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The distorted-wave Born approximation (DWBA) cross section is discussed for a reaction
of the form A(d, Pn)A in which n is not observed. We evaluate the slowly convergent oscillat-
ing radial integrals by contour integration in the complex radius plane. This avoids the com-
putation of wave functions out to the large distances that the Huby-Mines technique requires.
The present technique is also useful for stripping to very weakly bound states. We find that
the DWBA angular distribution for stripping to a resonant n state is closely reproduced by
using a form factor for the resonant energy of n. The width of the resonance, rather than the
spectroscopic factor, is found to be measured by the absolute magnitude of the cross section.
The results of calculations with the present method are compared with the results of the Huby-
Mines method for the ~6OE', d, p)~~O reaction leading to the resonant 5.08-MeV state of O.

1. INTRODUCTION

Consider an experiment designed to observe a
single-particle transfer reaction of the form A-
(d, P)B. Here d symbolizes a composite particle.
It is made up of the particle P (which may be either
a nucleon or a composite particle) and a nucleon n
that is transferred to the target nucleus and there-
by forms a state of the final nucleus B.' Bound
states of B appear as peaks in the energy spectrum
of outgoing P particles. Resonant final states also
are seen as peaks, which, however, lie on top of a
continuum due to three-body breakup.

When B is a bound state, the reaction can be an-
alyzed in the usual distorted-wave Born approxima-
tion (DWBA). Such an analysis frequently gives val-
uable information on the angular momentum, par-
ity, and spectroscopic factor of the final state. We
propose to show that the success of the DWBA anal-
ysis can be extended to long-lived resonant states
of B that are unstable against emission of n.

The reaction considered is

A+d -A+p+ n —&„,

where B~ is the energy for separation of d into n
and P. We shall calculate the angular distribution
of P, assuming that the direction of n is not ob-
served. The presence of three particles in the fi-
nal state renders exact caIculations prohibitively
laborious if realistic potentials are to be used. We
therefore restrict ourselves to the DWBA, without
necessarily assuming that n and P are sequentially
emitted. Rather, the validity of our approximation
depends on the weakness of inelastic processes (in-
cluding the breakup itself) in A+a scattering.

The DWBA amplitude evaluated in the present
work is the same as that proposed by Huby and
Mines. ' A "convergence factor" e " appears in
its definition. Huby and Mines evaluate the ampli-

tude for positive values of e and extrapolate numer-
ically to the limit n -0. In contrast, me do not use
a comexgence factor in our numerical evaluation
of the amplitude. It is of interest to compare our
technique with that of Huby and Mines. Alty et al. ~

have used the Huby-Mines technique to calculate
the proton angular distribution for the reaction
"O(d,P)"0 leading to the 5.08-MeV, J'= 2+ state
of the final nucleus at 12-MeV incident deuteron en-
ergy. We therefore illustrate our method by apply-
ing it to the same case.

Other treatments of stripping to resonant states
have been given by Bang and Zimanyi and by Buk-
anov. ' Bang and Zimanyi choose to compute only
the contribution of the A+n resonance pole to the
cross section; accordingly they employ a Gamow
state for the A+n wave function. They compute the
radial integrals by a version of the Huby-Mines
method that uses a Gaussian convergence factor;
this serves to overcome the exponential increase
of the Gamow wave function at large distances.
They justify their normalization of the cross sec-
tion only by appeal to a comparison with experi-
ment. Bukanov, on the other hand, uses A+n
wave functions for real energies. He transforms
to "prior" form that part of the integral for which
the n particle is beyond the range of the nuclear
force. In this transformation a surface term
arises. He asserts that this is the dominant con-
tribution, and neglects the volume integral on the
ground that it is zero if corrections are made for
the Coulomb polarization of d. While this may be
a good approximation in suitable circumstances,
Bukanov's results do not seem to be identically
equal to the expressions given by the usual "post"
form of the DWBA.

