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Different methods of calculating the number of degrees of freedom Reff in statistical cross-
section fluctuations are compared. The underlying physical assumptions of the methods are
discussed critically, and numerical examples for Reff are given.

I. INTRODUCTION

The number of degrees of freedom N, ff is a fun-
damental quantity in analyses of cross-section fluc-
tuations, since its knowledge allows one to estimate
the relative values of the direct and compound-nuc-
leus cross sections. In Sec. II we investigate the
"basic cross-section method" for the calculation of
N, «and the modifications of it due to Gibbs. We
show that the lack of statistical independence of the
basic cross sections raises difficulties when one
solves for N, ff within the Gibbs model. In Sec. III,
we present calculations of N, ff for recently pub-
lished experiments on "Al(n, p)3osi and "p(d, o.)"Si
in order to demonstrate the differences between the
approaches discussed in Sec. II.

In addition, it is pointed out that a realistic calcu-
lation of the fluctuation damping coefficient does not
require the knowledge of the capture cross sections
of all open compound-nucleus decay channels.

II. COMPARISON OF DIFFERENT FORMALISMS

In an article on the "Limitation of the Number of
Degrees of Freedom in Fluctuation Analysis, "
Gibbs' discusses the applicability of an expression
for this number given by Bondorf and Leachman. '
These authors decompose the differential cross sec-
tion o(8) into a number N of "basic cross sections"
O„and write

where the p, are the four spin projections of the col-
liding and outgoing particles. The variance of the
fluctuations of each o

„

is

(&o„'&—&o „)')/(o„&'= 1, (2)

where the angular brackets represent energy aver-
ages. In Ref. 2, the o„areassumed to be statisti-
cally independent; and hence the number N, «of de-
grees of freedom, which is defined as

reduces to
N S

&,'p((()) = [ Z (o„(()))]'/[Z &c„(()))'] (4)
p=l p=1

For computational purposes the averaged basic
cross sections (o„)may be identified with Hauser-
Feshbach expressions. Thus the analysis of sever-
al fluctuation experiments' ' has been based on Eq.
(4). However, the o„need not be statistically inde-
pendent. Indeed, if their number N is larger than
the number A of statistically independent scattering
matrix elements Uf,.f j'responsible for the reaction
cross section, the assumption of independence of
the o„must fail. The purpose of the paper by
Gibbs' is to give an appropriate correction to Nef f
in this case. From a schematic model, in which
all basic cross sections are assumed to be equal
and each of them is constructed out of A indepen-
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dent amplitudes with equal weight, he finds

N, fg(8) =¹(((8)A[A+X,'pf(0) —1] (5)

One derives

In order to estimate A, the collision matrix ele-
ment is factored into a product

where

—&Jw xJw(E) (6)

such that the factor e varies slowly with the ener-
gy E and describes the single-particle features of
the cross section, while x contains the rapid ener-
gy variation due to the compound-nucleus states. '
The statistical assumption

(x'"(E)x""(E)&= 6,—,6„-, (7)

is introduced. It fol, lows immediately from the in-
dexing of o. and x in Eq. (6) that A is equal to the
number of parity states times the number of J val-
ues.

It is clear that Eq. (6) leads to much less statisti-
cally independent amplitudes than does the random-
phase approximation used by Ericson' and by Brink,
Stephen, and Tanner. ' These authors assume that
every two U matrix elements with different sets of
indices [cc'}= {ljJv, I'jVx} are statistically inde-
pendent, i.e., that

(8)

Hence, the statistical assumption (7) implies
much more important corrections to Eq. (4) than
does the assumption (8). Though most fluctuation
experiments (see, e.g. , the review by Ericson and
Mayer-Kuckuk') have been successfully interpreted
in terms of the statistical model defined by Eq. (8),
there are some experiments that seem to indi-
cate a breakdown of the Ericson model, since they
revealed an unexpectedly small number of degrees
of freedom. This is the reason for the introduction
of the model of Ref. 1.

We want to point out that this model may, howev-
er, not be treated numerically in a satisfying way:
Ref. 1 presents a "realistic calculation of N, ff"
which starts from dropping the very schematic as-
sumptions of equal weight of 311 basic cross sec-
tions and all independent amplitudes. This model
is defined by Eqs. (6) and (7) and by

(14)

In order to evaluate Eq. (12), two assumptions are
made. (i) The a~~' are considered to be random
numbers with the expectation value zero. The ex-
pectation value of A is then also zero, and the term
A is neglected. (ii) The e~' are calculated by em-
ploying usual Hauser-Feshbach methods. The first
approximation implies an error of unknown impor-
tance. The second one implies an inconsistency,
as can be seen as follows. In Gibbs's model we
have

while in the Hauser-Feshbach theory, ' which makes
the assumption (8), we have

e Jw(H F )- g I51w I2I&z|r I2

l jl'j'
(16)

