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We have calculated the effect of nuclear deformability on the cross section for interaction
of heavy ions with uranium. Static calculations indicate that these effects should be large;
dynamic calculations with liquid-drop parameters indicate that they should be smaller, but
measurable with currently available heavy ions {argon incident on uranium). Dynamic cal-
culations with parameters derived from spectroscopic measurements indicate that the ef-
fects should be quite small, in agreement with experiment. We have done both classical
and quantum-mechanical calculations; the two methods give the same results. The quan-
tum-mechanical calculations also give the probability of Coulomb excitation to the vibration-
al states of the target nucleus. We discuss the value of several approximations used to est-
imate total reaction cross sections.

I. INTRODUCTION

Proposed experiments to synthesize the super-
heavy elements (8 =114) will combine very heavy
ions as projectiles with heavy element targets.
For such experiments to be successful, it is nec-
essary that the projectile and target fuse to form
a compound nucleus and that the nucleus so formed
dissipate its excitation energy in neutron or y-ray
emission rather than in fission.

The probablllty for flsslon 18 enhanced 1f sevel-
al neutrons are emitted, since competition be-
tween neutron emission and fission occurs at each
stage of evaporation. This probability is also en-
hanced by the high angular momenta characteris-
tic of heavy-ion-induced reactions. In order to

maximize the chance that the nucleus of interest
survives fission, it is desirable that the initial
compound nucleus have as low an energy and an-
gular momentum as possible. These require'ments
dictate that the kinetic energy of the incident pro-
jectile be as low as possible.

A low energy for the projectile is desirable from
another point of view. It is believed that the prob-
ability for incomplete fusion reactions increases
with increasing kinetic energy. Experimental sup-
port for this idea is found in the work of Jodogne,
Kowalski, and Miller' who investigated the proba-
bility for complete fusion as a function of energy
for several light element systems. They found
not only that the fraction of reactions leading to
complete fusion decreases with increasing energy
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but that the absolute cross section for complete
fusion decreases with increasing energy. Mea-
surements by Sikkeland for argon incident on ura-
nium lead to the same conclusion. '

The above considerations indicate that experi-
ments aimed at producing superheavy elements
will use heavy ions of the lowest possible energy:
that is, with energies approximately equal to the
Coulomb-barrier energy. For reactions involving
heavy ions, it has so far been sufficient to esti-
mate such barriers from the Coulomb energy of
two spheres in contact. For some of the reactions
contemplated for production of superheavy ele-
Ments, the Coulomb-barrier energy and the Q for
fusion are approximately equal and opposite. Ir-
radiation with heavy ions of the appropriate ener-
gy should give complete fusion with good probabil-
ity and give compound nuclei essentially in the
ground state.

It has been pointed out by Beringer, ' however,
that these considerations ignore the deformability
of the nuclei. As two charged nuclei approach one
another, they tend to flatten into oblate shapes.
At any fixed distance between the centers of
charge, a lower total energy can be obtained by
flattening —the Coulomb-interaction energy de-
creases more than the deformation energy in-
creases. Because of this flattening the two parti-
cles must come closer together than do two
spheres before fusing. The Coulomb-interaction
energy is higher than for two spheres in contact.
At the same time, part of the system energy has
been taken from relative motion and put into en-

ergy of deformation. The net result is that the
"barrier" against nuclear reaction is higher than

it would be if the nuclei were rigid spheres. By
"barrier" we mean the minimum kinetic energy
such that the surfaces of the two nuclei just touch
at the classical turn around point. Further devel-
opment of these ideas has been made by Wong, 4

who considered shell effects on deformability, by

Maly and Nix, ' who have looked into some of the
dynamical questions that arise, by Holm, Scheid,
and Greiner, who have done dynamical calcula-
tions for several nuclei, ' and by Jensen and Wong,
who have also done dynamic calculations for sev-
eral systems. 7 A closely related problem is that
of Coulomb excitation and Coulomb fission, which
have been considered by Wilets, Guth, and Tenn
and by Beyer and Winther. '

Beringer's results' indicate that the barrier
against nuclear reactions proposed for the produc-
tion of superheavy elements may be some tens of
MeV higher than would be expected from calcula-
tions based on spherical nuclei. If this is the
case, the bombardments at the barrier calculated
for spherical nuclei would produce essentially no

nuclear reactions. Bombardments at energies suf-
ficiently high to overcome the barrier would lead
to compound nuclei with such high excitation ener-
gies that very few would survive fission during the
deexcitation process. The implication is that su-
perheavy elements may be more difficult to make
than had been anticipated.

