tries
to find an approximate wave function for the full
Hamiltonian. Such a wave function must, of
course, have J as a good quantum number. One
starts with the HF ground state of H, lg&, for
which J is not a good quantum number, and does
a Hill-Wheeler type of integral over the direction
of the symmetry axis of Ig&, using as a weighting
function S~,*(Q),

, fdic&„', '(o)z(u)~~g, ) . (II.16)

) (@IP lp&
(II.18)

If the spectrum is rotational, we would expect

E =E'+(5'/2f)J(J+ I)+. . . . (II.19)

Yoccoz' obtained an expression for 0 by evalu-
ating E in the approximation of large nuclear de-
formations and large (PIJ'lp&. The important
features of this type of calculation are given in
Appendix A. He obtained

&y IJ, (H —E,)J, ly&

The integral goes over the three Euler angles n,
P, and y represented by 0, with

(II.17)

The integral in Eq. (II.16) may be summarized by
P„„and it can be shown that P~, projects out of
lp, & the component having good angular momen-
tum J.

The method for determining e involves finding

This leads to the Thouless-Valatin formula, which
has the form

,J(J I) (el J.(H E.)J.I~&-
(II.20)

~„=2n &q, I J„(r+A) J„Iq,&,
-

(II.12)

where I' is defined in (II.7) and where A represents
the matrix elements of JJ between the HF ground
state and 2p-2h excitations,

52 52
=E~ — (J ) + J(J+I),

2&p~ 2gp~

from which the Peierls-Yoccoz formula for the
moment of inertia, s», may be extracted;

(ph I
& lp'h') =- (ph, p'h'IH

I e.& .

By considering

(D.ls)
(Il.21)

(phlIH, J„]If'=0, (II.14)

it can be shown' that for axially symmetric I&]&,&,

This formula has an appearance entirely different
from the corresponding cranking formulas in Eqs.
(II.9) and (II.12). It will be the purpose of Sec. III
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to reconcile this difference, and to provide a
better understanding for all forms.

III. EXTENSION OF PROJECTION METHOD

We have extended the projection method in an at-
tempt tp improve that approach' " ' and, at the
same time, to find a link between it and the crank-
ing methods. Our work is discussed in this sec-
tion and related Appendices.

In the original projection approach one takes

where the subscripts on P~o have been suppressed.
We improve the wave function by considering

If we require that

&0 IP'(H —H') l0'& = o,
and use (III.6) in (III.7), we obtain

where from (II.18)

We then find

(IIL 9)

I@'& =-P
I@& + IR & . (nI. 2)

We take the correction IR "& to lie in the space
spanned by the set of vectors

where the set of states (Iy, I&} includes all 1p-1h
excited configurations of the HF ground state con-
sistent with

&R'IP'I@& =o. (III.3)

&ply'Iy&»z(z+I). (nr. 6)

This is required to allow us to evaluate angular
integrals by considering only the contributions
from very forward or backward angles. This as-
sumption limits the validity of our results to
states E, with relatively low J; but these states
are, in fact, the only ones for which the concept
of a J-independent moment of inertia is valid.

We evaluate AE„ in two forms which are quite
different in appearance, but which we believe are
equivalent in value. The difference between the
two expressions lies in the representation we
choose for the operator, g~, which projects onto
the space spanned by (P~ly, +1)}. Using w~ we have

IW'& = P 'l 0»+ v'l 0'& . (m. 6)

(Since P ly, -1&~P~Iy, +1),8 the space in which

IR ~& lies also is the space spanned by (P Iy, -1)}
and we could have as well considered that set of
vectors. ) Using the perturbation approach dis-
cussed below, we find the change in the energy E~,

EpY

which arises from the correction to the wave func-
tion. If we were to have included within IR~& terms
of the form P~ ly', J,& 1&, these would not affect in
lowest order the terms in AE~ which go as J(J'+1).

In the algebraic steps to be discussed below we
assume that the ground state Ip& is highly deformed
and that

The two representations for g which we use are
developed in Appendix B where we obtain the fol-
lowing:
(a) For the first form,

~ P'Iy, 1&&y, IIP'

where fly, 1)} includes all J, = 1 states consisting
of 1p-1h excited HF configurations with

(III.10)

&,, I i~, I@&
= 0,

&y IIHly' 1& =6„&ylHly& .