2. THREE-BODY CROSS SECTION

The general expression for the cross section'
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for the three-body breakup 4 + d —A +P + n is

= (2w) k m~p~+l ~Tl 5(E~ —E;)5(P~- P;).
p~ pn pp

Here m„and Sp~ are the mass and incident momen-
tum of d; E and SP are the total energy and momen-
tum of the system, and the subscripts i and f refer
to initial and final states; Sp&, hp„, and@p~ are the
final-state momenta. The transition amplitude T
is defined with all scattering wave functions nor-
malized like e'P ' ' . The summation is over final
spins. The result should be suitably averaged over
initial spins. Let hk~„be the relative momentum
of A. and n, and @k» the relative momentum of
B (=A+n) and P. Then we have

range of E»-——,'k»'/p» that will be accepted by
the detectors (or summed in the data reduction).
The fictitious do „/dQ~ has the form of the cross
section for stripping to a bound state with angular
momenta l,j. Instead of being normalized to unity
like a bound state, however, the final n state in T
has a radial wave function that goes like (k„„r) '
& sin (k„„r+y) at large distances.

Equation (7) shows that different l,j contribute
incoherently to the differential cross section.
Levin' has observed that this facilitates extraction
of the contribution of a resonant state of given /, j
from the nonresonant background of other l,j, In
what follows we assume that the l,j sum in Eq. (7)
reduces to a single term (i.e. , we suppose that the
background part of the observed cross section has
been subtracted).

do/de dk~„dk» —do'/dp~dp„dp~.

In the type of experiment considered, only the
c.m. angles &~ of particle P are observed. The re-
quired differential cross section is therefore

3. DISTORTED-WAVE BORN APPROXIMATION

The three-body breakup has been discussed in a
previous paper' for the model Hamiltonian

H =K + V„(r„)+ Vq (rp ) + V„q (l r„—rp l ),

da,", - do
'

dPf k~P dk~I k ~dP ~k dkp p4 An BP
(4)

with

K = 2 5'(p„'/m„+p~'/m~)
The final state of the n+A. system can be unitarily
transformed to a partial-wave representation.
Then the integration over the angles of k~„, and
the sum over the spin projection of n are replaced
by a sum over the angular momentum labels l, j,
and m. The P& and k„~ integrations can be car-
ried out by use of the expression

corresponding to an infinitely massive inert target
A. The transition amplitude T was shown to be
given by

T= »m (Xo-le """V.&l|(.'&,

P~' k~„k~,
E~ —g rc + +

mtot & W~n &»
(6)

where

=(2v) '8 'm„p~g dk„„+l~Tl'k»p» 'k„p'k„„'.
P l jm

If we now define a fictitious cross section

gF

dg
= (») @ P~u P»k»k~~

m

T =(4w) 'T,
(6)

this can be written'

dE~nk~n ~

P
(7)

Here E, and E, are the values of E&„=ak&„'/P~„
that correspond kinematically to the limits of the

where the quantities p, are reduced masses. The
result is We use the notation of Ref. 8, in which y„- and y;

are scattering wave functions for the optical poten-
tials V„+ and V&, with incoming boundary condi-
tions. The state g,

' is the exact scattering eigen-
function of the complete Hamiltonian, with outgoing
boundary conditions. The DWBA is obtained on ap-
proximating |I'j,

'
by

where

R~ = (m „r„+m~ r~ )/(m „+m ~) .

Here, y„+ is an optical wave function for elastic
scattering of d from A, with outgoing boundary con-
ditions, and P is the bound internal wave function
of the d particle. Thus
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T(DWBA) = lim (X;~e "'"&„~~X,') .
f}f~0+

(13)

&(DWBA) = »'m Do ~dr X. *(r)Xp*(r)xd'(r)e

(15}
Until now, A has been assumed to be infinitely

massive. In the ZR approximation, the finite mass
of A can be taken into account exactly by replacing
the argument of X~ in Eq. (15) by cr, where c = m„/
m&. This substitution will always be made without
further comment.

Since a single l, j is assumed to contribute to Eq.
(7), only one partial wave of X„- is needed. Then
when g~ and gd- are expanded in partial waves, Eq.
(15) becomes

T (DWBA) =DOLC(, )(k~„,kent, k~)ff'„),

(~]= (L„Z„L,, Z, }.

The universal geometrical coefficients C~ „~ relat-
ing the radial integrals fP) to the DWBA amplitude
have been derived by several authors. ' Satchler'
gives a complete discussion of these coefficients,
although not in the present notation.

The physics of the reaction is entirely deter-
mined by the radial integrals

MA Ad Bp

I(Lp, Zp ~ I&j i La p ~u)

= lim
~(

dr Xz~~~ (cr)F» (r)Xi„~~(r)e
0

where
F

& g (r) = (k&.r) 'Xi, (r) .