Beringer's results also indicate that effects of
nuclear flattening should be observable for such
systems as neon on uranium, for which there al-
ready exist experimental data on reaction cross
section as a function of energy. Comparison of
such experimental data as are available with the
theoretical predictions can be used as a basis for
better understanding the feasibility of superheavy
element production. We present here such a com-
parison.

In the following we consider a classical calcula-
tion of the equilibrium configuration of two nuclei
with quadrupole deformation and a dynamic clas-
sical calculation of the interaction between two
such nuclei. The results of these calculations are
compared with the available experimental data.
We then consider a dynamic quantum-mechanical
calculation and compare this with the classical re-
sult. We consider also the implications of this
calculation with respect to fission by Coulomb ex-
citation. Finally, we investigate methods and ap-
proximations for calculating nuclear -reaction
cross sections in heavy-ion induced reactions.

II. PARAMETERS OF THE PROBLEM

For small deformation, we describe the shape of
the nucleus by the expression

R =R, [1+P Y,'(cos&)],

where R is the distance from the center of the nu-
cleus to the surface, R, is the radius of the unde-
formed nucleus, P is a deformation parameter,
and Y,

' is a spherical harmonic. (We note that,
with this expression, the volume of the nucleus de-
pends slightly on P.)

The energy V of the two interacting nuclei, rel-
ative to the energy of the two spherical nuclei at
infinite separation, can be written as

V= VDEp+ Vim ~

where VDz~ is the deformation energy of the two
nuclei and V&&Y is the Coulomb interaction be-
tween them. The energy of deformation is taken
to be

VDEv =
2 &t
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where the stif fne ss constant C is evaluated either
from the liquid-drop model or from spectroscopic
data. Geilikman" has given an expression for the
energy of interaction of two charged liquid drops
with shapes described by Eq. (1) and a common
symmetry axis. His expression was used by Ber-
inger3 in his calculations, and in corrected form
by Wong. 4 The corrected form is

The quantities E,' =a,A'" and Ec =acZ'/A'", can
be evaluated from the constants, a, and a~, of the
semiempirical mass formula. We have used con-
stants evaluated by Green" and have obtained the
values of C given in Table I for the nuclei of in-
terest to us. In particular, we note that C for ura-
nium is predicted to be about 80 MeV by this mod-
el.

Alternatively, we may evaluate the stiffness con-
stant C from spectroscopic data, as Wong has
done. " This is conveniently done with a simultan-
eous evaluation of the inertial parameter B, which
is necessary for dynamic calculations. For a har-
monic oscillator, the spacing, A u, of the levels
is given as

(2) 8'v = A v'Ci B . (3)

Here Z, and Z, are the atomic numbers of the two

nuclei, x is the distance between their centers of
charge, R« = xpA, . ' ', and A,. is the mass number
of the i th nucleus. The summations are taken
over the two nuclei.

For '"U, S~ is about 1 MeV, the spacing between
the ground state and the P-vibrational state. Fur-
thermore, for a harmonic oscillator, the mean

square value P
2 of the deformation P is given as

Evaluation of Parameters

Po =5/2 v'BC. (4)

For a liquid drop, the deformation energy can
also be written as

Thus if we knew both P' and he we can determine
both B and C.

The quantity p' is given in the literature" as

V =(E Eo)y(E Eo)

where the surface energy E, is given as

E, E, (1+Po/2m+ ~ ~ ~ ),

and E~ the Coulomb energy is given as

E =E (1 —Po/4m+ ~ ~ ~ ) .

VnE F
= P'(2 E,' -Ec)/4w,

or

C=(2E, E)/2v. -

TABLE I. Deformability parameters .

Nuclide
C

pre V)

The quantities E,' and 8~ are the surface and Cou-
lomb energies of a spherical nucleus. Thus

~' = 2P'/P',

where P is the mean ground-state deformation
(0.28 for '"U).'~ Combining Eqs. (3), (4), and (5),
we have

C =A&a/p'P'.

