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A complete angular momentum reduction of the Faddeev equations is carried out for the
case of realistic, nonrelativistic three-nucleon systems with (local and/or nonlocal) interac-
tions having general spin, isospin, and velocity dependence. Antisymmetrization of states
with respect to particle exchange is properly accounted for by using properties of the permu-
tation group and the isospin formalism. Expressions for the Faddeev equations, in the form
of coupled two-variable integral equations, are obtained in two different coupling schemes;
J-j [coupling of the (relative orbital plus total spin) angular momentum of a nucleon pair with
the total angular momentum of the third nucleon (in the c.m. system) to give the total angular
momentum (in the c.m. system)]; and Q-I [coupling of the total orbital angular momentum
(relative orbital angular momentum of a nucleon pair plus the orbital angular momentum of
the third nucleon) in the c.m. system with the total spin angular momentum (total spin angu-
lar momentum of a nucleon pair plus the spin angular momentum of the third nucleon) to give
the total angular momentum in the c.m. system].

I. INTRODUCTION

Since the work of Faddeev' on the nonrelativistic
quantum theory of three-particle systems, many
applications of the Faddeev formalism have been
investigated. ' In the case of two-body local inter-
actions, one encounters formidable practical diffi-
culty associated with the problem of obtaining nu-
merical solutions for a set of coupled integral
equations in two continuous variables. However,
with the recent development of several numerical
techniques, '4 it now appears feasible to solve two-
variable integral equations with presently available
computer facilities.

In applying the Faddeev formalism to three-nu-
cleon systems, we must first make a complete an-
gular momentum reduction of the dynamical equa-
tions which takes proper account of the intrinsic
spins, isospins, and statistics of the nucleons.

The original Faddeev equations involve the nine
independent components of the particle momenta.
The dependence of the wave function on the com-
ponents of the total linear momentum is easily ac-
counted for by separating out the c.m. motion.

For the six remaining independent variables,
Omnhs' chose the c.m. energies of the particles
and the Euler angles of orientation of the closed
triangle formed by the c.m. momenta. By expand-
ing in eigenstates of the total angular momentum
squared and the components of the total angular
momentum along a space-fixed and "body"-fixed
axis in the plane of the momentum triangle, the
Faddeev equations were reduced to a set of cou-
pled integral equations in three continuous vari-

ables. Osborn and Noyes' expanded the two-body
transition amplitudes in relative angular momen-
tum components and further reduced Omnbs's equa-
tions to a set of coupled integral equations in two
continuous variables. Osborn' has applied these
equations to the calculation of the binding energy
of a simple system of three spinless identical par-
ticles interacting pairwise through an s-wave
Yukawa interaction.

Another method of angular momentum reduction
was proposed by Ahmadzadeh and Tjon. ' After sep-
arating out the c.m. motion, they expanded three-
particle states in simultaneous eigenstates of (L)',
I.„(I)',and L„where L and 1 are, respectively,
the relative angular momentum of a pair of parti-
cles and the angular momentum of the third parti-
cle in the c.m. system. The coupled two-variable
equations obtained by this method have been used
to determine the binding energy of a system of
three identical spinless bosons interacting via two-
body local Yukawa interactions, "and the binding
energy of C" on the basis of a three n-particle
model. " They have also been used to determine
the bound-state energy and wave function of the tri-
ton for local nucleon-nucleon interactions contain-
ing soft-core repulsion and tensor-coupling terms. "

El-Baz et al."have generalized the Ahmadzadeh-
Tjon method for the case of particles with intrinsic
spins. They use the well-known separable expan-
sion formula'4 for a spherical harmonic whose ar-
gument is a vector sum of two vectors, and use a
graphical method" for handling the angular momen-
tum algebra.

The Omnhs and Ahmadzadeh-Tjon formulations
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of the Faddeev equations are simply related by a
unitary transformation, as is expected. This has
been explicitly shown by Balian and Brezin. " Al-
though the Ahmadzadeh-Tjon equations are unsym-
metrical in the va, riables introduced, they appear
to be more convenient for physical applications.

Other reductions of the Faddeev equations in-
clude that of Doolen, "which is based on the Jacob-
Wick" helicity formalism, and that of Lee, ' which
is based on the 8+3) representation of three-par-
ticle states.

In this paper, we generalize the method of El-
Baz et al. to the case of two-body tensor interac-
tions and antisymmetrization in terms of the iso-
spin formalism for the three-nucleon system. Ex-
tensive use is made of the graphical techniques of
Yutsis, Levinson, and Vanagas (YLV)" for angular
momentum algebra involved in obtaining the final
expressions.

In Sec. II, we give a brief summary of the Fad-
deev equations, the definitions of kinematic vari-
ables, and the normalization, orthogonality, and
transformation properties of free-particle linear
and orbital angular momentum eigenstates. Sec-
tion III contains a general discussion of the anti-
symmetrization procedure used in classifying our
three-particle states. In Sec. IV, the Faddeev
equations are derived for the J-j coupling scheme.
In this scheme, the (relative orbital plus total spin)
angular momentum of a nucleon pair is coupled
with the total angular momentum of the third nu-
cleon (in the c.m. system) to give the total angular
momentum (in the c.m. system). The specific de-
tails of antisymmetrization for this coupling
scheme are also discussed. In Sec. V, a similar
presentation is given for the Z, -S coupling scheme.
In this case, the total orbital angular momentum
(relative orbital angular momentum of a nucleon
pair plus the orbital angular momentum of the
third nucleon) in the three-particle c.m. system is
coupled to the total spin angular momentum (total
spin angular momentum of a nucleon pair plus the
spin of the third nucleon) to give the total angular
momentum in the c.m. system. Section VI contains
a, discussion and a brief summary of the results of
this paper. A graphical derivation of results in
Secs. IV and V is presented in Appendix A. In Ap-
pendix B, we give the properties of the isospin
eigenstates of the three-nucleon system which are
used in this paper.