(17)

Beyond the range of the nuclear interaction, the
functions g are all of the form

—,
'

i[H, (kr) —qH,'(kr)] e' '&, (19}

where H', =6, +gE, are outgoing and incoming Cou-
lomb functions and g is the partial-wave scattering

We shall make the zero-range (ZR) approximation,
and later correct for finite-range (FR) effects. In

this approximation we have

V~P((r„—r~~) =Doh(r„—r~), Do = Idr V~ P(r)

(14)
so that Eq. (13) becomes

matrix element. The Coulomb phase shifts are de-
noted by 0, .

Standard distorted-wave computer programs can
be used to compute dc (DWBA)/dQ~ from the f(',).
Application of Eq. (7) then gives the desired cross
section. The tasks remaining are (a) to calculate
the resonant form factor F» and the optical wave
functions X for d and p, (b) to evaluate the radial
integrals fp'), and (c) to perform the integration
over E„„indicated in Eq. (7). These tasks are dis-
cussed in Secs. 4, 5, and 6, respectively.

4. CALCULATION OF THE FORM FACTOR
AND DISTORTED WAVES

The functions g„,y», p& & are calculated by
solving the partial-wave Schrodinger equation for
potentials of the form

V„dU„
+~so dmso

g 2-2OF2 (20)

with Woods-Saxon shape functions

V, (r)=[I+e"&]-', x, =(r R„)/a-,

The Coulomb potential is taken to be

~co &
= ze Z,Z, [3 —(r/Rc) l/Rc, (r- Rc)

=e'Z, Z, /r, (r)Rc).

The geometrical parameters of the potential are

R& =v, ~A' and az,

where A. can represent V, W, so, or Coul. The re-
sults can subsequently be corrected for nonlocality
of the potentials, and for the effects of finite range.
As usual, V„and V~ are chosen to reproduce the
elastic-scattering data in the relevant energy
range.

For the form factor y», the conventional bound-
state procedure is to choose reasonable values for
the geometrical parameters (r«, ar) of the central
well and for the parameters of the spin-orbit poten-
tial, and then to vary Vo to fit the experimentally
known separation energy. This procedure can be
extended naturally to resonant states. In fact, on
physical grounds the procedure may be better jus-
tified for resonant states. For bound states, there
are really no good guidelines for choosing the pa-
rameters of the bound-state well. For resonances,
however, scattering measurements can help to de-
termine the potential parameters.

The resonance in the A+ n system is character-
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ized by an energy E„, a width F = I'„, and angular
momenta l,j. We assume that no inelastic chan-
nels are open near E&„=E„;that is, we assume

Then V&„will be Hermitian. The sirgle-
Pa&icle potential V&„corresponds to scattering of
n by A without virtual excitation of A. To the ex-
tent that exchange effects can be neglected, t/'„„

must therefore be independent of E&„. The energy-
dependent exchange effects will be small if the
wave function of the scattered nucleon has small
overlap with the wave functions of the target nucle-
ons. In particular, this will be true if the wave
function of n is small inside A, or if those partial
waves of n that are not small inside A have angular
momenta that are absent in the shell-model repre-
sentation of the target state.

For physical scattering of a nucleon n by a nucle-
us A, there is virtual excitation of A. The corre-
sponding optical potential therefore depends on E„„.
However, it seems reasonable to neglect such vir-
tual excitation, except at or near resonances,
where the scattering wave function is large in the
interaction region. We should therefore choose the
single-particle potential to reproduce the observed
background scattering in the energy range of inter-
est. Virtual excitation of A will shift the reso-
nance energy by an amount of the order of the sin-
gle-particle width. Close to the energy of the phys-
ical resonance, the single-particle potential should
therefore have a resonance in the l, j partial wave.
Although these criteria are not sufficient to deter-
mine the single-particle potential uniquely, we be-
lieve that they afford a better guide to its choice
than is available in the bound-state case.