A value of p, of 0.180 can be obtained from the
grpund-state rotational band pf U pr pf 0.115
from the ratio of B(E2)'s for deexcitation to the
ground state from the lowest 2+ state in the
ground-state band and the lowest 2+ in the first p-
vibrational band. " Using the second of these two
values for p, which seems more directly relate d
to the properties of the P vibration, we get a val-
ue of about 960 MeV for C, or approximately 12

times the liquid -drop value.
This value of C taken together with a value for

of 1 MeV, gives 40 600 amu F' for B, or in
other units, B/8'o =972 MeV '. It is convenient to
parametrize B in terms of the value for irrota-
tional flow, '7

238U

132X

'4Kr
4'A r
2ONe

79.4
103.2
94.5
69.8
47.3

B;„= A3MR/ oon'8,

where A is the mass number, M the nucleon mass,
and Bp the radius of the undeformed nucleus. With

Rp 1 5 A F, B;» is 2440 amu F '. The value



714 P. W. RIESENFELDT AND T. D. THOMAS

derived from the spectroscopic data is 16.5 times
the irrotational flow value; this ratio is consistent
with what has been found for other nuclei, "

I I I I
i

I I I I

8U B C N 0 Ne

III. STATIC CALCULATIONS
I.0

At any separation distance ~, there is one equi-
librium shape, defined by the solutions to the equa-
tions aV/e P, =0 and eV/SP, =0. For the potential
given by Eq. (2), these two equations a,re linear in

py and p, and independent. The solution for the
equilibrium deformation is therefore straightfor-
ward.

The barrier against nuclear reaction by the tar-
get and projectile is taken to be the total energy
(Coulomb-interaction energy plus deformation en-
ergy) when the surfaces of the two nuclei are just
touching. For our calculations, each nucleus is
considered to have a mell-defined surface at a
radius given by Eq. (1) with B,=1.5A'" F. A radi-
us parameter of 1.5 F is somewhat larger than
one expects from nuclear radius measurements;
it is, however, appropriate for a model that con-
siders the nucleus to have a well-defined surface.
(See the last section of this paper and also a. dis-
cussion by Thomas. ")

The calculation of the barrier was done as fol-
lows. A value of ~, the separation distance, equal
to the sum of the spherical radii was chosen as a
starting point. Equilibrium values of the shapes
were calculated for this distance. Since the equi-
librium nuclei are oblate nuclei with a common
axis of symmetry their surfaces do not touch at the
chosen value of r. A new value of r was picked so
that the surfaces would touch. A new equilibrium
calculation was done. The cycle was repeated un-
til further iterations produced no significant
change in the separation distance or in the values
of P, a.nd P,.
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FIG. 2. Experimental and theoretical reaction cross
sections for various heavy ions incident on uranium.
The experimental data are from Viola and Sikkeland (Ref.
19). The theoretical curves have been calculated using
the optical-model parameters given in Table II. The
hatched band indicates the estimated cross section for
uranium plus neon if the nuclei had their equilibrium de-
formations.
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FIG. 1. The ratio of the interaction energy for two
touching oblate spheroidal nuclei with equilibrium defor-
mation to the energy of two touching spherical nuclei.
One of the two nuclei is uranium; the other has the nu-
clear charge indicated on the abscissa.

FIG. 3. Experimental and theoretical reaction cross
sections for argon incident on uranium. The experimen-
tal data are from Sikkeland (Ref. 20). Below about 250
MeV the theoretical curve is based on optical-model cal-
culations with the parameters «Table II. Above 250
MeV the curve was calculated classically.
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The results of static calculations for various
heavy ions incident on "8U are presented in Fig. 1.
For these ealeulations me have used liquid-drop
values of the stiffness constant C. They are in
good agreement with results of similar calcula-
tions done by Beringer. ' Here me have plotted
against atomic number of the projectile the ratio
of the barrier as calculated above to the barrier
for two spheres in contact. We note that the cal-
culated barrier is significantly higher than the
spherical barrier for the common heavy ions, bo-
ron, carbon, nitrogen, oxygen, and neon. In par-
ticular, for neon the calculated barrier is about
10%%uo higher than the spherical barrier; for argon
the effect is about 15%.