II. FADDEEV EQUATIONS, KINEMATIC VARIABLES,
AND LINEAR MOMENTUM AND ANGULAR

MOMENTUM BASES

kinematics.
-The nonrelativistic three-particle scattering ma-

trix T for particles of mass m„m„andm3 can
be decomposed as"

Z"= y(&) + 7'(2) + y(~)

The T(') 's satisfy the Faddeev equations

(2 I)

G, (s) = (H, —s) ', (2.3)

(Jfo being the three-particle kinetic energy opera-
tor), s is the total energy of the three-particle sys-
tem, the T, 's are the off-shell two-body T-matrices
which satisfy the Lippmann-Schwinger equations

T;(s)= V, —V,G,(s)T,(s), (2.4)

where V; is the interaction between the pair of par-
ticles j and k (iWj ok).

Following the conventions of Refs. 8 and 9, we
define linear momentum combinations

mg, -m,k,
pc=

[2m,m, (m, +m, )]"' '

m, (k, +k,) —(m, +m, )k,

[2m, (m +m, )(m, +m, +m, )]'~' ' (2. 5)

with definitions for (p„q,) and (p„q,) following
from (2.5) by cyclic permutation of the indices 1,
2, and 3. k; represents the momentum of particle
i in the space-fixed coordinate system. The total-
momentum combination

R, +k, +k,
P=

[2(m, +m, +m, )]"' ' (2.6

together with p, and q;, satisfies the relation

E= ' = p,. '+ q,. '+ P '.(k,. )'
(2.7)

The above choice of momentum variables gives
unity for the Jacobian of the transformation relat-
ing (p;, q, , P) and (p, , q, , P), i,j =1, 2, 3.

In terms of the mass factors

m
g
m j

(m; +m, )(m, +m, )

I/2

(2.8)

P, , =(1 —o.„')"'= -P, , (ijk cyclic),

introduced by Ball and Wong, ' the linear relations
between (p, , q;) and (p, , q,. ) are

T~' (s)=T(s) —g T(s)GO(s)T '~(s), i=1, 2, 3.
(2.2)

G, (s) is the three-particle Green's function

In order to clarify the notation and conventions
involved in this paper, we present here a sum-
mary of the Faddeev equations and associated

pg
= -&tgpg Pigqg ~

q, = p, , p,. —o.;,q,. (ijk cyclic).
(2.9)
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For three identical particles, we have n, , = 1/2
and P,, =v3/2.

In the c.m. system (P =0), three-particle eigen-
states of linear momentum

generated via particle exchange operations on the
I ((c));

Let P;,. be the ij particle-exchange operator,
l.e.y

l&k.k.) = lp, q &
= lp. , q.&.

= lp. , q.&., (2.10) P;, = P, (ii)P.(ii)P, (ii), (3.1)

are assumed to have the orthonormality property

(p' q'lp, q& =6"'(p'-p}6'"(q'-q}. (211)
The partial-wave expansion of Ip, q) is

Ip, qQ&
= 2 yg((((P)y(* (q) IpIM; qlm),

l,m

(2.12)

where

(PLM;d(m) fddd=d Y „(P)Y,(d)(P, d(, (2. 1$)

In (2.13), dp and d(1 denote solid-angle differentials.
The normalization (2.11) requires that

&p'I, 'm'; q'I'm'
I pLM; qfm&

&(p.' -p) 6(q'-q)
2

P 2 ~LL'~MM'~1l'~mm' '

(2.14)

III. ANTISYMMETRIZATION OF STATES

If the isospin formalism is used, a composite of
nucleons can be treated as a system of identical
fermions with intrinsic spin 2 and isospin —,'. The
generalized Pauli principle requires that the total
state function of the nucleon system be antisymmet-
ric under simultaneous exchanges of the space,
spin, and isospin coordinates of any pair of nu-
cleons.

There are a number of works which give proce-
dures for generally constructing the antisymmetric
states of a three-nucleon system. Blatt and Der-
rick, "in particular, have given an elegant group-
theoretical discussion. These procedures, how-
ever, give states that are much more suitable for
variational calculations of binding energies than
they are for scattering and bound-state calculations
based on the Faddeev equations.

A general classification of antisymmetric states
of three nucleons, which is suitable for use in the
Faddeev equations, . can be obtained very simply
after performing a complete angular momentum
reduction of these equations. The technical details
of the reduction are given in Secs. IV and V. In
this section, we schematically indicate the general
features of our antisymmetrization scheme.

We will work with three-nucleon states
I (g));

which are constructed to be antisymmetric under
the exchange of the dynamical coordinates of nu-
cleons j and k (with ijk a cyclic ordering). Fully
antisymmetric three-nucleon states can be easily

I y&. = (s+P...+P...) l(g)&, (3.2)

is completely antisymmetric with respect to parti-
cle exchange.

Now let
I n(i, jk)); be a free-particle state of

three nucleons which is antisymmetric with respect
to jk exchange (ijk cyclic), and is an eigenstate of
a complete set of commuting operators (including
the free-particle kinetic energy Ho) which is appro-
priate for this symmetry.