We use the optical-model code ABACUS" to cal-
culate the form factor y». At present, this part of
the calculation is not efficient, since the search

6.00

for potential parameters must still be largely by
trial and error. However, once the potential is ap-
proximately known, ABACUS will automatically
make the small parameter changes necessary to
fit the resonance energy to any desired degree of
accuracy (up to an accuracy of sl eV). These
small final parameter changes usually do not

change the calculated background cross section ap-
preciably. When the potential parameters are
known, it is a simple matter to compute the single-
particle width I,&

and the form factor (as a func-
tion of E„„and r) Fi.gure 1 shows some form fac-
tors computed by ABACUS, both on and off reso-
nance, for the 5.08-MeV resonant state of "O.

This prescription will not (in general) lead to a
F,p equal to the actual width F„of the physical res-
onance. This is at it should be. Requiring the
width calculated from the single-particle potential
to agree with F„would do great violence to the con-
cept of a single-particle potential, and would re-
sult in every physical resonance having a (spurious)
spectroscopic factor of unity.

We correct y», y~ ~, and X~„~„ for the effects
of nonlocality by using the local-energy approxima-
tion of Percy and Saxon. "Their prescription gives
the wave function for a nonlocal potential equiva-
lent to the local potential ~q as

(&f NL /2@ )V&1

times the wave function for ~I.. Here PN& is the
range of nonlocality, and p, is the reduced mass.
We omit the Coulomb potentials in making the non-
locality corrections. Except for the form factor,
the nonlocality correction due to the spin-orbit po-
tential is also neglected, since spin averaging
should greatly reduce its effects.

We also correct for the finite range of Vp by the
method of Buttle and Goldfarb. " This correction
introduces a factor

4,00 1 —(h'/a') (V~ —V„—V~ —B„)/B ~

o 2,00

X

—2.00
0.0 I 0.0 I 5.0 2 0.0

RADIAL DISTANCE r (F)
25.0

FIG. 1. 0+n form factors on and off resonance, cal-
culated with the potential parameters given in Table I.
The form factors shown have not been corrected for the

effects of finite range and nonlocality.

into the radial integrand of Eq. (1 t). Here V~, V„,
and V~ are taken to be the optical potentials. The
constants a and b specify the ranges of the Hulthen

deuteron wave function and of V„~, respectively.
The Coulomb contributions to this correction can-
cel almost completely and are neglected. For the
same reason as before, we neglect the correction
due to spin-orbit potentials acting on d and P.

With the approximations noted, the finite-range
and nonlocal corrections (FRNL) can be made by
multiplying the form factor by a function that tends
to a value near unity at ~and becomes small near
the origin. Since the correct normalization of the
form factor is determined by the general require-
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ments of scattering theory, it would be wrong to
renormalize it after making the corrections.

5. RADIAL INTEGRALS

The integrand in Eq. (17) at large r is proportion-
al to

8 sfn(kspc1 +/"p ) sin(kg„k+1''„) sin(k~gt+'/g)/'r.

For a charged particle, the phase y includes a
term proportional to lnx. For positive separation
energy B„ofthe d particle, the conservation of en-
ergy implies

gral by a numerical quadrature with weights and
abscissas independent of a, the limit as e-0 will
be identically the same as the result of simply
omitting the convergence factor. Therefore the
Huby-Mines technique cannot improve the conver-
gence unless the quadrature uses weights and ab-
scissas dependent on n. The construction of suit-
able quadrature formulas is not discussed in Ref.
2. Consider now the conditions for reliability of
the numerical extrapolation to o. =0. If the n'
term of I is not to exceed say a tenth of the e term,
then we must have

k~„&k~„+k~p,

4k =- k„~ —k~„—ck~p & 0. (21)

In practice this integral must be cut off at some
upper. limit B. For adequate accuracy, the expo-
nential should be small at 8, say less thane '
= 10 ~. Therefore we must have

Thus the integrand always oscillates. The presence
of the factor x ' then. ensures convergence even for
n =0 (though not absolute convergence). The ex-
treme slowness of this convergence causes diffi-
culty with the numerical evaluation of the integral.

For a bound state, the usual procedure is to cut
off the integral at a finite upper limit R = 30 F.
This method may succeed also for-resonant states,
at least in those (trivial) cases for which the part
of the form factor beyond the barrier region makes
a negligible contribution. The danger of using a
finite cutoff R in more realistic situations is made
clear in Fig. 2, where calculations for two values
of 8 are compared. Some improvement may be
gained by averaging' over a wide enough range of
R values.