To show that no such effects are observed me
have compared in Fig. 2 experimental reaction
cross sections for heavy ions incident on uranium
(measured by Viola and Sikkeland") with cross sec-
tions calculated assuming that the nuclei are rigid
spheres of reasonable radi. us. We also plot, as
the cross-hatched band, estimates of the cross
section for neon incident on uranium calculated as-
suming that the potential is given by the sum of
Coulomb and deformation energies and that at
each separation distance the nuclei have their
equilibrium shapes. (See the last section of this
paper for the details of this calculation. ) We note
that the experimental cross sections agree mell
mith those calculated for xigid spherical nuclei and
not at all with those for deformable nuclei. A sim-
ilar comparison for argon ions incident on urani-
um' is shown in Fig. 3. Except at the lowest en-
ergies the agreement between experiment and the
calculation based on rigid spheres is good.

The spherical nucleus calculations mere done
with the optical model and a single set of param-
eters chosen by Auerbach and Porter" to repro-
duce the elastic scattering of heavy ions from gold.
(See Table IL) It may be argued that these param-
eters already compensate for the effects of defor-
mation, since they mere chosen to fit experimental
data. If this were the ease me would expect sys-
tematic deviations between experiment and calcu-
lation as we consider either light projectiles or
light targets. Thomas'~ has shomn that these pa-
rameters give calculated cross sections that agree
(within about 10%%uo) with experiment over a wide

TABI E II. Optical-model parameters used in calcula-
tion of reaction cross sections. Both real and imaginary
potentials are %oods-Saxon.

A =1.26(A~ +A ) x10 cm
V=41.8 MeV
8'=16.4 MeV
~=0.49x10 ~3 cm

range of projectiles, targets, and energies. Fox
instance, the cross sections for such lom-Z sys-
tems as oxygen and carbon incident on aluminum
are satisfactorily predicted mith these parameters.

The assumption that the interacting nuclei have
their equilibrium shapes at any distance is, thus,
not in aeeord with experimental evidence. The
measured cross sections at a given energy are
substantially larger than the predictions we have
made on the basis of this model. If me believe
that the deformability parameter C is approxi-
mately correct, then we must conclude that the
discrepancy arises from our neglect of the dynam-
ics of the process. Only if the relative velocity of
target and projectile is very lom ean the shapes of
the nuclei adjust to their equilibrium value. A sim-
ilar conclusion has been reached by Holm, Scheid,
and Greiner, e who did dynamic calculations for
"28n as both taxget and projectile. They found a
15' increase in the barrier due to dynamic distor-
tion effects compared to increases of up to 35%
calculated by the static, or adiabatic, approxima-
tions. Jensen and Wongv have also shown that the
dynamic calculations with spectroscopic paramet-
ers give barriers that are only slightly in excess
of those for rigid spheres.

IV. DYNAMIC CLASSICAL CALCULATIONS

The equations of motion for two deformable nu-
clei moving along their line of centers are

The quantity p, is the reduced mass of the system;
8, and 8, are the inertial parameters associated
with vibration of the two nuclei. The potential V is
the sum of Coulomb interaction and deformation
energies. The coefficients B, and D, of the veloc-
ity term in Eqs. (8) and (9) represent the viscosity
of the tmo nuclei.

At very large values of r, the Eqs. (8) and (9)
become the equations for the damped harmonic os-
cillator, mith the solution

D2 l j./2

P A exp(-Dt/28) exp + it —1-8 4BC
i

The quantity VC/B is the frequency of the undamped
oscillator. As the above equation shoms, it is con-
venient to give the viscosity in units of VBC. The
viscosity represents a radiation damping term,
which is small, and the transfer of energy from
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FIG. 4. The ratio of the interaction energy for two

touching oblate spheroidal nuclei with dynamic deforma-
tion to the energy of two touching spherical nuclei, plot-
ted against nuclear viscosity. The system considered is
neon incident on uranium. The line was calculated using
an inertial parameter equal to the irrotational flow value.
The single point at zero viscosity was calculated with an
inertial parameter 10 times as great.

kinetic energy of collective motion to intrinsic, or
nucleonic, excitation. For even-even nuclei there
is no intrinsic excitation possible below about 2

MeV. Therefore, unless there is more than this
energy in kinetic energy of collective motion, there
can be no such transfer; the viscosity is zero. '
Except for one set of calculations done to show its
effect we have assumed the viscosity to be zero.