(b) For the second form,

(III.11)

(III.12)

(III.13)
&u, 1 IP~ Il, 1&

where (Iu, 1)} includes all 2, = 1 states consisting
of 1p-1h, 2p-2h, and 3p-3h excited HF configura-
tions with

&s, I le, ly& =0,

&, Il~„~'ly& =o,

(N, 1 IH Iu', 1) = 5„„,&u IH Iu& .

(III.14)

(III.15)

(In. 16)

(m. 17)

, ~ &y IP'HIM&&ulP'I@'&

&MIP'Iu&&@ IP'Iy&
(III.18)

To evaluate &ylP lg ), we require

&yIP'(H-z')Iq'& =o,

which provides

(III.19)

We will suppress the J, = 1 index in what follows.
Comparing Eqs. (III.10) and (IIL13) we find that the
sum in the latter covers more states by including
2p-2h and 3p-3h configurations but that this in-
crease in the number of terms is compensated for
by the factor of 2 which is justified in Appendix B.

Using these forms for v~ in Eq. (III.9), we find
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&ylP HP lg& + &ylP" (H —E )0 & =0. (III.20)

We now assume H is nearly diagonal in P~ly&, so
that

&r IP'(H -E')P'lr&&ylP" lv'&

Combining E(I. (III.21) with (III.20),

&r IHP'le&
(&r IHP'lr& /&r IP'Iy& -E") '

(Ill. 22)

(III.21) so that

&y IP'Hly&&y IHP'ly)~ &@IP"l@&&rlP'ly&(&rlHP'Ir&/&ylP'Iy& -Ep~)
'

In a completely analogous manner

(III.23)

&@IP'le&&slP'ln&(&sl»'ls&/&slP" ls& -E' )
(III.24)

In the remainder of this section we evaluate the
factors of which 4E~ is comprised, using various
approximations. We sketch this development in
soxne detail for ~F.~~, treating each factor in turn.

1
We can then follow the same lines in obtaining
AE"

2

A. Evaluation of gg&~ and &1

Consider first the factors &PIP lg& and (ylP" Iy&.

We have

&( la" I (» = (N 1&f &+Ale
' 1(»d', (P&singdP,

0

(III.25)

&ylP ly&
= t &yle

'"
lr&df, (p)sinpdp.

0

h'
&& -&Z'& +~(a+I)—

2g

Assuming 8 =8&, we obtain

(III.32)

I'
Denom. =E —E ——= (ylH -E ——

Ir& .
y 0 2g 2g

(III.33a)

S'
In what follows, we ignore

2
relative to E& -E&,

to obtain

=E — &Z'& + Z(a+ I) -1,
ly

(III.31)
which gives

S2 8'
Denom. = (E z

—E&)+ 2 t[

(111.26)

Using the approximations outlined in Appendix A,
Eqs. (A6)-(A9), we obtain

(III.27)

Denom. =
&y IH -E & Iy& .

Finally, consider (yIHP~IP&. We take

&r IHP'I@& =& &r IHI»0& IP'I@&,

(IIL33b)

(III.34)

Using similar approximations for &y IP~ Iy&, we

have, to lowest order in 1/&J '),
where (IX&) is a complete set of states. We have

(LIP lg& =(2J+ 1)Jt 0&le ' l(((»d(0(p)sinpdp,
0

&rlP'Ir& =2 d. -=4& tIP"(I&t».

Therefore,

&0 IP'l0'&&rIP'Ir& —= '&@IP'I@&'.

Consider next the energy denominator,

&r IHP' Ir&Denom
& I I &

E„. -

(III.26)

(III.29)

(III.30)

(III.35)

which we evaluate by making small-angle approxi-
mations' "similar to those presented in Appendix

A, i.e.,

&&le
'"

lp& =-0 I-'~, lp&&Ale
' '

lp& p; (IIL36)

d,".(p) -=--'[~(~ I)]"'p. {III.37)

In analogy with the Peierls- Yoccoz development

shown in Appendix A, we take
Putting E&ls. (III.36) and (III.37) into (III.35) and con-
sidering (III.27), we obtain
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(111.38)
Putting (III.38) into (III.34),

&c lif~. le)(@0"le) .
I z(z+ I)]"'