In fact, every statistical model in which the strong
Hauser-Feshbach assumptions are weakened in the
sense of Ref. 1 leads to this difficulty: partial cross
sections of the type of 0 J' that cannot be calculated,
since they contain unknown interference terms. We
notice that in Ref. 1 the results of Eq. (12) may
very well be reproduced by the schematic model of
Eq. (5), if an appropriate A is introduced. Hence,
though the "realistic calculation of N, ff" in Ref. 1
is mathematically not satisfying, the Hauser-Fesh-
bach calculation of aJ' provides a w3y of estima-
ting A. This way may, however, be somewhat com-
plicated and not quite transparent. Equation (12)
has usually been evaluated in the applications of
Gibbs's model. "

No interference terms appear if the Hauser-Fesh-
baeh assumptions (8) are introduced. We comple-
ment Eq. (8) by

The basic cross sections may be written as

(9a)

(9b) and

& [V„,(E)]'&= O

(17a)

(17b)

(10)
to obtain

where the coefficients a„""are defined in terms of
the quantities n and geometrical coefficients b by

a/w —Q 5P Jw
'~E 'I i gl i ~

) ~)lyl
P&P CC

(18)
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where the term A' is defined by

p wu cc'&cc'
(19}

The ~n„',, ~' may be directly expressed by trans-
mission coefficients, and the b"„,&, are geometri-
cal quantities. So even the term A' can be calcu-
lated exactly. Equations (18}and (19) are equiva-
lent to the expression (12) given" in a paper by
von Witsch et al."

However, the last equations cannot account for
the large cross-section variances deduced in Refs.
3, 4. These experiments thus seem to be cases in
which the strong assumption of Eq. (8) fails. The
degree to which the U matrix elements are statisti-
cally independent may then be expressed by the pa-
rameter A which should be defined by Eq. (5). This
procedure leaves open the question where the cor-
relations between U matrix elements arise: from
Eqs. (6), (7) or any other condition which creates
correlations. Indeed, any restriction of the sta-
tistical independence leading to the same number
A yields the same effective number of .degrees of
freedom.

III. NUMERICAL CALCULATIONS
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We have calculated N, «(8) for "Al(a, p, )"Si at
the energy E' =6.3 MeV (Ref. 3) under the as-
sumptions (8) and (17) and with the aid of formula
(12) of Ref. 11. In Fig. 1, N, &&(8} is compared
with two curves from Ref. 1, namely, ¹",, (8) and
N~t'f(8) The la. tter is calculated by use of Eq. (5).

At most angles, N,",', and N, ff are rather close
together while N, f f and N, f"f differ widely. This
result is expected from Eq. (5}, since our calcula-
tion of N, « implied the value A=27 because of Eq.
(8), while the calculation of N~P& was done with A
= 7.2 deduced' from Eqs. (6}and (7). The differ-
ences between N,'ff and N, ff indicate that even in
the Hauser-Feshbach-Ericson model the basic
cross sections cr„arenot statistically independent.
The case' of 3tP(d, n, )2aSi described in Fig. 2 is
similar to that shown in Fig. 1.

In addition, Gibbs's model was very recently dis-
cussed in fluctuation studies with (d, o) reactions
on nuclei in the mass range A = 24-41 and was
found to give satisfactory agreement with experi-
ment only if one invokes very large direct-inter-
action contributions to the cross section. " This
turned out to be inconsistent with results from
straightforward Hauser -Feshbach analyses.

The method of calculating cross sections of the
type o „orcr~~' in Refs. 3-5 differs from that used
in our calculations. These cross sections contain
the sum over the decay widths of the compound nuc-

90'
I

1204
I

150' 180'
c.m.

FIG. 1. Effective number of degrees of freedom calcu-
lated from different approaches for the reaction 2~A1-

(& Pp) Si at E„=6.3 MeV (Ref. 3). The dashed curves
N~~ff(8) and Ng~(8) are taken from Ref. 1. The full curve
+gf f (0) has been calculated by use of formula (12) of Ref.
10 with 20res

leus with respect to all open channels, as indicated
in Eq. (4) of Ref. 3. In the analysis' of a7AI (n, p),
this was performed by calculating the capture
cross sections for 42 exit channels explicitly; in
Ref. 5, as many as 3040 channels were considered.
In the formalism of Ref. 11, this procedure is sim-
plified by the introduction of a level-density formu-
la. It turns out" that only the spin-distri. bution
parameter 0„,' of the residual nucleus, to which
the compound nucleus mainly decays, enters into
the final result for N, ff. The quantity cr„,' was
taken from the work of Bormann et al. ' This re-
sult is even independent of cr„,' whenever