For a nucleus with a ground-state deformation,
such as" U, there should be an additional equa-
tion of motion describing the rotational motion and
terms in the potential expression giving the de-
pendence of energy on the angle between the nu-

clear symmetry axis and the line of centers. Cal-
culations considering the rotational motion alone
indicate that this effect can be ignored for our pur-
poses. '

For the dynamic calculations we have taken the
barrier to be the incident energy that just brings
the two nuclear surfaces into contact at the dis-
tance of closest approach. The solution was found

by numerical integration of Eqs. (7), (8), and (9).
With liquid-drop values for the stiffness constant

C, irrotational flow values for the inertial param-
eter B, and zero viscosity we find for neon inci-
dent on uranium that the barrier is about 5% high-
er than that for rigid spheres and for argon on ura-
nium 10% higher. These are to be comps. red with

the static values of 10 and 15%, respectively. As
expected, the dynamic calculations give results
that are substantially lower than those from the
static calculations. They are still much higher
than what we would infer from the experimental re-
sults shown in Figs. 2 and 3.

We look now at the effect of viscosity on the sys-
tem Ne incident on U. We have used the liquid-
drop values for the deformability and the irrota-

tional flow values for the inertial parameter. Fig-
ure 4 shows, as the solid line, the ratio of calcula-
ted barrier to spherical barrier plotted against vis-
cosity (in units of ~BC ). Only for a. rather large
viscosity does the calculated barrier fall to approx-
imately the spherical value, in agreement with ex-
periment. Such large viscosities do not seem to
be physically reasonab1. e. The maximum kinetic
energy of collective motion (-', B P') for the sys-
tem is only 2.9 MeV, and we therefore do not ex-
pect much transfer of energy from collective to
intrinsic motion.

We have seen above that the spectroscopic val-
ues of the stiffness constant and the inertial param-
eter are, respectively, about 12 times the liquid-
drop value and 16 times the irrotational flow val-
ue. The single point plotted on the vertical axis of
Fig. 4 represents the result of a calculation using
zero viscosity, the liquid-drop stiffness, and a
value of the inertial parameter B equal to 10 B,.„.
We see that there is now agreement between the
calculated barrier and the barrier for rigid spheres
(equivalent to the experimental value). Thus, if
we use an inertial parameter that is taken from ex-
perimental measurements we find that there is es-
sentially no deformation during the interaction,
even for zero viscosity.

In Fig. 5 we present results for the system ~'Ar

incident on "U. As before the ordinate is the
ratio of the barrier for deformable nuclei to the
barrier for rigid nuclei. The abscissa is the in-
ertial mass parameter B, in units of the irrota-
tional flow value. For these calculations the vis-
cosity was taken to be zero. For 8 =0, we have
the static result mentioned above; for B equal to
the irrotational flow value the barrier is about 10%

higher than that for rigid spheres. This result in-
dicates that the liquid-drop and irrotational flow

parameters are not the correct ones to use. How-

ever, if we use B about 10 times the irrotational
flow value, the calculated barrier is only slightly
in excess of the value for rigid spheres. Since the
effect of deformation appears to be small, we ex-
pect and find that the reaction cross section is ap-
proximately that predicted for rigid spheres.

We must also take into account that the stiffness
C is significantly larger than the liquid-drop val-
ue. Table III summarizes results for several sys-
tems that will be of interest when very heavy ions
become available. The systems considered are
argon, krypton, xenon, and uranium incident on

uranium. Stiffness of 12 times the liquid-drop
stiffness and inertial parameters 15 times the ir-
rotational flow value were used. We see that even
for uranium incident on uranium the percentage in-
crease in the barrier is very small. The absolute
increase (19 MeV) is, however, significant since
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this energy would have to be dissipated by evapor-
ation of about two neutrons with chances for fis-
sion competition.