Another approach is to replace the resonant state
by a very weakly bound state, without altering the
energy of the outgoing P particle. This approxima-
tion cannot, in general, be relied on, although it
may succeed in isolated cases. For the "O(d, g)-

O(5.08-MeV) reaction, the bound and resonant
form factors are noticeably different (as may be
seen from Fig. 7 of Sec. 8). This difference is re-
flected in the corresponding theoretical cross sec-
tions plotted in Fig. 9 of Sec. 7. Even in cases in
which the fictitious bound form factor gives the
correct shape, there is no reason for the absolute
value of the cross section to be correct.

In sum, it seems unwise to rely on the results of
calculations with a finite upper cutoff or with a fic-
titious bound form factor.

Huby and Mines' have discussed this problem.
They retain the "convergence factor" e "" and, af-
ter evaluating the integral I for several values of
o, , extrapolate to e =0. If one evaluates the inte-

Consequently

R &10/o &10(10/M) =100/nk. (22)

For Ak =0.17 F ', appropriate to the "O(d,P)"0
case treated by Alty et af. , ' Eq. (21) gives

R&580 F.

I I I I

l60 (d, p) 0, E„=5.08 MeV
l7

E l20M V

l0 o0
l

50
ec.m.

I

l00
I

l50

FIG. 2. Cross sections calculated by cutting off the ra,-
dial integrals at a finite upper limit R. The resonant
form factor that v as used is curve 2 of Fig. l.
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Therefore, the successful use of the Huby-Mines
technique requires evaluation of the three wave
functions g out to very large distances. The inte-
gral is the sum of a large number of positive and
negative contributions, because the integrand os-
cillates many times over this distance. The can-
cellation of positive and negative contributions may
reduce the accuracy of the result. Furthermore,
the calculation must be done for several values of
e. For these reasons we have found the Huby-
Mines technique unsuitable.

In the present method, the range of integration is
divided into an inner part 0 & r & r, , and an outer
part r, & r& ~, with r, chosen so that the nuclear
potentials are negligible in the outer part. The in-
tegral over the inner range is evaluated by the
standard apparatus of Tamura's program D%MAIN. "
In the outer range, Xz „ is split [as in Eq. (19)]
into H' and H parts. Figure 3 shows the complex
r plane. The contour for the H' part of the inte-
gral is deformed into a line V, in the positive imag-
inary direction, completed by an arc Q, whose ra-
dius tends to infinity. In the same way, the con-
tour for the 8 part becomes V Q .

The function H' (H ) is analytic" in r except for
a branch point and pole of order l at r = 0 and a
branch line along the negative (positive) imaginary
axis. Therefore, these contour deformations do
not affect the values of the integrals. For p in any
sector excluding the branch line, JJ', has the asymp-
totic form

(23)

where y, is a phase containing a term proportional
to in'. In conjunction with Eqs. (17)-(19), this as-
ymptotic form implies that the integrands are ex-
ponentially small everywhere on the corresponding
contours Q, . The contributions from Q, therefore
vanish when the radius of the arcs tends to infinity.
In the integrals over V, , the limit n -0 may be tak-
en under the integral sign. In this way, the conver-
gence factor is altogether eliminated. When the V,
and V contributions are combined, the outer inte-
gral becomes

2e' '& dy [Xz ~ (cr )E» (r )H~ (r )
0 LpJp

+n ...X ...(cr,)J'„(r,)H,' (r, )]

(24)
In this integrand, r, -=r, +Sy. The integrand of Eq.
(24) is smooth, tends to zero exponentially at large
y, and undergoes only a small number of oscilla-
tions over the interval in which it is large. It is
very suitable for numerical quadrature. Figure 4

illustrates this combined integrand in a typical

V-

Q-

/

~
TO c)

Re t'

FIG. 3. The complex r plane, showing contours (dis-
cussed in the text) for radial integrals.

0.20

O. I5 (a) RE

O. IO—

C)+ 0.05—
K
C9
LLI 0
K
g- 0.05—

O
+-O. IO-
N

OF
RS V+

"O. I 5—

-0.20 I I I I I I I I I I

2 4 6 8 IO 0 2 4 6 8 IO

Rer (F) Irrir ( F)

FIG. 4. A typical radial integrand with L„=2, J&=1,
L p=4, Jp= 2, l=2, J= p. (a) the oscillating integrand
for the original contour; (b) the smooth exponential de-
cay of the sum of the integrands for the contours V& that
are illustrated in Fig. 3.

case. The integrands of Eqs. (24) and (17) do not
tend to the same limit as x —x, . This is to be ex-
pected, since Eq. (24) was obtained by combining
two integrals over distinct contours running in op-
posite directions.

