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Realistic shell-Inodel potentials are used to test Strutinsky's method. It is found that the re-
sults are strongly dependent on the shell-smearing parameter as well as the order of the cur-
vature correction for smearing. No unambiguous values can be obtained for the shell correc-
tion, even with the effect of the continuum properly included. As a result, the Strutinsky the-
ory should be regarded only as a recipe to be used in combination with ¹lsson potentials.

I. INTRODUCTION

The problem of nuclear binding energy and its
variation with deformation has been of great in-
terest, since it determines, among other things,
the stability of nuclei and the fission process. The
Hartree-rock procedure w'ith a realistic two-body
force, for which the Brueckner-Goldstone method
has to be introduced, ean be a satisfactory for-
malism for the investigation. However, the actual
calculations will involve an enormous amount of
computer time for the heavy and, in particular,
the superheavy nuclei of current interest, while
it is hard to obtain sufficient accuracy. More
practical techniques are yet to be found.

One simple approach that has enjoyed popularity
is to write the binding energy as a sum of two
terms: the liquid-drop mass and the shell correc™
tion. ' Reliable evaluation of such a shell correc-
tion, though a small fraction of the actual mass,
essentially determines the success or failure of
this approach. The first attempt using Nilsson lev-
els was made by Strutinsky' whose prescription
was later extensively used by Nilsson et al."and
will be outlined in Sec. D.

Recently, Brueckner and his collaborators have
developed, and successfully applied, a statistical
theory of nuclei to the same problem. '6 The
various energy contributions involved have now

been treated correctly and with a microscopic
foundation, Unfortunately, like the liquid-drop
model, the statistical theory can only give results
averaged over the shell structure.

In this paper shell-model potentials, derived
from the statistical theory of nuclei, v are used to
test Strutinsky's method. These potentials are
more realistic than modified harmonic-oscillator
wells, It is found that no unambiguous values ean
be obtained fol shell corrections This is in clear
contrast to previous publications. Details will be
given in Sec. III.

For the first time, Strutinsky's method has been
used consistently, i.e., the effect of the continuum
is included correctly. This is described in Sec.
IV. However, it leaves the above-mentioned con-
clusion unchanged. The objection raised here is
of a different nature than that in Bassichis and
%ilets. ' As a result of these two investigations,
the Strutinsky theory should be regarded more as
a recipe using unrealistic Nilsson potentials than
a model. Further discussion can be found in Sec.
V.

SIUTINSKV THEORY

It was found a long time ago that if single-par-
ticle energies in the Nilsson model were simply
added, the resulting "total binding energies" 9 as
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a function of deformations exhibited minima at,
for instance, the experimental quadrupole mo-
ments in the rare-earth and actinide regions, for
appropriately chosen parameters. " However,
this method fails to give the absolute values of the
observed masses. Also, deformation energies
calculated at large distortions are highly sensitive
to the unjustified handling of saturation in the mod-
el. Using the fact that the phenomenological
liquid-drop model can give the average behavior
of nuclear binding energies well while the small
deviations from it can be correlated to shell struc-
ture, Smiatecki" first proposed that the nuclear
liquid drop corresponds to an independent-particle-
model nucleus in which the single-particle level
spacing is equal to its average value, as given,
for example, by the Fermi gas model. Shell ef-
fects are then interpreted as the bunching of a
smooth distribution of states into one that consists
of groups of levels corresponding to the observed
magic numbers. This description yields a method
of computing a semiempirical shell correction
function which is originally supposed to disappear
as the nucleus is distorted away from the spheri-
cal shape. '

By a natural extension of the above approaches,
Strutinsky has arrived at the following way for cal-
culating shell corrections. ' Firstly, Nilsson lev-
els are smeared to give a smooth level density,
from which an "average" or "uniform" energy is
computed. Secondly, the shell correction term is
obtained by subtracting this average from the Nils-
son-model energy of the (paired) ground state.
Finally, the above average energy is replaced by
a more accurately fitted liquid-drop value.