(111.38)

or equivalently

(111.48a)

Since we have chosen I» such that

we are at liberty to take

(111.4O)&rl&~, I@&= &~I(II -Eg)~, IV)

Combining all of the factors to form 4E~~, we
)

have

2
J(Z+ 1)

sr (g 2)2

„~&el~ (If-E.)l»&~l(II-E.P, I~&

(III.41)

In order to carry out the sum over y in Eq.
(III.41), we put

&~l(II -E.P, le&

&~l(II-E.)I»
into a different form. We have defined the operator
I' in Eq. (11.7) as H E& in the s-pace of 1p-1h ex-
cited HF configurations, and I" ' as the inverse of
I'. Considering the condition (III.11),

(111.48b)
Combining 4E~~ with Ep~, we obtain for the

1
inertial parameter

, ;&r'r) rrrr. r6)
&@I~„i-V„lq&

This expression is neither of the cranking form
nor the projection form, but rather a combination
of both.

B. Evaluation of AE&"2

The difference between 4E~~ and hE~~, as given
1 2

in Eqs. (III.23) and (III.24), is that in the 1atter,
2p-2h and 3p-3h configurations are included in the
summation while the entire sum is multiplied by 2.
We may evaluate ~E~ exactly as was done in the
case DER~, and we obtain

1

Z(Z+ 1)
R2 (g2)

~ &@Iz (e-E,)l )( I(a-E,P, ly)
(ul(a-E, )lu&

(III.47)

we find

(III.42)

We use a technique analogous to that used for
HEI, for reexpressing

( l(II-E.P, ly)
(ula-E~lu)

where I'„ is the unit operator in the space of Ip-Ih
configurations,

Here we consider

(III.48a)

I
+ ~+ IA&&rt'l~-

ph r + (g2) (III.43)
&ulgr, z2ly}=0, (III.48b)

Combining (III.42) and (III.43) and considering
(III.12), we obtain

where

(III.48c)
&~IP '~, l~&«'&

(~li I» (yl~ I -'J,
I@&

Putting Eq. (III.44) into (III.41), we obtain

«, 2J(~ 1) m &~l~-~l»&~l~-'~, l~&

(111.44)
Let us define the operator f' as II -E& in the space
of Ip-lh, 2p-2h, and 3p-3h excitations of the HF
ground state. Let I,' be the unit operator in this
space,

(111.4S)

Summing over y and using Eq. (III.43), we obtain (IIL49)
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and let l ' be the inverse of F. Then from Eqs.
(III.48) and (III.49) we obtain

""'"'
&qlJ f- J„I4»(I+5)

Eq. (III.54), which we now denote by

~Fw=@'&(t'I J.l' 'J. 14» .

This has the appearance of a cranking form.
Under the assumption of Eq. (IIL57) we have

where

(III.50)
&Fw =—@'&41J.I' 'J. I4& (IV.2)

which should be compared with the generalized
Inglis cranking formula

&el J f 'J, I@-&(@lJ'J ef 'e,-J'Iy&

We assume 5 «1, and so obtain

(III.51)

(IV.3)

It is clear that the two formulas differ by a factor
of 2. This will be discussed below.

Under the assumption of Eq. (III. 57) we have

~P Y ~FW (IV.4)

2(41J„I'-'J„14» 2(J„')'

(III.52}

Combining 4E~ with E» we obtain
2

h' 1
2~, 2(41J„r-'J„ly&

(III.53)

This expression is indeed of the cranking form,
with

~, =h &( IJ„I —J„lq&. (III. 54)

It is instructive to equate the results for AE~~

and 4E~~ . This leads to
2

h' 5' 1 1
(@IJ.I' 'J. I4»

(m. 55)

Consider now

We thus find that the value of eF w is about equal to
the value of e», even though the terms added to
the wave function have radically changed the form
of the expression.