In the J jcouplin-g scheme, o.(i,jk) denotes the
quantum numbers associated with the operators:
Ho (L;)' (S;)'= (s, +sy)', (s, )' (sl, )' (&;)'= (L
+S;)', (I;)'~ (s;)', (i;)'=(T +s;)', (8)'=(J;+j;)',

(&)' (t )' (T)'=(t, +t, )' (t }' (y')'=(T
+ f, }', y', . Here L, is the relative orbital angular
momentum of the jk pair (ijk cyclic}; 1; is the or-
bital angular momentum of nucleon i in the c.m.
system, s, is the spin angular momentum of nu-
cleon i, and t,. is the spin isospin of nucleon i. In
the g-$ coupling scheme, the corresponding set of
operators is H„(L;)', (I;)', (2)'= (L; + I;)', (5;)',
(s, )', (s, )', (s;)', (3)'= (S,. +s, )', (g)'=(2+3)', 8„
and the same isospin operators as in the J-j
scheme. Since the intrinsic spin and isospin quan-
tum numbers are equal to 2 for all nucleons, they
will not usually be explicitly specified from here
on.

The completely antisymmetrized state

3}&.= (s+P». +P».) I ~(I, 23}&i (3.3)

is an eigenstate of H„(g)', and 8, .
If H, and 0, (1, 2, 3), s=1, 2, . . . , 16, denote the

operators associated with the quantum numbers
o(1, 23), then it is easily shown that the state

P„.l
o.(ly 23)&, = IP„,o(ly 23)), =

I
o.(2) 31)&,

(3 4)

is a simultaneous eigenstate of the operators H,
and P»,0, (1, 2, 3)P», ' —= 0, (2, 3, 1), s= 1, 2, . . . , 16,
with the same quantum numbers originally associ-
ated with H, and 0, (1, 2, 3), s = 1, 2, . . . , 16.

where&„, P, and P, are, respectively, the space,
spin, and isospin exchange operators. The three
P,, operators are odd permutation operators and
elements of the permutation group $3." The three
remaining elements of the group are the even per-
mutation operators ep P$23y and P»» where e is
the identity operator, and P$23 and P», are cyclic
permutation operators. From group-element multi-
plications, it easily follows that
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~ y()~ - =Z(2)
12 12

y(1)p -1-T(2)
123 123 etc. ,

(3 8)

(3.8)

where I g&„is an arbitrary (completely) antisym-
metrized state, we have the relations

I&u(» 23) I
T"' (s) I g&

= s&PI32~(1 23) IPIs.T"' (s) I tC»

=.«(3, 12) I
T'" (s) I t&~

Since the. 7.' ') operators in the Faddeev equations
(2.2) satisfy

Note that, & a(1, 23)
I
T"l (s) I g&„would vanish if

I o.(1, 23)&, were symmetric under 23 exchange.
The states

I
o.(1, 23)&, are assumed to satisfy the

orthonormality relations

& '(1 23)l (1, 23)&, =
P1 ~1

(3.8)

1=+ p, 'dp, q, 'dq,
I n(1, 23)&„&n(1, 23) I

0. 0 0

= 3
I ~(1, 23)&„&~(1,23&l (3.9)

where 5 denotes a product of Kronecker 5 func-
tions associated with the discrete quantum num-
bers. The effective closure relation

I& &(1*»& I
T'" (s) I e&

= 2(P...~(1, ») IPuP'" (s) I q&„

=,( n(2, 31) I
T~" (s) I g&„, etc.

(3.'l)

may be inserted adjacent to a state which is anti-
symmetric under 23 exchange.

Thus the Faddeev equations for,&o.(1, 23)l T~'~l g&„,i=1, 2, 3, with I g&„fixed, reduce to a single integral
equation for the matrix element, & n(1, 23) I

7"l (s) I g&z.

l&~(1, ») I
T"'(s)

I e&~= I&~(1») I TI(s) I e&~- 3, I&~(1, ») I TI(s&l ~'(1»)&IE 1

x(,& ~'(1, ») I
T"' (s) I e&~+.& ~' &1»&I T'" (s&l e&~)

I=,&u(1, 23)l T (s)ly&~-3 &u(1. 23)
I Tl(s)I II'(1 23&&.~

~ 3 (.&P...o.'(1, 23)
I

o."(1,23)&, + .&P...c.'(1, 23) I
~"(1, 23)& )

& "(1,23)IT"'( )l0& (3.10)

Eqllatloll (3.10) nlay lie fill'tlleI' slIIlpllf led lf we Ilo'te 'tllat

(PI3gcI (1 23) I CV (1 23)&I = &P 2gG I(21 23) I D (1 23)&l

(3.11) follows from the fact that

(3.11)

(P„,—P„,) I o.'(1, 23)),

is symmetric with respect to 23 exchange and is consequently orthogonal to
I
n"(1, 23)&,. Thus

,&~(1, 23)IT"'(s&l~& =.&~(1, 23)IT, (s)IO& -»,&~(1, 23)IT,(s)l '(1, »)&,

(3.12)

x S,&P», o.'(1, 23)l o."(1,23)&, ,(n"(1, 23) I
T"I (s) I g&„. (3.13)

An alternative form of (3.13), which will be used later on, is

.& ~(» 23) I
T"' (s) I e&~= I& ~(1, ») I TI(s& I e&~ -», I& ~(1») I TI(s& IPIa.u'(1, 23)&2~

i —S

x,&a'(1, 23)IT"'(s)IP} . (3.14)
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We conclude this section by considering the exchange symmetry of three-particle bound-state wave func-
tions which are extracted from the three-particle T matrix. " Let

~ gs) be a normalized three-particle
bound state:

(E, -H)lq, & =0, &q lq &=1

(H =H, + V, + V, + V, =H, + V).