The smooth level density g(e), mentioned in the
first step above, is given by

1 -U 2
g(e) = ~Qfco~~ e

Any error will be in the eighth order. Note that

f, , is a linear combination of Hermite polynomi-
als. For instance,

f„,~, =f,~ i, + „H (U„),

where II, is the eighth Hermite polynomial.
Based on this smoothed level density, a corre-

sponding average energy is calculated as

E(g) = 2
~

eg(e)de, (2)

where A. is the Fermi energy for the smooth dis-
tribution of levels, determined separately for neu-
trons and protons so as to meet the requirement
of given neutron and proton numbers. The factor
of 2 comes from the degeneracy of the deformed
shell-model state. Higher degeneracy, for ex-
ample, in spherical nuclei, is taken care of by
the appropriate treatment of the summation in-
volved in Eq. (1). Thus we define the shell effect
to be

5Z, t,i, =2+'e„-Z(g),

where P „represents summation up to Fermi en-
ergy A.

Pairing correlations are not included in the liq-
uid-drop model. A correction term can be calcu-
lated by finding the best ground-state wave func-
tion of the Bardeen-Cooper-Schrieffer type, " and
comparing its energy to the sum of the Nilsson lev-
els. With the usual population factors V„' and U, ',
the pairing force strength G, and the energy gap 4,
the pairing correction from Nilsson et al. ,

4 is

U„=(e -e„)/y,

where the sum is over all levels of the Nilsson dia-
gram and f, , is a correction factor to the simple
Gaussian smearing of each energy level e, with a
finite width y. [In order to compare with results
of Nilsson et al. ,"here y is also measured in
units of h~c (=41/Au' in MeV). ] f, „ is introduced
to ensure that if the distribution of levels were a
smooth function of energy, the exact value of the
level density at the point e is obtained. Thus, if
the smooth level density can be represented by a
polynomial of order m, an expression can be ex-
plicitly written down forf, . Requiring the order
m to be six, one has

2

5E =2+e„v„'——-c(g. v„'-P'1)
P V P

I
2 eU ~ (4)

~E sheH ~+ pair ~

Shell nonuniformities in the nucleon level distri-

The sums are taken separately over neutron and
protons involving pairing matrix elements G„and
G~, respectively.

The shell correction 6E as given by Strutinsky's
method is, therefore,
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TABLE I. Comparison of calculated eigenvalues On MeV) of a few states close to the Fermi surface of »Pb20 with re-
sults from the work of Masterson and Lockett (ML) (see Ref. 18) and experiments (see Ref. 19).

State
This paper

Neutron Proton Neutron Proton
Experimental

Neutron .Proton

lh ii/2
2d3/2
3Si/2

~9/2
2f7/2

lii3/
3P3/2

2f,/,
3P i/2

2A/2

-8.44
-9.03
-8,40
-7.83
-3.78

-11.74
-10.45
-10.10
-4.78
-5.08

-9.2
-10.9
-10.3
-8.8

-8.9
-10.4
-9.7

-9.16
-8.39
-8.05
-7.38
-3.94

-9.37
-8.53
-8.03

3e77
-2.87

bution exist in deformed nuclei and occasionally
give rise to secondary minima in nuclear defor-
mation-energy surfaces. '

Strutinsky's method is basically simple and in-
tuitively appealing. In addition, it has a (fortuitous)
success in explaining a number of interesting
phenomena, including, for instance, shape iso-
merism. Therefore this approach has gained pop-
ularity. '

III. SHELL CORRECTION WITH REALISTIC

POTENTIAL

As one can see from the previous section, the
independent-particle-model potential plays a ma-
Jor role in calculating shell corrections. The us-
ual procedure of deforming spherical potentials
by conserving (approximately) the volume enclosed
by equipotential contours is by no means a satis-
factory or justified procedure. ' 4 And, for the
superheavy nuclei, extrapolating phenomenological
shell-model potentials causes additional uncer-
tainties.

Brueckner's statistical theory of nuclei, an en-
ergy-density formalism in an extended Thomas-
Fermi model, provides a better alternative. ' It
has been shown that the nuclear density distribu-
tion changes with deformation, and that shell-mod-
el potentials can be obtained directly from the
(deformed) densities resulting from this model. "'
In this way, one can make more reliable predic-
tions of the variation of potentiaLs with deforma. -
tion.