TABLE III. Barriers (in laboratory system) for vari-
ous ions incident on uranium calculated classically with
spectl oscoplc parameters

V. DYNAMIC QUANTUM-MECHANICAL

CALCULATIONS Ion
Barrier for

x'lgld spheres

Barrier calculated
dynamically (Me V)

15~irl. C =12CU

In addition to the classical calculationsmentioned
above, we have done dynamic quantum-mechanical
calculations to determine if a classical model
gives a satisfactory picture of the system of the
interacting nuclei. In these calculations we have
assumed that the motion of the incident ion can be
described classically but that the vibrational mo-
tion of the target nucleus must be described quan-
tum mechanically. In these calculations, we ignore
the vibrational motion of the projectile.

We assume that the wave function describing the
oscillation of the projectile can be written as

(10)

where the 4„"sare the harmonic-oscillator wave
functions, the Ck's are complex coefficients, and

5~k is the energy of the kth vibrational state above
the ground state. At time zero the nucleus is in
its ground state; hence C,(0) = 1 and all other C's
are zero. The time dependence of the coefficients
is given by the time-dependent Schrodinger equa-
tion

fi 8$
H (+Vg=-. —

g at

where H, is the Hamiltonian of the unperturbed os-
cillator and V is the perturbing potential due to
the presence of a nearby nucleus. V is given by

Eq. (2) and is an implicit function of time through

Ar"

36KX'
84

tt4
xei32

U238

194.09

406.72

656.79

1311.26

194.38

411.54

668.22

1340.66

1.007

1.012

1.017

1.022

the dependence of r and P on time. The two Eqs.
(10) and (11) lead to the relationship

=—P C ett~n ue)tV
k @ n kn i (12)

where V,„ is the matrix element (Ce [VI4„). We
combine Eq. (12) with the radial equation (7) and
obtain the solution as a function of time by numeri-
cal integration. We have considered only the first
eight vibrational states. The value of P(= (g~p~g))
as a function of time agrees very mell with the clas-
sically calculated value of P as a function of time.

The probability I Ce I' that the nucleus is in the
0th vibrational state i.s shown as a function of time
in Fig. 6. For these calculations, we have con-
sidered the system krypton plus uranium, at a lab-
oratory energy for the krypton of 4j.O MeV. We
have used a value of the inertial parameter equal
to 9.3 times the irrotational flow value and a val-
ue of the stiffness equal to 8.5 times the liquid-
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FIG. 5. The ratio of the interaction energy for two
touching oblate spheroidal nuclei with dynamic deforma-
tion to the energy of two touching spherical nuclei, plot-
ted against inertial parameter. The system considered
is argon incident on uranium. The viscosity is taken to
be zero.

~ -a
TIME (IO sec)

n=4

FIG. 6. Probability that 2@U nucleus is in the nth ex-
c1ted vibrational stRte Rs lt is RpproRched by R Kr nu-
cleus. Plotted as a function of time. Laboratory energy
is 410 MeV. The inertial parameter is 15 times the ir-
rotational flow value; the stiffness is 12 times the liquid-
drop value. The vertical line shows the time of closest
approach.
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drop value. This is the system, and parameters
considered by Beyer and Winther in their calcu-
lations on Coulomb-induced fission. For compar-
ison with their calculations we can get a crude es-
timate of the Coulomb-excitation cross section by
multiplying the values of ~C, ~' for very long times
by the Rutherford scattering cross section at 180'.
The results are given in Table IV and are corn-
pared there with those of Beyer and Winther.
There is fairly good agreement for the cross sec-
tions for excitation to the lower vibrational states.
This becomes progressively worse for the higher
states but is probably about as good as we can ex-
pect considering the crudeness of our cross-sec-
tion calculation and the more realistic oscillator
potential used by them.

VI. ESTIMATION OF TOTAL REACTION

CROSS SECTION FOR HEAVY-ION-

INDUCED REACTIONS

TABLE IV. Probability and estimated cross section
for 3 U to be left in the nth vibrational state after a head-
on encounter with Kr at 410 MeV gab).

Cn
n 18Q

2 a

/mb)

Beyer and Wintherb

(mb)

0.206
0.326
0.258
0.133
0.0525
0.0203
0.004 95
0.000 270

34.9
27.4
14.1
5.6
2.2
0.5
0.02

30.
7.
1.1
0.3
0.08
0.02

0 f 8p is the cross section for Rutherford scattering at
180 and is equal to 10.6 mb for this system.