From the formal expression for T(s}

T(s)=V-V V,
1

II —s

(3.15)

(3.16)

(3.17)

it follows that

& a(» 23)
I T(s) I 0&

s =BB
B E ~ B

The residue of,( a(1, 23)
~
T(s)

~ gs) at the bound-state pole, which may be easily extracted from the nu-
merical solution of Eqs. (3.13) or (3.14), is thus proportional to

& a(1, 23)
I V( 4s} = (Es —p, ' —q, '),(a(1, 23) )»ls)

in the c.m. system Th.e equality (3.18) is derived by representing V as H Hand u-sing (3.15) and

(p, '+ q, ' —H, ) i a(1, 23)), = 0 .

Now

,& a(1, 23)
~
T(s)

~
g)„=,& a(1, 23)

~
T '& (s) + T '& (s) + T '& (s)

~ g)„
- &(e+P»2+P»3)a(» 23)I T"' (s)14&~

=&(e+P„,+P„,)-.'(1 —P„)a(1., 3)IT"&(s)Ig)„,
and consequently

,(P»a(1, 23) [ T(s)
~ g)„=&(e+P», + P»~)P»2 (1 —P») a(1, 23)

~

T~'& (s)
~ g)

„

= -&(e+P~32+P»s)2(1 -P23)a(1, 23}
~

T~ & (s)
~ g)~

= —,& a(1, 23)
~
T(s)

~ g)„, etc.

(3.18)

(3.19)

(3.20)

(3.21)

The expression for,( a(l, 23)
~
T(s)

~
g)„given by (3.20) yields, according to (3.17) and (3.18), components

«14&
,( a(1, 23)

~ ys),
which satisfy

,(P»a(1, 23)
~ gs) = —,( a(1, 23)

~ gs), etc.

These components are thus consistent with the complete antisymmetry of
~ gs).

(3.22)

IV. J-jCOUPLING SCHEME

In the Z-j coupling scheme, we form (c.m. system) eigenstates of total angular momentum s and projec-
tion of total angular momentum on the z axis of a space-fixed coordinate system N, from a direct product of
the eigenstates of J (relative orbital plus total spin angular momentum of a nucleon pair) and j (total angular
momentum of the third nucleon in the c.m. system). The isospin components of these states have total iso-
spin g, and z component of total isospin V, . They are formed from a direct product of the eigenstates of
T (total isospin of a nucleon pair) and t (isospin of the third nucleon). The complete list of commuting op-
erators which characterize the J-j coupling scheme was given in Sec. III.

The explicit construction of the complete set of J-j basis states is given by

Ip, q, a&, = ~p, q, a(i,j k)); = &[p(I.S)J,q(ls)j]N, ; (Tt)q 7'.),.
= Z «~~j~, I&&.& IP(f 3)~~~'q(ts}j~,&; I (Tt)«.);

m&, m.
(4.1)
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with

I p(LS)zm~; q(ls)jm, . &,. = g g &Lm, sms I Jmz& &lm) smqjlm, & I pI mii qim)& Isms&(lsmg
mL mS m) ms

(4.2)

and

ISms); = I(s,. s~)sms&; = g &s, m, s„m, ISms) ls,. m, , ) ls„m, ) (ijk cyclic), (4.3)

where
I s;m, .) are the orthonormal spin eigenstates for nucleon i and l(Tt) v'v', ); are the three-nucleon iso-

S

spin states defined in Appendix B. The symbols &anbplcy& are Clebsch-Gordan coefficients. (We will use
the Condon-Shortley phase convention throughout this work. ) For convenience, the same symbol is used for
an operator and its eigenvalues. The quantum numbers s and I; are, of course, always 2 for nucleons. Anti-
symmetry with respect to jk exchange requires that

( 1)I +s+T-

We may use (2.12) to expand the states (4.1) in eigenstates of linear momentum:

)[p(LS)J, q(lsj)]$$„(Tt)E9,&;
= g &/md jm, I88,& Q Q &Lm~sms I Jmz& (lmsm, l jm)

mg ~ m LpmS m) pms

x dp dqYLm p Y)m p pyq;S~s~sm„' Tt V&, ;. (4.4)

The orthonormality relation for the states given by (4.1) is

,&[p'(L's') J', q'(1'sj)']qt'dt,'; (T't)v'5,'
I IIp(Ls)J, q(lsj)]H, ; (Tt) 5'T, &;

5(p'-p) 5(q'-q)
2 5L LOS S5~.~5) ) 5,'., 5~.~ g g g Z

Z Z Z Z

The Faddeev equation, in the J-j coupling scheme, becomes
oo oo &'~z

y.'"(p, q, n) = q!"(p, q, n) —2Q p.'dp, q. 'dq. .. ,' y.'"(p., q. , n.),
where

g."'(p, q, n) = i&p, q, n IT"'(s) It&~

q,"'(p., q., n.) = i(p2 q~ n. IT"'(s) lt&~

q,"(p,q, n) =,&p, q, n IT,(s) IC&~,

and

"'K,=,(p, q, n IT,(s) I p„q„n,), .
Using (4.4) in (4.9), we obtain

(4.5)

(4 8)

(4.7)

(4.7a.)