From ep„= sFw, we find that J„lg& is approxi-
mately an eigenfunction of F. This is discussed
in Appendix C. A similar result was obtained by
Banerjee, D'Oliveira, and Stephenson' from a com-
pletely different point of view. We make two re-
marks here concerning J„lg&. First, it is the col-
lective state which is said to be "spurious" in the
Tamm-Dancoff approximation. 4 Second, the eigen-
values (Q I

J„I'J„lp&/(J, '& are found by Banerjee,
D'Oliveira, and Stephenson' to be lower than the
smallest independent-particle energy difference of

—eh in the corresponding nuclei.
P
We noted above that our formula differed from

the generalized Inglis formula by a factor of 2,
We now wish to compare our formula with the self-
consistent cranking formula of Thouless and Vala-
tin,

IJ f-iJ
1~& g 1&@IJ.I~&l'

X X (III. 56}

The dominant contribution to this sum over e
comes from the low-lying states of I' and the
states which are predominantly composed of 1p-1h
configurations, because of the overlap I(Q I J„ ln&1'.

It seems reasonable to assume that these states
will correspond very closely to the low-lying
states of I". In that case

e» = m'(y
I J„(r+ A) 'J„

I y& .

We have stated above in Eq. (II.15) that

rJ„14» = m„14» .
If J„ lg& is an eigenstate of I', then

g„—= 2e'(4
I
J„(2I')-'J„

I y&

=-a'&(t
I
J„r-'J„

I y& .

(IV.5)

(IV.6)

&q I J„i J„ I q& = &q
—

I J„~ J-„
I q& . -(m. 57)

We shall assume Eq. (III.57) and investigate its
consequences in the following section.

IV. CONCLUSIONS

We have extended the projection method by the
addition of a term IR~& to P~ lg& so that the resul-
tant rotational energy is consistent to order
J(J+ I)/(J'). The moment of inertia is given by

, 2„.g l&elJ. lph&l'

ph ~p ~h
(IV.7)

would seem to be faulty on two counts. First, the
factor of 2 tends to overestimate e. Second, the
particle-hole energy denominator ignores the low-
lying collective state J„ lp& and tends to underesti-
mate f. These two effects, however, are in op-

This is in agreement with our result.
The Inglis independent-particle cranking formula,



898 W. A. FRIEDMAN AND I . WII ETS

posite directions and tend to cancel. It is shown
in Appendix D that for the case of a two-body po-
tential of the form

Z xV, &,(-)"Qg„Qg „
X even

P

(IV.8)

From the definition of P, we have

(A3)

these two effects cancel identically if we can ig-
nore exchange terms in the potential. Then

~~GI ~I P Y ~TV ~F W '

1
exact

(IV.10)

Such a situation occurs for the case of the Elliott
quadrupole-quadrupole force. " With this force the
exact solution is

t
m/2

&x(P~)y&=(2J+1) I dp&~le ' l)t»d.".(p)»np
0

(A4)

(al 'tie&=)at))J aa&ala " la&Ci)&)a )&

(A5)

Because of the symmetry of ~g& the integral need
only be taken over the range 0 & p & v/2. With high-
ly deformed nuclei, for which

and ignoring exchange it is shown in Appendix D
that

&J.'&= «, '&=-.'&J'&»1,

one takes' ' "
(A6)

1
pv (IV. 11) (A7)

&ale
' '

~t&)&&—= 2'(zlJ '~4)&p e '~'& x &)' . (A8)
It is possible that the relatively good fits to the ex-
perimental moments of inertia in the rare-earth
region, obtained from the independent-quasiparticle
analog of the Inglis formula, "may also owe their
success to this cancellation.

The cranking model and projection method give
similar results (for low J and large &J') ) provided
the cranking method is used self-consistently. This
last refinement can change results by a factor of 2.
Since it seems that J„~tt)& is in fact nearly an eigen-
function of I, the sum over states in the Thouless-
Valatin cranking formula is dominated by this one
collective state. Because of this, the Peierls-
Yoccoz form appears more straightforward than
the cranking-model form.

It seems appropriate that the collective state
J„~g& should be important in determining the col-
lective parameter e, since one generally argues
that this state must be removed in calculating ex-
citation spectra, as it represents some motion of
the nucleus as a whole.