For nuclear densities calculated under the as-
sumption that neutron and proton distributions are
proportional to each other, "shell-model potentials
are obtained as follows: The Thomas-Fermi po-
tential experienced by the last bound neutron is

TABLE II. Calculated eigenvalues (in MeV) of a few
states close to the Fermi surface of ii4X

9 .

Neutron state Eigenvalue Proton state Eigenvalue

2g7/2

4si/2
M3/2
2kii/2
1~ i3/2

-6.89
-5.85
-5.65
-3.07
-1.40

1ke/2

lii3/2
2f7/2

2fS/2

3P3/2

-9.38
-8.11
-7.76
-4.86
-4.03

i.e., the Fermi energy (Lagrange multiplier for
the neutron} minus the kinetic energy at the Fermi
surface. This simple form results, since there is
no kinetic energy gradient correction in the statis-
tical theory. Besides the direct and exchange
Coulomb potential, the last bound proton sees a
potential that differs from the one above by a sym-
metry term. This is directly derived from the po-
tential energy functional, which is based on nuclear-
matter calculations with realistic nucleon-nucleon
forces. ' The corresponding shell-model potential
is obtained by adding a Thomas-type spin-orbit
term with a strength parameter taken to be 30.
When the statistical theory breaks down at low

density, potential tails of Woods-Saxon form are
added without introducing parameters. " Details
are given in Ref. 7.

In this paper the Strutinsky method is tested,
using the above shell-model potentials. ' The sum
over the Nilsson diagram is replaced by the in-
clusion of all bound states. Strictly speaking, the
potential is appropriate only for the last bound nu-
cleon. However, this approximation has been
shown to be sufficient for states close to the Fermi
surface, ' a point to which we shall return in Sec.
V.

Some of the single-particle energies for (spheri-
cal) „Pb'~ and»~X' are listed in Tables I and II.'7
Comparison with the results on 8~Pb' from Mas-
terson and Lockett" and experiment" is made; the
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level sequences in»4X' are similar to those of
¹ilsson et al.' and Rost.2' Pairing corrections are
completely negligible for these nuclei even when

twice the values for G of Ref. 4 are used. This is
expected from the fact that both nuclei are "doubly

magic. " In Fig. 1, shell effects (same as shell cor-
rections here) are plotted as a function of y for
different orders off„„." It is clear that the re-
sults are strongly dependent on the shell-smearing
parameter as well as the order of the curvature
correction for smearing. However, the Strutinsky
method can only be physically meaningful if the re-
sults are independent of y for a range of values of
the order of a major shell gap. In other words,
no unambiguous values can be obtained for the shell
corrections.

The variation of 6E with y can be understood qual-
itatively. For values of y of the order of 1 (i.e.,
a major shell gap), levels from the adjacent shells
cross. The number of levels crossing the Fermi
energy A from above and below is approximately
the same, so that A is close to A [cf. Eqs. (2) and

(3) for definitions]. This leads to a decrease in
the binding energy of a magic nucleus, making 5E
negative. By increasing y, the smoothed level

density g(e) is "stretched" over a larger energy
range, causing an increase in the binding energy.
That 5E is positive, in the limit of large y, can
also be shown mathematically. From the above
arguments, it is not surprising that the curves in
Fig. 1 exhibit minima, where the variations of
5E with y and the order of the curvature correc-
tion are slower than at other regions. These min-
ima, give Pb'~ shell corrections (in MeV) of -23.7,
-24.6, and —25.2, for sixth-, eighth-, and tenth-or-
der curvature correction, respectively. However,
the experimental value of about -12.7 MeV (cf.
Fig. 16 of Ref. 4) shows that one cannot modify

the Strutinsky method by using the minima of the

plots of 5E against y.