(4.8)

(4.9)

(')z =
2

(all magnet ic numbers
except g, p )

&&S. I~md jm, & &~md I Lmism, &&jm,. Ilm, sm, ) (J.,m, j,m,

q(I. ..S. , ld. ..)(l. .. . . Ij. ;)fdpfdpfdp J(dq, q;„(p)q; (q)q, „(p,)q, (q)
2 2 )2

x&p, asm, sm„(Tt)V'f,
I T,(s) lp„c(„sm,, s,m, ;(T,t,)t', q;, &, . (4.10)

The spin and isospin eigenstates, I S,ms, s,m, ), and I ( tT,) Es„&maybe expressed in terms of l), -type
states by using (B5) of Appendix B, and the relation

(s„.m, spm, IS,ms &(S„ms ls, m, s, m, ) l(s,s,.).spms;s~m, &p (ijk cyclic).
ms ~ ms S& ~ mS

(4.11)
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After setting
~ p„q,), =

~ p„q,)„the matrix element of T, (s) in Eq. (4.10) reduces to

,(p„q„Sms,sm, ; (Tt)9 y',
~
T, (s)

~ p», q»; S»ms, s»m, ; (T»t») 1'» v'», )»

(s,m, s,rn,
~
S,ms ) ( S,m, .

~
s,m, s,m, )6„5

mS3. mS

(TT, tt, ~Kv', ) (-1) ' T,T»W(t, t,v'»t„' T»T,)
T

» j»
X &T1Tl tltl I

+2'T» ) 6t » 5g t 1(p,q; Sm;; TT. I T,(s) I p„ql Slms T1T1 &„

(4.12)
P

where T, denotes (2T, +1)"' and W is the usual Racah coefficient. Charge conservation requires f'„=9',
for a nonvanishing matrix element.

The two-nucleon interaction is assumed to be invariant under the usual space-time translations, inver-
sions, and Galilean boosts, as well as general rotations in ordinary space and rotations about the z axis in
isospin space. The appropriate partial-wave expansion of (4.12) is then»4

x(pique Smsi TT~ I Ti(s)
l pi|qu Sub, i T|Tz~&|

(q —q|)6»s 6rr 6r r Q Q Q Y~, , (P)YL, (P,}(L'm~ Sm»~Z'm, '. =m~. +m,.)
1 ' L» 1' 1

8TTz 2 2. 2
x&L|mz. Sums l~xmz ™s.™s,&67'J 6m, m, +m -ms 6I, I/~L, l' (P &Pl i s l ), (4.13)

where

LZ, L L~»L )Lj-L (»2

with L', L, taking on values from
( J, —S) to (8, +S(. Space-reflection invariance restricts )L, —L'( to 0 or

2 in the case of tensor forces. For S=1, Je0, and (-1) '~'=-1,

tvP7g, , g'(P',-P ' s=P')+5z, , g

is a two by two unitary and symmetric matrix with respect to the L„L,indices.
Following a suggestion made by El-Baz et a/. ,

"we use (2.9) and the relation'~

r'1',* (P)= (sr, )~(tr, )" '(Xm~l -Am-m~ilm) Y*„(f',)Yf ~ (f', ),
~4g 2)+]. ~~2

)=0
a b X X Xmk a l X'mm), -b (4.14)

A 2l+ 1
where r=sr, +tr„A= (2x+1}"', and

2
is the binomial coefficient, to obtain

elP,'»,*.(le)Yi, , , (P|)= Z Z ~A- 2~ 2'A (Pi»P.)'(-o'i, e.)' "(- io. P)'(-P,.e.) '
z»

)»mX h. mh

&&(A m~1 -X m-m~~ l m) (AmAL, —Am~ —m~~L, ml, )

Y~.„(P») i'-. ,.—.„(&») A. (P»} i -~,.. .,+»). (4.15)

After substituting (4.12) and (4.13) into (4.10}and integrating over P and q, we use (4.15) and the partial-
wave expansion

JiSTT JISTT
T,,', ;(P|,e|)= Z T, ', , ;„(P„e.)Y,* (P.)Y, „(e»)

m
(4.16)
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with

'Tl, , L, 1 (Pl& Il) ~(q 71 ) 1,y1' g Pj ~j.

to obtain

(4.17)

(P /I )(2m+1)(2I, ,+1)'"(2l,+1)"'(2~,+1)(2r,+1)[2(L„—A)+1]'"[2(I-q)+ I]'»

AXr rE r J (4.18)

where G~ ~
is the geometrical factor given by

~J j ~ ~~ ~gg ~$ g mJ +m. , m +m m~+m, m~ -m m +mg, m~ +m) -mA-m~5 r ptJ

x &&&. I ~maim, & «m. I JmiSms& &jm; Iim~sm. & «2m~ i.m, , I &2&..& «2m', S,ms I ~ms &

x (l m, s2m, )j,m/ & &I masm~ (Z,m~+m, & &L,m~ S,ms ( J;m/, +ms ) &s m, s m, ( S2m~ &

x&sm, s,m, ~S,m &&am„l—Xm, —m ~im&(~ r, , —Wm -m ~r, m

L,, r r, A A. r, r J —A r2X

(4.19)
The quantities in the brackets in (4.19) are Wigner 3-j symbols which are related to the Clebsch-Gordan co-
efficients by

&ac/spicy& =(-1)' '"&(2c+I)"' nP-y
In deriving (4.18) and (4.19), we have used the relations