Estimated from graph in Ref. 9. For these calcula-
tions we have used the same parameters that they used.

The simplest reactions considered for producing
superheavy elements are those in which a heavy
ion fuses with some target nucleus to form a com-
pound nucleus. Deexcitation via neutron emission
follows. To calculate the expected cross section
for such a reaction we must know (1) the cross sec-
tion for nuclear interaction between target and pro-
jectile (reaction cross section), (2) the probability
that the interaction will lead to fusion, and (3) the
probability that the compound nucleus will deexcite
to the desired product. The third of these is out-
side the scope of this discussion. Experimental
evidence on the second has been reviewed by Thom-
as"; see also the work by Sikkeland. ' Ne confine
our discussion here to the first.

Spherical Nuclei

The best values of reaction cross sections for
heavy-ion-induced reactions have been calculated
using a diffuse-well optical model with an appropri-
ate set of well parameters. As has been pointed
out by Thomas, "one set of such parameters gives
calculated cross sections in agreement with ex-
perimental values over a wide range of projectiles,
targets, and energies. These parameters, from
Auerbach and Porter, ' are given in Table II.
Square wells and a parabolic approximation to the
barrier shape have been used with some success,
but except in special cases, there seems little
reason to use these approximations when satisfac-
tory optical-model codes are available.

The principal disadvantage of quantum-mechani-
cal calculations of the reaction cross section is
that for energies well above the Coulomb barrier
it is necessary to sum partial cross sections for
many partial waves —several hundred, for instance,
for argon incident on uranium. On the other hand,
if many partial waves contribute, we may expect
that the classical formula for the reaction cross
section will be valid. We investigate here the cir-
cumstances under which we can use the classical
formula instead of the results of a quantum-me-
chanical calculation. In addition we will consider a
modification of the classical formula suggested by
%ong."

The classical formula for reaction cross section
0'g is

where R is the nuclear radius, B is the Coulomb
barrier, and E is the kinetic energy in the center-
of-mass system. The Coulomb barrier B is given
by Z,Z, e'/R, where Z, e and Z, e are the nuclear
charges of projectile and target. With increasing
energy, the cross section calculated classically
should asymptotically approach that calculated
quantum mechanically, provided that the correct
choice of R is made for the classical calculation.
Since we are using a model in which the nucleus is
considered to have a well-defined surface, we may
expect that the required value of R will be some-
what larger than we would expect from the usual
nuclear radius measurements.

We can choose a value of R by normalizing the
results of the classical calculation to those of the
quantum-mechanical calculation at an energy suf-
ficiently high that we expect the two methods to
give results that are satisfactorily in agreement.
If we have made this choice correctly the two meth-
ods should give results in agreement for all ener-
gies higher than the one chosen for normalization.
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We suggest, arbitrarily, that the normalization be
done at an energy for which the quantum-mechani-
cal calculations give a cross section of 1 b. For
heavy ions incident on heavy nuclei, this energy is
about 20/0 greater than the classical barrier; at
such energies the number of partialwaves required
by the quantum-mechanical calculations is not ex-
cessive.

In Fig. 7 we have plotted a comparison of cross
sections calculated quantum mechanically and cal-
culated classically for helium ions and neon ions
incident on uranium. The values of 8 used in the
classical calculation were chosen to give agree-
ment between the two methods at a cross section of
1 b. The quantum-mechanical calculations for hel-
ium ions on uranium were taken from Huizenga
and Igo"; those for neon were calculated using the
parameters given in Table II.'~ We see that the
classical calculation remains within 10 to 20% oI
the quantum-mechanical one for energies as low as
10% above the classical barrier. This method thus
provides a reasonable method for estimating reac-
tion cross sections for energies at which it is im-
practical to do the quantum-mechanical calculation.
We may expect the agreement between the classical
and quantum-mechanical calculations to be better
than indicated here for heavier ions, since the
heavier the ion the more partial waves and the
more classical the system. We have used this
method to calculate the solid curve shown in Fig.
3 for argon incident on uranium. The low-energy
portion of the curve is based on optical-model cal-
culations using the parameters given in Table II.
For cross sections greater than 1 b, the curve is
calculated classically.