APPENDIX A. DEVELOPMENT OF THE PY MOMENT
OF INERTIA

We start with

d:.(P) -1 'J(J+1)—P'- (A9)

Inserting Eqs. (Av)-(A9) into (A4) and (A5) one
obtains

&elJ, (ff E,)le&

,JJ„&@IJ,'(ff-E.)le&

In (A10), J„'or xJx may interchange with J, '.
(A10)

APPENDIX B. w ',OPERATORS

1. Development of ~~

We assume the HF ground state ~)t&) is such that

(B1)

Since all the particles contribute to the diagonal
elements of J', we assume the 1p-1h excitation of
the ground state will have essentially the same
diagonal matrix elements,

Due to Eq. (A6) the largest contributions to the in-
tegrals of Eqs. (A4) and (A5) come from P =0, and
for low J we need consider only the small-angle
expansion,

(A1) &0 I
J'I@&=—&phI J'lph& . (B2)

where

(A2)

We also assume that, for all state ~r& consisting
of J, = 1 mixtures of 1p-1h configurations (with the
exception of the collective state J, ~Q&),

The J-dependent terms are evaluated by consider-
ing

&r I
J'Ir& = &@ I

J'I@&»1
With this assumption it can be shown that"

(B3)
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&r IP'lr& —= J. ==- &r'IP'lr'&, (B4) Using the following expressions for the matrix ele-
ment of P,

&r IP'Ir'& =——J. ~ &r I
J'Ir'& (B5) &r IP'Ir& =— (B16)

&yIP" lp& = J, [ J(J+ I)]"'&r I J+ I@&

To insure &y IP lp&
= 0, we take (y I J+ l&p&

= 0.
i,et flu&) span the space of ip-1h HF excitations

which is orthogonal to J, lp&. Choose this set such
that

Then from Eq. (B5), for tc~x',

& IJ2I 2)

&r'IP'Ir& =—-&rlP'I»

and assuming

&y I
J'Iy& = &J'& —= &nl J'ln&

we obtain from Eq. (B15}

(B17)

(B18)

(B19)

&xl 'l~ &=o. (B8) g P I,&

&r'I "Ir& gP I„&&
IP" Ir&

Therefore, to the extent of our approximations the
set of vectors (P~ Ix&) is orthogonal, and conse-
quently (B20)

~P' x)&xlP'~
&x P'I &x

Using Eq. (B4) we then find

&r IP' Ir&

(B8)

(Bio)

Finally, including y in the sum over y' in Eq.
(B20), we obtain

gp I,&

&r'I 'Ir&

&rl

flyby&=

,5, „&ylHlr&. (B11)

2. Development of g

Consider the state P J'2ly). Then

P J'ly)= J(J+1)P Iy), (B12)

P'J'Ir& = Z P" lr'&&y' I J'Ir) + 3P' ln&&nl J'Ir&,
fl

(B13)

where (Iy'&) is a. complete set of states spanning
the space of 1p-1h (J, = 1) excitations of the HF
ground state, and (In) j is a complete set of states
spanning 2p-2h and 3p-3h (J, = 1) excitations. The
latter are reached by the two-body operator J'.
Combining Eqs. (B12}and (B13)we obtain

[J(J+1)—(rlJ'lr&P "Ir&

= Z P'Ir'&&r'I J'Ir&+ZP'ln&&nl J'Ir& .
n

(B14}

Then assuming J(J+1)/&yl J2ly& «1,

P'I» -=- Z P'ly'& ' I

where {Iy)) is any orthogonal set of states spanning
the same space as {Iz&). In particular, one may
take the set (Iy&} such that

(B21)

, ~ P" lu)(u IP'
(u IP' Iu)

(B23)

In particular, we can choose for the set of states
jlu&) one such that

&u lulu'& = 6„„,&ulelu& . (B24)

APPENDIX C. EIGENFUNCTION OF F
%'e prove here that

(C1)

If we wish to restrict ly) to states such that
&ylP IQ&=0, we may choose for the states (Iy&j
those ip-1h states orthogonal to J, lg& and orthog-
onal to the 1p-1h component of J,J'Ip&, and for
the states ]In&} those 2p-2h and 3p-3h states orthog-
onal to the corresponding components of J,J'IQ&.
Let [Iu&) be any orthogonal set of vectors spanning
the space of all 1p-ih, 2p-2h, and 3p-3h (J', =1)
states orthogonal to J, Ig) and J,J'IQ&. Then,
assuming

(B22)

we obtain from (B21)

J2
(B15) implies that J„lp& is an eigenstate of I'. Equation

(C1) may be written



900 W. A. FRIEDMAN AND L. WILETS

&~lr lo'&&~lr 'l~& —l&o'l~&l'=0

Assuming I' is Hermitian we obtain

(C3)