(4.20)

dP, I;..(P.)I',* „(P.)I'*.,(P.)I'*.,(P.) =
4, &-» "8-,.-,.;--„~ ~~~

2

and
(4.21)

x[2(I P)P1]1/2[2(I y.)yI]1/2+PR 2 2 2 2 1 2

0 0 0 m„m, -m„-m, 0 0 0"2 '2

x L -A I-X r2
~$ ~P, ~l ~7 ~A+ ~X

1

(4.22)
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which are obtained by repeated applications of the addition theorem for the spherical harmonics.
The geometrical factor G~ / can be simplifiec, by angular momentum algebra (see Appendix A):

r, L,-AL, ' s L, j, g J,
G~ /=(-2) ' ' ' (LSJ)tJj Jj,S,S2LL,Q(-1)'(2y+1} I, I —]]. A L, L, j s, s, S,

y l A r, J, S l y l

(4.22}

where (LSJ) indicates the triangular relation among I., S, and Z. The two quantities in the brackets in the

y summation in (4.23) are the 12-j symbol of the first kind and the 15-j symbol of the fifth kind, which can
be written in terms of 6g symbols as"

L —A L
=g( 1) 4 (2 yl)$ y l$2 & $ ] ] l (424)Yt~. t.$(& L-At-& ~ L A (~ y L.Sy l

with R4 = y + l2+ L2+ r, +r, +r, and

s L, j24 J,
L, j s2s, S,
J, S, l2 y l

where the last two brackets are the usual 9-j symbols.
From (4.16), we have

J STTz 2 2Jsrr +12 Tg g (p sp~/s —8)
T&', ', „(p., q.)=2v —&(q' —q, ') '

~ P„(cos8) d( cos 8),
P 'q'

(4.25)

(4.26)

where 8 is the angle between p, and q, . Equation (4.26) reduces to»

J1STT
J1~TT

12/ 12/ 282 (m 2+ 2 2)~2 +q2 —q

where

2 2 2 2 2
P12P +& q —q

cosO'=
2 &12P12P2q2

I'„(cos8')[&(cos8 '+ 1) —H(cos8 ' —I)], (4.27)

(4.27a)

and H(x) is the Heaviside unit function.
The final result for the integral part of the Faddeev equation (4.6) ts

f
oo oo ( 1)~2
P2'dP, q2'dq2 2 g

' P, q2 Z2
0 0 P2 +q2

Z ~~~ ~ss ~g r (-1) ' ' 'T&,&(t,tsar;t;, T,T) Q (TT, tt, (V'v', )(TT, tt, ~V', y"„}
1 1 z 2z T1' 1 z ' z

(o )]-1+A-1( )
+ ] -/[-

( 1) y+ (2L + I)1/2 (2t + 1)]/2
1' 2x 2A

X(2,+1)(2r, 1)[2(L,—A)+I]'I'[2(l —i)+1]'&'/'( ' ') ( ') (
'

') (
' ')
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OO ( 12 2+a)ta, 2L1-A+t- A+1 2
d A+ X+1xG~. . .J dqq, ~

q +
~ &12~2-~~~~12 (P.'+q. s-) P. +q, -q)

2 2+ 2 2 2

xJ y (p q. n.)
P12 P2 12 ~2 ~ ( )

+12' 12P2~2
(4.28)

The T function is related to the two-body t matrix for 8 =0 and T= 0 or 1 by the relation

'(p', p, ', s —q') = ——t~(p,p, ; (s —q')"'), (4.29)

where t~ is normalized so that t~(k, k; k) = e ~ sin5~/k with the Lth partial-wave phase shift 5~. For T, = -1
(proton-proton system), we must include the Coulomb interaction in the two-body t matrix. The complete
off-shell two-body I, matrix can be calculated for the general case of tensor and singular core interactions

by a straightforward integral-equation approach. ""
For the scattering problem, we need to specify the inhomogeneous term q«~' «(P, q, o) in Eq. (4.8). This

term contains the matrix element ' «K, in addition to ~' «K, given i.n Eg. (4.18). The calculation of ~' «K,. is
much simpler than that of ')E, We will only present the result for ')K,:

~(q'-q')~ 5«« ~.~~~ ~ ~Jg ~ & ~ Z{1)

Z ' Z

x5»(«~)(~~&)(LS~)(f.,S,~,) ~.' .' '(p', p;; s q'), - (4.30)

where subscript 1 indicates the initial-state quantum numbers.
For the special case of spinless identical particles (s, =s, =s, =O and 7, ='K, =E,=O), G~, as defined in

Eq. (4.23) reduces to
L, AL1 —A

l2 I2 r
+1 2

(4.31)

Substituting (4.31) into (4.18), we obtain ~'«K, for the special case of spinless identical particles

( ) 1 ~ z+r1+~ +e 21+1 '~ 2L+1 '~ t-X A L A
2 4 LI ( ) 2««2A («12P12) ( +12q2) ( +12P2) ( P12q2)' 4~„~„

1 2

1 2 2 2
xy" 2f' 2f'2ti, t I [2(f, P)+ I] & [2(t y) pl]~&2 ~ ~ 2 2 2 Ti oo o (P q )

0 00 000 00 0 0 0 0

(4.32)

which agrees with the result of El-Baz et al."when their phase factor (-1)~ is multiplied by the correction
factor (-1) '

V. L- 5 COUPLING SCHEME

In the g-8 coupling scheme, we form (c.m. system) eigenstates of total angular momentum 8 and projec-
tion of total angular momentum on the z axis of a space-fixed coordinate system g, from a direct product of
the eigenstates of 2 (relative orbital angular momentum of a nucleon pair plus angular momentum of the
third nucleon in the c.m. system) and 3 (total spin angular momentum of a nucleon pair plus spin angular
momentum of the third nucleon). The isospin parts of these states are the same as those in the J-j coupling
scheme. The complete list of commuting operators which characterize the -3 coupling scheme was given
in Sec. III.