IV. EFFECT OF THE CONTINUUM

In the presence of a potential, the structure of
the continuum deviates from that of a free particle.
The difference in level densities, called "continu-
um shell level density" here, is due to resonances
with finite width, corresponding to quasibound
states. If Strutinsky's method is to be used con-
sistently, this structure should be smeared in the

(b)

)
x -6

)
-6

UJ

-10

—12

-14
0 1.6 2.0 2 40.4 0.8 1.2

I I I I I I I I I I I. I

-10

-12—

-14
0 0.4 0.8 1.2 1.6 2.0 2 4

2
(d)

-4)
UJ
4O

-10 -10—

-12 -12—
I I I I I I I l

0,4 0.8 1.2 1.6 2.0 2 4 0 0.4

FIG. 1. Shell corrections as a function of the shell-smearing parameter y for
f f4X~S . In each figure, the three different curves correspond to the inclusion of
ture correction terms for smearing.
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neutrons and protons in 82Pb and
sixth-, eighth-, and tenth-order curva-
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FIG. 2. A typical component of the continuum shell level
density for neutrons in 82Pb . Here j is 4.5 while l' is 5.

FIG. 3. Effect of including the continuum: the solid
curve for neutrons in 82Pb (with sixth-order curvature
correction) becomes the dashed curve. For comparison,
the results of Ref. 4 are shown by the dot-dashed curve.

same way as the bound levels.
Treating the continuum by taking into account

positive-energy states obtained by an expansion of
realistic wave functions in a harmonic-oscillator
basis is a very rough procedure. In addition, the
so-called "quasibound" states obtained this way do
not have finite energy widths. As far as the Nils-
son model is concerned, there is no continuum in
the usual sense. The states high above the Fermi
energy are similar to those below in structure and
have been included" in shell-effect calculations. "'
This is hardly a reasonable representation of the
continuum effects.

The consistent way to handle the problem is to
modify Eq. (1) appropriately, i.e., replace the
sum by an integral over positive energy after in-
cluding' a continuum shell level density. The latter,
as a function of energy e, is given by Beth and
Uhlenbeck" as

Q (2l+ 1)—d
1 dg,

where q, is the phase shift for the 1th partial wave
at energy e. For our present case, because of the
spin-orbit potential, the phase shift is dependent
on both l' and j, the total angular momentum, while
the degeneracy factor becomes j+ —,', conforming
to the convention in Sec. II. [See paragraph above
Eq. (3).]

Figure 2 shows a typical component of the con-
tinuum shell level density for neutrons. ' However,
integration by parts is used ' in computing shell
effects as a function of y, so that phase shifts, "
rather than their derivatives, enter. The loss of
accuracy in numerical differentiation has thus been
avoided. For the case of f~',I„, all the partial
waves up to / =10 (both j values for each l), and a

maximum continuum energy of 20 MeV have been
included. The effect of including the continuum is
displayed in Fig. 3; it does not change the quali-
tative features of the results, and the minimum is
shifted by only 1.3 MeV. For comparison, the re-
sults of Nilsson et aE.4 are also plotted.

V. DISCUSSION

The apparent success with the Nilsson-model
potentials can be partly traced to the schematic
nature of the harmonic-oscillator levels, '~ and the
replacement of the continuum by many discrete
levels having the same qualitative structure as
those below the Fermi energy. For appropriately
chosen parameters, approximate quantitative
agreement with experimental data is understand-
able.

In this investigation of the validity of the Stru-
tinsky theory of shell corrections, we employ re-
alistic shell-model potentials from the statistical
theory of nuclei. These potentials are only suf-
ficient for states close to-the Fermi surface. How-
ever, this fact does not decrease the credibility
of our conclusions as, according to Strutinsky, '
the shell correction is essentially determined by
such states. " This study shows the breakdown of
the procedures involved in computing shell cor-
rections, even with the effect of the continuum
properly included. We wish to emphasize that the
objection raised here is of qualitative character,
rather than quantitative. The use of any reason-
able finite potential well will lead to similar con-
clusions.

Recently, Meldner has proposed a semiphenom-
enological self-consistent theory also for the study
of nuclear binding energies. '~ However, the for-
midable amount of computation involved makes
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one hesitant in applying it to deformed nuclei.
Thus, the calculation of nuclear masses and de-

formation energies, one of the oldest problems of
nuclear theory, is still in an unsatisfactory state.
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