2
4~res + ~ Jmax & (20)

where J,
„

is the maximum angular momentum pro-
duced with a sizable probability in the compound
nucleus. The condition (20) is often fulfilled. In-
deed, we have verified'~ that for the range 4.75
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FIG. 2. Effective number of degrees of freedom for
3'P(d, oo}'esi at E~=9.5 MeV. The dashed curves N~H(8)
and Ngi(8) are taken from Ref. 5. The full curves Neff(8)
are calculated according to Ref. 10 with 20«, =11.5 and
20, , =18.5.
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&c„,' &7.75, the quantity N, «(8) for the reaction
' Al(n, Pe) is practically independent of c„,'. For
the case' of "P(d, n, )"Si at E, = 9.5 MeV, the func-
tion N, ii(8) is as given in Fig. 2 for the parame-
ters 2a„,'=11.5 and 2v„,'= 18.5. The difference
between these curves is again small, as in the
case of e7Al(n, p), and hence N, «(8) may be calcu-
lated fairly well without computing the decay widths
of several thousand exit channels explicitly. Since
the quantum numbers of most of the exit channels
are not known anyhow, the explicit summations
carried out in Refs. 3-5 suffer from the same am-
biguity as the method of Ref. 11, which thus is as
accurate and very much simpler.

We notice that these results are rather insensi-
tive to the details of the transmission coefficients.
In Figs. 1 and 2 we have used. the optical-model
transmission coefficients from Refs. 3 and 5, re-
spectively. Figure 3, however, illustrates that
one can as well use "sharp cutoff" transmission
coefficients. The resulting differences are in gen-
eral unimportant compared to the finite range of
data errors of the experimental results.

IV. CONCLUSION

The methods proposed by Gibbs' and by Bondorf
and Leachman' to calculate the number N, ff of de-
grees of freedom in fluctuation analysis have been

(c.m. )

FIG. 3. Dependence of N, ~f (0) for Al(o,', po) Si on the
transmission coefficients T& . The spin-distribution pa-
rameter is always such that 20.,~, =12.5. The full curve
is calculated with the Ti coefficients given in Ref. 3. It
is identical to the full curve of Fig. 1. The dashed curve
is calculated with T&=1 if l-5, T, =O if l &5 for the en-
trance channel Al+e, and T&~=1 if l'-3, TJ =0 ifl' &3
for the exit channel Si+p. The dash-dot curve was ob-
tained with T, =1 if l -7, 7, =0 if l &7 for the entrance
channel, and T& =1 if l'- 4, T, = 0 if l' & 4 for the exit
channel.

compared with the method of von Witsch et al."
The results from Refs. 2 and 11 —both of which
are based on the Hauser-Feshbach-Ericson mod-
el —are rather similar. The method of Ref. 1
leads to smaller values of N, &f. It was introduced
to account for experimental results' which indicate
a failure of the Ericson model. We have shown
that the model of Ref. 1 does not provide a mathe-
matically satisfying method to calculate N, ff nu-

merically.
In the Hauser-Feshbach expression for the ener-

gy-averaged statistical-model cross section, the
sum over the capture cross sections from all open
channels is required. This quantity, in general
poorly known, can be obtained only at the expense
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of extensive computations. We have pointed out
that according to Ref. 11 these sums can be avoid-

ed in the calculation of N, ff. Thus the procedure
is considerably simpler than that of Refs. 3-5.
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Assignment ofJ' =
2 for the 8.11-Mev ~vel of "C~
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A study of the B(3He,d) C and C(3He, n) C reactions leading to the 8.11-MeV state in ~C yields
an unambiguous assignment of J"= ~~ for that state.

I. INTRODUCTION

The spin and parity of the 8.11-MeV level of "C
(and its probable mirror at 8.57 MeV in "B)have
long been assigned' as J"- —,

' . The principal evi-
dence has been derived from an internal-pair-cor-
relation study in "8by Olness et a/. ' This study
concluded that the 8.57-MeV -g.s. transition has
multipolarity M1+E2, which led to an assignment
of J ~

~2 and negative parity for the 8.57-MeV state.
(The spin —,

' is allowed because the extracted M1-
E2 mixture allows pure E2.) The lifetime for de-
cay to the —,

' state at 2.12 MeV allows the elimin-
ation of the —,

' possibility; hence J' ~ ~5 . The
negative-parity assignments are also consistent
with angular distributions from the 'Be('He, P) "B-
(8.57 MeV) reaction' and the 'Be('He, n)"C(8.11

MeV) reaction' at energies below 10 MeV, where
an l =0 component was evident. In addition, the
q' dependence of the "B(e,e')"B transition proba-
bility' implies an E2-M1 mixture and thus an as-
signment Z" ~$ .

The results of previous studies of single-nucleon
stripping and pick-up reactions to this state have
been ambiguous. A plane-wave analysis' of "8-
(d, P) B(8.57 MeV} data at E~ =10 MeV gave a ten-
tative l =2 assignment to the stripping pattern. Al-
most as good a fit, however, is obtained for l =1
in the plane-wave analysis; and l =1 is definitely
favored in a later distorted-wave analysis.

Previous publications7 on the "B('He, d)"C reac-
tion have reported an excitation energy for the
8.11-MeV state but no angular distributions. In the
"C('He, n}"C reaction, angular distributions have