In the present method, we truncate the integral in
(24) at a suitable value y~„. The functions H'(r+)

for d are then evaluated by using the asymptotic ex-
pansion to start the integration of the radial differ-
ential equation for the Coulomb functions. The val-
ues and derivatives of E„and g~pJp at v J$ are
calculated by DWMAIN, and from these the required
values are obtained by integration of the Coulomb
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differential equation. 0~MAIN already furnishes
the elastic-scattering matrix element g~~&„. Typ-
ically, 30 points are sufficient for the numerical
@Qadi'ature.

In the separation of yl~z~ in expression (19),
numerical errors may arise if the Hi~ are much

larger than Xr„~„at r, . Such errors can be avoid-
ed if r, is chosen to be not too far inside the Coul-
omb-plus-centrifugal barrier for the d particle.
Usually, this condition becomes important only at
high I-~. In this case the requirement

r, &L~ (max)/k„„

ensures good results, where L~ (max) is the high-
est value of L~ needed to get adequate convex gence
of the partial-wave expansion. In the case illus-
trated, the choice r, = 12.35 F was found to be ade-
quate.

The magnitudes of the radial integrals are shown

in Fig. 5. The convergence of the partial-wave
sum is seen to be as fast as in the bound-state case.

6. INTEGRATION OVER THE ENERGY OF THE
UNOBSERVED PARTICLE

The calculation of 0» is laborious even for a sin-
gle value of E~„. It is therefore important that the
integration over E&„be performed as economically
as possible. For the case of a narrow resonance
at E&„=E~, we substitute

where x; and W; are the abscissas and weights for
the Ã-point quadrature over the interval. (-1,1).

Figure 6 shows do /d&~ at the values of E„„cor-
responding to the three-point quadrature. The
shaPe of the angular distribution is strikingly inde-
pendent of E&„. At first sight, this phenomenon
seems hard to explain ln view of the strong depend-
ence of the form factors (Fig. 1}on E„„. However,
the plane-wave Born approximation gives

do /dflp"
~ I «Fi(q&)Xi, (&)l'

0

with the momentum transfer defined by

(29)

q =Ik„,—k„I.

Here I', is a regular Coulomb function for zero
charge (i.e. , a Ricatti-Bessel function). In a suit-
able one-pole approximation, near a resonance,
the wave function y„ is an energy-dependent linear
combination of a free arid a resonant wave function.
The contribution of the free wave to the right-hand
side of Eg. (29) vanishes identically (unless the kine-
matically impossible condition q =k„„ is satisfied).
If an internal cutoff r, is introduced, the contribu-
tion of the free wave is still small if the free wave
is small in the interior. Then only the contribution
of the resonant wave function is important, and the
shape of the angular distribution is approximately
independent of E~„.

For fan =1 our approximation (28) becomes
E =E~+ 2F tan(~2'), (26)

do/dn, =a 'r} „„~„„(E,)-[do (E„)/dn, ] . (30)
where I' is a constant. Then the integral in Eq.
(7) becomes Equation (30) will be a good approximation only if

E -E~ ~ der
~@I' dx 1+4 jp~„

Xg

(27) l6 I70 ~~ I ~ O50e

U an approximate Breit-signer energy dependence
can be assumed for the cross section, i.e. , if

k„„(da /dQ~)~ [(E E„)'+-,'F']-
then the integrand of Eg. (27) becomes a constant.
If the energy dependence of the cross section is not
too different from a Breit-signer dependence, and
if I' is a fairly good estimate of the resonance
width, this integral is then suitable for numerical
evaluation by Gauss-Legendre quadrature. If the
contributions of energies outside the interval (E„
E,) are neglected, ' the quadrature formula gives

12

P~n~ g
+1+4

x}t„„(&,.)
" ', (26)

do f, (x,)
dO

V)

eo-
hl
I-
2.'