I'=Q Ix,.&+,.IE, , (C4)
i

where E; )0 and {IX;&) is a complete set of vectors.
Putting (C4) in (C3),

(C5a)

(C5b)

All the terms are positive. Therefore if I(nlrb, ,&
I'

&0, then I(o. lx,&l'=0 for all i&0, and thus

(C6)

&@IJ„rJ„I@&&plJ„r 'J-„ly&= l&@IJ„'ly&I'. (c2)

For convenience let us write J„lp& as Io&. Then
(C2) becomes

(phlAlp'h')= v. 2 (-)"(phlq „le&&p'h'Iq -„I@&,

(D10)

Q (phlr, lp'h')(p'h IJ, ly&
p/ hl

=v. Z (-)"&phlq „l@&&4IQ -„J,IA&
piX

= (phlr, J, Iy&,

& &@IJ.lp'h'&(phlAlp'h'&
pl/I

= v. Z (-)"&phlq. „ly&&yl J,q. -„l@&
ti ~ X

= &el J,Alph). (D12)

Now, consider the tensor operator

w» =g(~ —q1+1ILm)(q, „J+).

For axially symmetric (J, =0}states lg&,

(QIW» lg& vanishes unless M=0 and L is even.
Considering this, we find

APPENDIX D. INDEPENDENT-PARTICLE
APPROXIMATION AND SU(3) WAVE FUNCTIONS

(phlr J.Iy& = (-)""&y
I J.Alph),

(phlr J- ly&
= (-&"'&@

I J-A lph),

(D13a)

(D13b)

We have defined the operators I" and A in the
body of the paper I Eq. (11.7) and Eq. (11.13)] and we
have stated that

and thus

(phlr J. IA&=(-)""&AIJ.Alph)=(-)""(phlAJ. IA&

We now define I'o and l, such that

(D1) or

(A —r, )J„ I y&
= [1+(-) ]AJ„ I y& .

(D14)

(D15)

F Fo+7

(ph. Ir. Ip'h') = &ph l(ff. —E) Ip'h'&

(ph Ir, lp'h') = (PH IV"& Ip'h'&,

(D2)

(»)
(D4}

where Ho is an independent particle Hamiltonian,
and V ' a two-body interaction. From Eqs. (D1)
and (D2} we have

r,J, I4»=(A-r, )J„ly&. (D5)

We shall prove here that with V ') of the following
tensor form,

For A. even

(A-r, )J„ly&=2AJ„I@&. (D16)

v(') = --'Iv. l g (-)"q.„(i)q.-„(i), (D18)

This proves that for potentials of the form given
in Eq. (D7)

(D17)

We now consider in detail the case of the quadru-
ple-quadrupole interaction

V = 2Vo Q (-)"Qy~qy
A. even

P

(D6)
for which an exact expression for the moment of
inertia is"

one obtains

(A - r, )J„ly& = 2AJ. I4,&, (D7)

rg„ ly&=2rJ, Iy& .
For the potential given in Eq. (D6)

(D8)

when exchange terms are ignored. With Eqs. (D1)
and (D2) one then obtains

a=8'/3lv, l. (D19)

For the intrinsic wave function associated with
the quadrupole-quadrupole force let us take the
SU(3) wave function of maximum weight" Q(Xp)
(@=0 for the case of axial symmetry).

We now calculate the moment of inertia using the
independent-particle lnglis formula

(phlr lp'h')= v, Z~ (-)"&phlq „lp&&4 lq -„lp'h'&,

(D9)
„.~ I&'IL. Ie(~0)&I'

(D20)
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(D21)

and take as our basis

In choosing the independent-particle states li& we
consider the states reached by"

I.„ly(~o)& =5 a,'(f) a, (f) ly(~0)&,

For convenience let

n -n8.
f 'c

i
Then with Eq. (D32) we can write

(fir l~') =6lvol&6;„'-slvol~&; ~&;

(D33)

lf& = &;n,'(f)n, (f)14 (&0)&

To normalize the states Ii& we must have

=1/(.n -n )"'

(D22) To find the collective eigenstate of F, we use the
techniques of the schematic model' and consider

g(flrli')c;. , =e c;. ,

or
where n, and n, are the number of z andy quanta
in the fth single-particle level of P(»).