The explicit construction of the complete set of 2-S basis states is given by

I p, q; ~&; =
I p, q; o(t, jk)&;

=
I [Pq(«)~, (»)8]&&.' (»)«.&;

2 &&mzsm31&8, & lpq(I. t)arne&« I (»)Imp&g I
(Tt)%9",&, ,

mg y mg

(5.1)
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with

Ipq(I. l}gms&; = g (Lmclm) I gms)IPLm» qlm, );
mL2 m)

and

I (Ss)sms), = g (Smssm, I Sms) I Sms); Ism, ), .
mS, m

(5.3}

(5.3)

The eigenstates given by (5.1)-(5.3) are related to those of the J-j coupling scheme (4.1) by a unitary trans-
formation:

L l g
I[pq(Ll}gp(ss}s]JJ, i (Tt}9't;),=g Jj gs s s s i{jp(Ls)zp q(ls)j]8$di (Tt)9 Kd)1.

J j
(5.4)

The two-particle spin eigenstate ISms), is the same as that defined in (4.3). As in the J-j scheme, antisym-
metrization with respect to jk exchange requires that

( 1)1+spr=

The orthonormality relation and the expansion of the states (5.1) in eigenstates of linear momentum are
similar to those given in (4.5) and (4.4}, respectively.

The Faddeev equation, in the g-S coupling scheme, is the same as (4.6) with Ip, q, &2), denoting g-S basis
states and the kernel '

K2 given by

")K,= Q (88, I gmzsms) (gm@ILm1lm)) (Sms ISmssm, ) (g,mz S,ms Ig,g„)
(a11 magnet ic quantum
numbers except g, g2 )

x&I, I, , (d,mq ) &q, s,m, )q,mq ) fdpfdq, J(d,p Jldqq „(p)q,„,(q)q „(p,) (qq, )

(-1) "5 „,5gpg2 Q oj2 mL +mS mL+mS mh+m~ mL m m +mi mL +m) h myI 1 2 1

x 1(p, q; smssm„' (Tt)y'K,
I T,(s) I p„q,; $2ms, s,m, ; (T,t,)r2r„). (5.5)

(5.5) differs from (4.10) only in the first six Clebsch-Gordan coefficients, and hence the angular momentum
reduction for &')K2 in the g-S coupling scheme is identical with that given by (4.18) except for the replace-
ment of G~,. 5«by Gz 3, where

1

1

(a11 magnetic
quan t um numbers)

&&(8$, I gm&sm2) (gmz ILmilm, ) (Sms I Smssm, ) (g2mc S2ms If+2 ) (I 2m' l2m, I g2mz )

&q($2ms s2m I S2ms ) (Lmz Sms l~qmL+mS) (Llm1, $1ms I~lmL ms )2 2 2 1 1 1 1

x (s,m, s, m, I S, ms ) (s2 m, s, m, I S,ms ) ().m
„

l -d(. m —m), I
l m) ( A mA L, —A mi —mA I L,mi )

X L2 l2 r2 L, —A l-& r2
mr m mi. mh mX mX mh mr % mr m~ mL -mh m, -m& mh+m& mL mr

2 2 2 1

(5.6)

(5.6) reduces to (see Appendix A)

L, AL1 —A J1 l s
(1)1 2 2 22sgsgJ2$$ lI 221512 l y l ASS pg

S
,g2r, &2 L, $2L 3

(5. t}

where the square bracket is the 12-j symbol of the second kind":

5I., s, xJ I. s xf I., s, x /5L s xJ
]s J1 s

5
s J1 s5 8 l g25)8 l g5

(5.8)
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The final expression for the integral part of (4.6) in the g-I coupling scheme is the same as (4.26) with
Gz z replacing G~ &5», .

For the special case of spinless identical particles (s, =s, =s, =O, 7, ='E, =E, =O), Gz z and "X, reduce to
(4.31) and (4.32), respectively.

The matrix element ~'iE,. required for the inhomogeneous term y, ' can be obtained by a similar method.
The final expression for ')K, in the g-I coupling scheme is

(1) ~ 2 2 2 L+S+C+S+Ll+S +@1+3 +2s
H1 Z 5(f Vl')( 1) 5ll 6 s 5J/ 5SS 5TT 5r T '7

J 1 1 1 1 1 z lz z lz

xg 3 2, I,J,' Q (TT, tt, i
Efg) (TT, ttg i &,&ig) &I,

T 1'

(5.9)

where subscript 1 indicates the initial-state quantum numbers.

VI. SUMMARY AND DISCUSSION

We have obtained complete angular momentum
reductions of the Faddeev equations for three-nu-
cleon systems in two different coupling schemes
(J-j and 2-I). The two-nucleon interaction is as-
sumed to have general space, spin, isospin, and
velocity dependence consistent with invariance un-
der the usual space-time translations and inver-
sions, Galilean boosts, rotations in ordinary
space, and rotations about the z axis in isospin
space. Complete antisymmetrization of states
with respect to particle exchange is easily accom-
plished by using the properties of the permutation
group and the isospin formalism. The extraction
of a properly antisymmetrized wave function for
the three-nucleon system from the solution of the
Faddeev equation (3.14) was briefly discussed in
Sec. III.

For the special case of separable two-nucleon
interactions, the results of this payer can be used
to reduce the Faddeev equation (3.14) to a set of
coupled integral equations in one continuous vari-
able.