d

—x

Ld =LP
4 JP = LP —I/2
e J =L &It'2

Ld= L -2
P

& JP = LP- I/2
+ JP -" LP+ I/2

Ld=L +2
P

() JP = LP- I/2
~ JP = LP+ I/2

0

0
() 0

4 S
LP

+
a

T T 7 I

l2

FIG. 5. Magnitudes of the radial integrals as a func-
tion of I&. For I& ~ 6, the points for J =L&+ 2 are in-
distinguishable from those for ~&=L&+ ~. The relative
contribution of different I& values to the forward cross
section is roughly proportional to the quantity plotted.
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S= [a[', (31)

0 (d, P) Ed=)2.0 MeV where a is the amplitude of the normalized single-
particle state in the expansion of the physical final
state. It then follows that

4
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4

b

C
Al

i-
(3
LLI

CO

M p& IO

(32)

For unbound states, the final state is not normaliz-
able in the usual sense, so that the meaning of the
ratio in EII. (32) is unclear. Indeed, since the ba-
sic formula for the cross section [EII. (2)] is valid
only if h» is normalized like sin(hr+y) at large r,
the amplitude a seems to have little direct meaning.

What does the ratio (32) actually measure? We
expect the conclusion stated in Sec. 6 (that the con-
tribution of the free-wave part of X„ is small) to
extend to the case of charged n. If we assume that
the amplitude of the resonant wave function is pro-
portional to sin5„(where 5„ is the nuclear phase
shift), we conclude that

do /dQ~=sin2 6„.(dos/dQ~) (33)

where the subscript "peak" refers to the energy at
which 5» ——w/2. Then by EII. (7),

i0 I I I I I I I I I I I I I I I

90' l80
CENTER OF MASS ANGLE (deg)

dO «~ 2 . da
dQp de

r E2
~&~.&~a»n' &&, .

(34)
FIG. 6. Typical theoretical cross sections for the

«60(d, p) «~O reaction to states on and off the dsy2 reso-
nance in «~O+n. Although the corresponding form factors
differ considerably in shape, the three angular distribu-
tions are remarkably similar.

the resonance is narrow and symmetric and I is a
good estimate of its width. In the case illustrated,
a comparison of EII. (30) with the result for %= 3
showed agreement within 1% at all angles.

The accuracy of the N= 1 result makes it reason-
able to analyze data by means of EII. (30). The
shape of the angular distribution can be well deter-
mined even if the width F is not known.

7. DEVIATIONS FROM THE SINGLE-PARTICLE I.IMIT

We have assumed so far that A. is inert, and that
8 can be described as a potential resonance of n
and A —i.e. , a "single-particle state. " The mea-
surement of the deviation from this assumption is
a strong motive for DWBA analysis of stripping to
bound states. We therefore discuss the possibility
of measuring spectroscopic factors also in reac-
tions leading to resonant final states.

For a bound state, the spectroscopic factor 8 is
defined' by

Because contributions from outside the nucleus
dominate (do"/dQ~)~, I„ its experimental value can
be estimated from a DWBA calculation even with-
out a detailed knowledge of the physics of the reso-
nant state. Therefore the experiment measures
the integral that appears in Eq. (34).

Since sin'6» can be related to the cross section
for elastic scattering of n on A, the integral in Eq.
(34) can be measured in two independent ways: by
elastic scattering of n on A, and by the reaction
A+d-B+P-A. +n+P. A comparison of these two
methods would be of great interest, since it would
check the accuracy of the assumptions of the
DWBA analysis. A similar check is not possible
for bound states of B, because of uncertainties in
the magnitude of the single-particle form factors
in the external region. In contrast, the magnitude
of the resonant form factor in the external region
is entirely determined by the general requirements
of scattering theory.

In the limit of a narrow resonance of width I', Eq.
(34) reduces to the previously derived EII. (30). In
this approximation the exPeriment ngeasures the
uidth I" of the actual Physical resonance in B.

We regard the determination of S from I' as a
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and FRNI approximations. The results of these
calculations are shown in Fig. 8. The FRNL pa-
rameters used were a'/O'= V.O, P„„(n)=P„„(P)
=0.85 F, PNq(d) =0 54. F. It can be seen that the
FRNL corrections lead to about a 307o increase in
the cross section at 0'. (The form factor was not
renormalized after making the FRNL corrections. )
In addition, the correction tends to make the pre-
dictions of the two potentials more similar. This
is an obvious consequence of reducing the contribu-
tion of the interior.

