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The theory of two-nucleon transfer reactions is extended to include higher-order transi-
tions going through intermediate nuclear states produced by inelastic scattering of the ingoing
or outgoing particle. The reaction, as is usual, is treated to first order, but the inelastic
processes are treated to all orders among the retained channels. The theory is formulated
so that it is very easily applied to any microscopic structure calculation, since the relevant
content of such calculations appear in the theory only through the values of the matrix ele-
ments of the pair-creation [ d'd"); and scattering [d7d] J operators.

1. INTRODUCTION

The existent treatments of the two-nucleon
transfer reaction all neglect the effect of inelastic
processes. There are two circumstances where
this neglect is not justified. The first concerns a
question of parentage. If in the reaction

t+(A)=p+(A+2),

the configuration of the group of (4) nucleons is
the same in the residual state of interest as in the
target ground state, then the usual treatment may
be valid. However, if the state of motion of any of
the core nucleons is different, then a description
of the inelastic processes that produced this differ-
ence becomes essential, if in fact the state is ex-
cited in the reaction.

The second circumstance when inelastic pro-
cesses are crucial for a correct description aris-
es when some inelastic transitions in either the
target or residual system, or both, are so strong
as to produce significant deexcitation back into the
elastic channel. In this circumstance the usual
one-channel optical potential will not provide a
good description of the relative motion in the vi-
cinity of the nucleus, just where it is important
for the description of the transfer reaction.

In this paper we present the formalism by which
inelastic processes can be incorporated into the
theory of two-nucleon transfer reactions. The
method that we use was described and justified in
an earlier publication,’ and may be referred to
briefly as the source-term method. It is in a
source term, which appears as an inhomogeneity
in the coupled differential equations describing
inelastic scattering, that the nature of the transfer
reaction is specified. We treat the reaction under
the usual assumptions made in two-nucleon trans-
fer theory.? The theory is formulated in such a
way that the particular structure of the nuclear
states enters the description of the reaction only
through certain generalized two-particle coeffi-
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cients of fractional parentage. As an example
these are calculated for a particular nuclear mod-
el, namely one in which the ground state is the
BCS vacuum, and which has excited two-quasipar-
ticle states as well as a “two-phonon” triplet which
is built from the operator which describes the col-
lective 2 state.

For definiteness our notation refers to the (p, ¢)
reaction, but the results are general, and we indi-
cate at appropriate places how to interpret the for-
malism for other two-nucleon transfer reactions.

2. COUPLED EQUATIONS

Our method has been discussed in detail for
(d,p) reactions in an earlier publication, and the
notation which we use here for the (p, f) reaction
will be analogous.’ The method consists of writing
down the coupled equations which describe the in-
elastic scattering of the projectile by the target,
and a second system of coupled equations which
would describe the scattering in the residual par-
tition, in this case the triton and final nucleus,
except that the second system is coupled to the
first by a source term which describes the trans-
fer process. Thus the inelastic processes are
carried to all orders among the retained channels,
but the asymmetric way that the source appears
means that the reaction itself is treated as a weak
process only in first order. This corresponds to
the fact that (p, f) cross sections are typically an
order of magnitude smaller than the strongest in-
elastic ones.

We will describe the scattering in the initial par-
tition of the system consisting of proton plus nu-
cleus (A +2) by a system of N equations which in-
cludes the strongly coupled channels and any
others of interest: For each parity 7 and total
angular momentum I of the system, they are

(Tpl + Up(’}’) - Ep,)uﬁl”(r) + Z; V;rllpll (r)u:’,',’(r) =0 .
Pl Ep!

(2.1)
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The rationale for use of such a system for a mi-
croscopic description of inelastic scattering has
been discussed in detail elsewhere.® Here U stands
for a complex optical potential, which is a param-
etrization of the diagonal matrix elements of the
effective interaction which enters the problem be-
cause we intend to solve it in a highly truncated
space of nuclear states, and V is the direct inter-
action between the nuclear nucleons and the exter-
ior particle. Matrix elements are taken with re-
spect to the channel wave functions

quw‘Jl(?,A +2)= [‘yxpspjp(;’, 0) &y

5 A+2)]Y, (2.2)

where @ is a nuclear wave function, Y is a spin-
orbit function for the scattered proton,’ and the
square bracket denotes vector coupling, We use
b to denote the whole collection of quantum num-
bers defining a proton channel

pslpspjpap,]p . (2.3)

When both p and p’ appear in an equation, p is
understood to refer to an entrance channel, and p’
to any channel, The superscript p on # in Eq. (2.1)
signifies that the system is subject to the boundary
condition that only channels p, in which the nucleus
is in its ground state, have incoming waves.

upti(r) - 6»'11,("’» 7 = (v/y) 281, Opyi(Bye7) .
(2.4)

Here O and I are outgoing and incoming spherical
waves' and k and v are wave number and velocity,
respectively.