In future publications, we will give a detailed
theoretical and numerical analysis of three-nu-
cleon bound-state wave functions, electromagnetic
form factors, and low-energy scattering parame-
ters, based on the formalism of this paper and
that of Refs. 3 and 25.
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APPENDIX A. GRAPHICAL REDUCTIONS OF
GEOMETRICAL FACTORS G~ ~ AND G~

In this Appendix, we present graphical reduc-
tions of G~,. and Gz ~, defined in (4.19) and (5.6)
by the graphical method of Yutsis, I evinson, and

Vanagas (YLV).'
We first consider G~ „which can be reduced to

H, , =g (2@+1)H~„ (A2)

where II, and H, are diagrammatically represented
in Fig. 1. H, reduces to the 12-j symbol of the
first kind:

Ll —A I,
H, = l l x A L,

y l
(A3)

which ean be reduced to products of the 6-j sym-
bols as given in Eq. (4.24). Similarly, the diagram
II, reduces to

(A4)

G . =( 1)
' ' "' "' Jj J,j,S,S, lL, (LSJ)H

(A1)
where (LSJ) indicates the triangular relation
among I., S, and J, and H~, is graphically given
in Fig. 1. In drawing the graphs in figures, we
have made two minor modifications of the YI V
method. We have dropped the directional arrows
for lines corresponding to integer spins and have
retained the directional arrows for lines corre-
sponding to half-integer spins. Also, when the
sum of the upper three arguments of the 3-j sym-
bol representing a node is an even integer, the
node is enclosed by a circle, and the positive or
negative sign omitted because, in this case, the
orientation of the node is irrelevant. Orientation
of the node is positive or negative depending upon
whether the labeling is counterclockwise or clock-
wise, respectively. By cutting through the lines l,

and &2 IIg
&

can be decomposed into a
product of H, and H„i.e.,
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= $(2y+ I ) r ~X+
I

+

+ L +
I

2

FIG. 1. Graphic re ' o
~A d~cates where th e cut is made

&
and H3. HJ &

is related to G z ~ according to

where thee last factor is the 15- s

), (A2), (A3), d (A ),4, obta f' al

In the, case of the g-S couplin s

H~ ~
= Q (2y + 1)H2H~,

where HH, xs graphically

F gan e further reduce
~ ~

(A6)

Gz-s = (-1)G = — "
Sg 32g2 J12sls2l L lag 82-S y

(A5)

where H isw z z is given graphicall i
Again cutting th l'e inesl l 2 g-$~o, and H:

H = h,h,h, . (A7)

(
)~+r, +z2 / ,I, 22I

E y$
(A8)

The r
g'ven xn Fig. 3. The h h

g apical represe t t'
h2, and h3 are

to
e „h„andh, factors reduce

= P(2y+I)
+

L2.'

L) S/— 2

FIG. 2, Graphic re

4

p xc representation of H '
&on in t

dgE
' di t db thth d h dl . The graphic representation of IIen a con of II& is given in Flg I.
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2

+~ L) L

FIG. 3. Graphic reduction of II4=h&h2h3. The graphic representation of H4 is given in Fig. 2.

and

k,= (-1 S2 S3
S 2 2

s g
k ( 1)1,+t+8+8 g 5 g

L, 32L 8

(A9)

(A1O)

For the three-nucleon system, we couple the
spins of the k/ pair to form the total isospin T,.
the pair, and then obtain the total isospin F, by
coupling T,. and the isospin of the third particle
i.e., V', = T, +t, . In this coupling scheme, the
eigenstates of total isospin are

iso-
of

The last bracket factor is the 12' symbol of the
second kind, which reduces to Eq. (5.8). Using
the easily verified relation, "

21 J2 2g 24
Z (2y+1)

k' k' k' j4 l4 kl
2 3 where

i» ' iz

(ikl cyclic), (B2)

g2 k4 k,
=(-1)2 3 ' ~ ' Js 42m

l k k' l4lljl
2 3 2

((t, t, )T, T,,&
= g (t,t„t,t„jT,T,,&.

lz

we can sum over y in (A6) to obtain

g(2y+1)H, k, =(-1) '

Ll A Ll A

2 +1 2

(A11)
From these definitions, it is straightforward to
show that

~(T;t;)V;f"; &;
= Q (-1)" ~ '[(2T,.+1)(2T„'+1)]~2

&& W(t„t, w; t;; T; T~) ~(T» t~)f; v;, &~

(A12)
Combination of (A5) through (A12) yields the re-

sult for Gz I given in (5.7). and

(B4)

APPENDIX 8. ISOSPIN EIGENSTATES

The proton and neutron isospin states are

~(T, t, )r, r„&,=g (-1) * . * . *'[(2T. , +1)(2T;+1)]''
T'

xW(t, t„v',. t,. ; T, T)Ii( T't, ) ;f',v, ,&

(n& = (t, t, =+-.'&,

respectively.

(B1) (ikt cyclic),

where 8' is the usual Racah coefficient.
The projection quantum numbers for various

three-nucleon states are'.
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=3
VZ 27

1
Z

or

1
V —-2

Z 7

or
1

~g 27

3
~g 27

T, =0, I;, =
2 for the triton;

1T=0 tZ 7 Z

T 1

T —-I
Z 7

t, =2 for He';

I,, = --,' for the triproton
system.

(B6)

T, =1, t, =2- for the trineutron system;

T =1 I;
1

Z 7 Z

for point nucleons. Thus the two-nucleon t matrix
7~~ ~ z will have Coulomb contributions for T,
=-1, but not for T, =O or 1.

In the presence of Coulomb interactions, total
isospin is not conserved, so that V' is not neces-
sarily equal to /, in (4.18), i.e., isospin mixing oc-
curs. In the absence of Coulomb interaction, the
two-nucleon t matrix is independent of T, so that
we can sum over T, in (4.18) to obtain

The two-nucleon Coulomb interaction is
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