Calculations for both the bound and resonant
form factors are shown in Fig. 9, along with the
data of Alty ef; aE. The experimental cross sections
have been multiplied by 1.75 in accordance with
the corrected target-thickness determination by
Naqib and Green. ' The calculation using the reso-
nant form factor clearly gives a better fit to the
slope at for ward angles. At backward angles, any
conclusions that might be drawn from the fit to the
data are nullified by two considerations. Firstly,
the cross sections are so small that it is difficult
to extract the contribution of the resonant state
from the nonresonant background. Secondly, pro-
cesses other than direct stripping couM easily con-
tribute most of the CX'oss section obsex'ved at large

Q(d, p) 0, E„=5.08 MeV

Fd= l2,0 MGV

angles. Thus no significance can be attached to
the bound-state calculation being the one that gives
the better fit at backward angles.

The bound-state calculation gives a spectroscopic
factor of 1.0. Fox' the resonant form factor, the
values calculated by Alty et cE. using the Huby-
Mines method" also have the same magnitude as
the data at forward angles (after the renormaliza-
tion suggested in Ref. 19). Our calculation, how-

ever, gives cross sections that are 1/0. 78 times
the experimental values at forward angles. We as-
sumed I =86 keV, and Do =1.48X 10 MeV F~ fox
the coupling constant" in Eg. (14). The FRNL cor-
rections did not appreciably affect the x'esult. Thus
comparison of our calculation with the data implies
that the width of the state is I =0.78 ~86=67 keV.
This is appreciably smaller than the value I'=90
+ 5 obtained from neutron scattering experiments. 2o

Serious errors can arise if the contribution of a
resonant state to the (d, P) cross section is extract-
ed by relying upon methods appropriate to the case
of bound states. For example, suppose that the in-
coherent background underlying a symmetrical
peak is taken as the value of the cxoss section at
the energies E&+~. Here 4E is assumed to be

O (d, p) Q, 5,08 MeV

= l2 MeV
d

JQ
E

l~

l0

b

l00
8C» lTl»

FIG 8. Comparison of ~GO(ds p) O theol etlcal angular

distributions, calculated with "deep" Rnd "shaHow" deut-
eron potentials, with FHNL and without ZBL correc-
tions for finite range and nonlocality. Table I gives the

potential parameters.

ec.m.

FIG. 9. Data (points) for the ~60(d, P) ~70 reaction lead-
ing to the unbound state at E„=5.08 MeV, together with
ZHL D%'BA calculations using resonant (solid curve) and
bound (dashed curve) form factors, with the potentials
listed ln TRMe I The deep deuteron potential wRS used.
The outgoing proton energy was the same in both cases.
The theoretical cul'ves hRve been normalized to give the
best fit to the data.
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greater than the instrumental resolution width.
Then contributions from the resonance wings and

under the peak are being neglected. Expressed as
a fraction of the total, these contributions amount"
to about (2/w)(I'/AE). For nF. =2K, this is about
30'%%uo. It seems not unreasonable to suspect an er-
ror of this order in the present case. A possible
way to correct for this error would be to solve for
I in the equation

2 I do dQ1+
b,E dQ

=5 FI AnkAn dgp exp p peak

In the absence of detailed information on the meth-
ods used by Alty et a/. in extracting the contribu-
tion from the 5.08-MeV state, we have not been
able to attempt this.

9. CONCLUSIONS

The present method makes the DWBA analysis al-
most as easy and effective for resonant as for
bound final states. In particular, there is no need
to use a convergence factor or even to calculate
and store the form factor out to very large radii.

For narrow resonances, the shape of the angular
distribution can be calculated by using only the on-

resonance form factor. This possibility can great-
ly facilitate the practical analysis of experiments.
The absolute magnitude of the cross section in es-
sence determines the width of the final state. The
spectroscopic factor S can be inferred from this
width.

In our analysis of the "0(d,P)"0 reaction to the
5.08-MeV state, we find agreement with the angu-

lar distribution calculated by Alty et al. The data
indicate that the 5.08-MeV state is a good d», sin-
gle-particle state. The width of the resonance de-
duced from the (d, P) cross section is somewhat
smaller than that deduced from (n, n) measure-
ments. This discrepancy may be due to neglect of
the intrinsic width of the state in reducing the data.
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