The equations describing the final partition of
the system are

[Tt’ + Ut(R) - Et :]w’;l”(R) + Z Vt 'zl"ll (R)w’,’,’.”(R)
Ty

=20, 37UR), (2.5)
D’

which are to be solved subject to the condition that
there are only outgoing waves in triton channels:

wt"(R) ~ = (t,/v)V? S;'; ()”(ktR) . (2.6)

These equations differ in structure from the pre-
ceding ones only in the addition of the source term
p which represents the appearance of tritons in the
channel ¢’ due to the transfer process in the vari-
ous channels p’ of the initial partition. The rest
of the paper is essentially devoted to the descrip-
tion of how this source is constructed, given the
detailed microscopic structure of the states in the
target and residual nuclei.

As we remarked, the asymmetric way in which
the source appears in our equations means that
the reaction is treated in first order only. One

o

could consider introducing a source for the in-
verse reaction into (2.1), but if in fact the two-nu-
cleon transfer reaction is not strong, this would
be imprudent, as the additional numerical work
involved in solving the system of equations with
the additional coupling is enormous.

3. SOURCE TERM

The source for tritons in the channel #’ is equal
to the sum of matrix elements describing the trans-
fer processes leading to it from the various chan-
nels p’,

P8R =23 p, FTH(R),
pl

Mp Mz ARG
ERZ<‘PL"WI(R: Al vl et (7, A +2) _L,:—“>
ot

(3.1)
All coordinates in the matrix element are integrat-
ed except R. Here v represents the stripping in-
teraction. In Ref. 1 we showed that this form for
the source leads precisely to the usual distorted-
wave Born approximation (DWBA) in the event that
in our equations, the off-diagonal matrix elements
of V describing the inelastic processes are
dropped, and it leads to the result of Penny and
Satchler? when they are kept.

We will evaluate the matrix elements appearing
in the source term under the assumptions usually
made in two-nucleon transfer theory.? Thus the
interaction v is taken to be a 6 function in the co-
ordinate p describing the displacement of the pro-
ton from the center of mass of the two neutrons

V= + Uy, g5(p) . (3.2)

We assume that the relative motion between pairs
in the triton is S state and that the radial part is
Gaussian in form. Then the triton radial function
¢, separates in the coordinates p and the relative
coordinate T between the neutrons, so that?

@ = D1o(31°7%) Pyo(477707) . (3.3)

Here ¢y, is the oscillator function and 7 is the tri-
ton size parameter defined in Ref, 2.

Employing the assumptions leading to (3.2) and
(8.3), the evaluation of (3.1) proceeds along the
lines used in Ref. 1. The result can be written in
the form®
PR R =220, 3 Ay, t)u:’s?m)u:'( = 2R>'

LsJd

(3.4)

This is written more generally than required for
the (p, t) reaction (where only S=0 transfer is al-
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lowed) so that we can cover other two-nucleon
transfer reactions. Here L, S, J, denote the or-
bital, intrinsic, and total angular momentum

ana A V2/] L]
) 1, J L » ¢

A t)=(~ ’t"lp”p”( ) < )
1sa(p, ) =(=) 41r 0 0 0

where [=21+1. This factor is general for any par-
ticle transfer reaction when p is interpreted to re-
fer to the lighter and ¢ to the heavier of the light
nuclides.® D, is a constant which collects together
two normalization factors,

3/4
D0=g[¢10(4n2p2) ]p=o=g(4ﬂ—nz> y (3.6)

Ag is the overlap matrix element for spins

As=(x5HE,8,5) | [xs (Bxs(EF) 5. (3.7

Here Xs; and Xs, are the spin functions of the triton
and the proton and

Xs(o 02) [Xl/z(ol))(x/z( )]s (3.8)

is the singlet or triplet spin function of the two
transferred particles. For other reactions, see
the Appendix. [ For the reaction (d, @) an addition-
al overlap occurs, &, defined in the Appendix of
Ref. 2. An analogous overlap in the internal mo-
tion of the light nuclides should be inserted when-
ever neither the incoming, outgoing, or trans-
ferred object is a single nucleon. ]

The function Z74%(R) in (3.4) is a projected wave
function which defines the radial motion of the
center of mass of the transferred pair in the state
a, of the nucleus (A +2) when their correlation cor-
responds to that in the triton, given that the re-
maining nucleons are in the state a, of nucleus (4).