If we take 8 for the classical calculations to be
given as

that it predicts infinite cross section at the bar-
rier. At energies well above the barrier it does
not appear to provide any advantage over the un-
modified classical formula.

Deformable Nuclei

I I I

—2380 4H

l I I

-- 238U 20Ne

E

~ IOOO
O

In calculation of reaction cross sections between
spherical nuclei, we assume that the interaction
energy between the two nuclei is Z,Z, e'/r, where
x is the distance between centers, and is spheri-
cally symmetric. If deformation effects are im-
portant, neither of these assumptions is correct.
In this case, the interaction energy for nuclei
having common symmetry axes will be less than
Z,Z, e /r. In addition, the potential will be radial-
ly symmetric only if the collision takes place so
slowly that the nuclei have their equilibrium de-
formation at all times.

In Fig. 2 we show an estimate of the cross sec-
tion for neon incident on uranium, calculated un-
der the assumption that the nuclei do have the
equilibrium deformation at all times. Then, as
noted, the interaction energy is spherically sym-
metric. The two curves bounding the shaded area
were calculated as follows: Both were calculated
using a square-well black-nucleus model. This
model with a radius parameter of ~, =1.5 x10 "
cm has been shown to give results that are in fair-
ly good agreement with experiment. The lower

E=y (g ~~ +g ~~)
0 1 2

where A, and A, are the mass numbers of target
and projectile, then the appropriate values of r,
are 1.46&&10 "cm for neon on uranium and 1.41
x 10 ' cm for argon on uranium. As expected,
these values are significantly larger than the val-
ue of 1.26&10 "used in the diffuse-well optical-
model calculations.

At projectile energies close to the Coulomb bar. -
rier, the cross section calculated classically is
lower than that calculated quantum mechanically.
Wong" has suggested that the classical formula
be corrected by addition of a term of order

C,0
O
O
(D

CL

IOO

10=
nical-

20 50 40 50 I20 l60 200
Projectile energy lab, (MeV)

d(E —0 5B)/R (E B), . -

where d is a nuclear diffuseness parameter. The
results of a calculation using this correction are
shown in Fig. 7. This method has the disadvantage

FIG. 7. Reaction cross section for helium ions and
neon ions incident on "U as a function of laboratory en-
ergy. Solid curves are based on optical-model calcula-
tions; dashed curves are based on classical calculations
normalized to the quantum-mechanical result at a cross
section of I b. The dotted curve is based on an approxi-
mation suggested by %ong (Ref. 25).
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curve was calculated using a potential energy that
varies as Z,Z, e'/r for r greater than the distance
between the oblate spheroids that just touch. This
energy is everywhere equal to or greater than the
interaction energy for the two deformed nuclei;
the cross section so determined should therefore
be less than the cross section obtained from use
of the correct potential. The upper curve was
based on the assumption that at the point of con-
tact, the interaction energy is as calculated for
the two spheroids, but that it falls off as 1/r. This
potential is everywhere less than the correct one
and we will obtain an upper limit for the cross
section.

SUMMARY

Static calculations suggest that there should be
a substantial decrease in the reaction cross sec-
tion at a given bombarding energy because of de-
formation of the two interacting heavy ions. Dy-
namic calculations with liquid-drop parameters
indicate that the effects should be somewhat smal-
ler but still observable for argon incident on ura-
nium. The experimental data are not in agreement

with this conclusion. Only by using parameters
obtained from spectroscopic parameters do we

get agreement between experiment and theory.
These conclusions may be somewhat modified by
inclusion of shell effects (as has been noted by
Wong'), by consideration of collisions other than
those with zero impact parameter, "or by taking
into account the ground-state deformations of the
interacting nuclei. '

We have shown that classical dynamic calcula-
tions of the deformation give results that are in
agreement with the results of quantum-mechani-
cal calculations. We have also shown that for
bombarding energies 10 to 20k above the Coulomb

barrier a classical calculation of the reaction
cross section is in satisfactory agreement with a
quantum-mechanical one providing an appropriate
adjustment of the radius parameter is made.
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