For the independent-particle energy denominator
we consider"

6lv, l~c;. -slv, l~~,. (Qc,'~~;. )=~ c,". (D36)

Multiplying by ~X; and summing over i we find

If, =Q [I,(f) —lv, I2&q„(f)];

{fIr, Ie) = 6. ..&f Irf, -E, lf& .

This gives

E, —E +
= &i la, If&

—(@IIf, I @&
= 6x I vo I

(D24a)

(D24b)

6lv, lx(gc, vx,. )-slv, lg x,.(gc,. wx, )

=e (Q c,"Mx, ).

This leads to one energy, e,.=slv, l~,

(Ds6)

(DSVa}

for all i.
Next consider the numerator in Eq. (D20), for

which we have

c, =&~,A.
The eigenstate associated with this energy is

(flL„ly(~0)&=(n, -n, p .
Combining (D25) and (D26) in (D20) we obtain

(n, n,)-
21 p-

i

but Q (n, -n, , ) =X, so

~, =a'/slv, l.

(D26)

(D27)

(D28)

lc& = ~Q Wx, li&,
1

I= ~ I.„ ly(~0)& . {D38b)

rf.„ ly&
= (sv,x)L,„ly&,

Thus I., IP(»)& is shown to be an eigenstate of r,
and furthermore we have shown

Now let us consider the full operator l" which in-
volves two-body interactions as well as F,. From
Eq. (D9) we have

(fir, l~') = —
I v. IE(-)"&flq. , I e&&@I q. -„I~'&,

(D29)

which indeed gives

Since

&ale& =1,
we have

(D40)

q, „ly(»}&= ~f„leap.o)&,

(y(») lq, , = -w(y(») lr,

(fir, l~') = -3
I v. I&f IL. I @(»)&&0(»)IL. I

~'&,

(Dsoa)

(D30b)

(D41)

Finally using Eq. (D39) and Eq. (D41) to evaluate
the Peierls-Yoccoz formula for the moment of
inertia, we have

and using Eq. (D26)

( lr, l')=-slv. l(.... —,, )"'( ...— ...&"'.

(D31)

{D32)

(@If,„'Iy&' ~'n' a'
&@lf„rL„I@& slv, lx' slv, l

We have thus shown for this model case that

~exact ~I ~ P Y ~F X

(D42)

(D43)
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Higher-order corrections to internal conversion and y-ray emission involving atomic elec-
trons have been calculated. Experimental anomalies in low-energy E2 L-subshell ratios are
shown to be substantially explained by these calculations.

The development of high-resolution P spectrom-
eters in recent years has allowed accurate com-
parisons between theoretical and experimental in-
ternal-conversion coefficients. In particular, the
measurement of L-shell ratios can attain an accu-
racy of 2-3%. The low-energy 2'-0' transitions
observed in deformed nuclei allow one to system-
atically study the internal conversion of a single
multipole. Extensive measurements of these E2
transitions have been made in many laboratories. '
The L,/L» ratio was regularly observed to be
some 5$ higher than predicted by theory; whereas
the L„/L», ratio was in good agreement (3') with
the theoretical ratio. Although there are discrep-
ancies between the earlier tabulations of theoreti-
cal internal- conversion coefficients, ' the predicted
E2 L-shell ratios are in good enough agreement to
indicate an experimental anomaly. In addition, in-
dependent calculations of internal- conversion co-
efficients confirm the existence of an experimental

anomaly the same size. '
"Penetration effects" which lead to large devia-

tions from theoretical conversion coefficients are
known to occur in highly retarded transitions. '
These effects are due to nuclear-structure-depen-
dent terms not included in a tabulation of theoreti-
cal conversion coefficients. They are expected to
be negligible for fast transitions such as the col-
lective E2 transitions in deformed nuclei. We have
estimated the magnitude of penetration effects in
these well-understood 2+ —0' transitions and found
that they change the tabulated conversion coeffi-
cients by less than 0.5%. Matese has investigated
the effect of atomic wave-function distortion due
to the static nuclear quadrupole moment and has
concluded that the internal- conversion coefficient
is changed to an insignificant extent. '

At the present time, all calculations of internal-
conversion coefficients only include terms to the
lowest order in the fine-structure constant. In the