To see how it can be evaluated in terms of known
quantities, consider first an example where (4) is
in its ground state having zero spin, and (4 +2) is
in a state having a pure parentage based on (4),
with two neutrons in a pure shell-model state
Ya.pys (Where a=n,l, j,).

According to its meaning, the projected wave
function is defined by the equation

EuLSJ(R) Y9 (R) = @io(377) X (G, G) | 98,0(F,, o))
(3.9
If we use oscillator radial functions for the shell-

model states in i,,,, the right side can be evaluat-
ed as in Ref. 2 to yield

#3% 4(R) = EG %sstyi(2VR?) (3.10)

carried by the transferred pair. The quantity Ay,
is a geometrical factor defined by

J G|l S gy
L S J |Agp, 1),

1 JP lt S jt (3.5)

r

where u,; is an oscillator radial function as de-
fined in the Appendix of Ref. 2. (The incorrect
asymptotic behavior of these functions may be cor-
rected in one of several ways suggested in that
Appendix.) The structure amplitudes G are defined
in terms of known quantities® and have been tabu-
lated.”

In the general case where the spin of (A) is not
zero and the parentage of (A +2) is not pure, the
particles may be transferred in various ways con-
sistent with the structure of the states. Neverthe-
less, we can write the general result in terms of
(3.10) as

g%} (R) = Z) Ba.,(ap, Dizsa(R), (3.11)

where B(a,, a;) are generalized two-particle pa-
rentage factors.?

In this way of formulating the problem, the struc-
ture of the nuclei (A) and (A +2) enters the descrip-
tion of the reaction only through the values of the
parentage coefficients B(a,, @,). For a complicat-
ed structure calculation, these would depend upon
intimate details of the calculation. However, for
a simple model they can be exhibited explicitly, as
we do below,

We note as a matter of computational conve-
nience, that if the bound-state single-particle
wave functions are expressed on a basis of harmo-
nic-oscillator functions (™" K %), then the source
term connecting any two channels can be written
in the form

—uR2 A
B = PR (25 R),

(3.12)
where P is a finite polynomial in R?, Therefore it
can be stored in a computer according to the co-
efficients of the polynomial rather than as a table
in R.

The amplitude for outgoing tritons can be written
in terms of the S matrix elements obtained by im-
posing the boundary conditions (2.6) on the solu-
tions to (2.5). We must, as in Ref. 1, take account
of the normalization (2.4) used for the proton ra-
dial functions in the source term, The result can
be written
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Do

1 om1s i . .
f(‘&%“p"‘]tMt#t):m; Z [4m(21,+1)]V2i"7 e p* D C(1,5,j,; Oppi)CUs G L; 1y My, My + 1)

1pipleigd

X Z C(1y S Js mypey m)C Uy Jp I; mMy, M, + 1) S, Yiik,) .

mg,m

The cross section for the p, { reaction is

do 1 .
e~ 2(2,+1) 2 I (3.14)

MphpMiky

4. INVERSE REACTION

By using the inverse property of the amplitudes,
it is possible to compute the inverse reaction.
However, of the elements of S obtained in Sec. 2,
the only interesting ones for the inverse are the
ground-to-ground elements. The others can be ob-
tained by solving a series of boundary-condition
equations in which the incident wave is inserted in
the various p channels. However, if one is pri-
marily interested in the (¢,p) reaction, it is more
convenient to set up the procedure of Sec. 2 explic-
itly for this reaction. The (¢,p) reaction can be
treated in an analogous way. In this case the ho-
mogenous system corresponding to (2.5) is solved
for the scattering. These solutions are used to
construct the proton sources which now are insert-
ed as an inhomogeneity into (2,1). The source
term is otherwise constructed from the same in-
gredients as the triton source,

A
Pis(r)= a3 Do Z Apsd(p,t)
LsJ

~ A
xu_;'fg"f,'(Azz 'r> u:”( 22 r) , (4.1)

where A s and # are as defined previously for the
(p, ) reaction. The amplitude for outgoing protons

can be obtained from (3.13) by interchanging p and £,

5. TWO-NUCLEON PARENTAGE COEFFICIENTS

The parentage coefficient given in Ref. 2 (there
in L-S coupling) may be expressed in second-quan-
tization notation, for equivalent particles, as
Baralay, ay)

= [J,1+8,0)]72( @0, (A +2) I[d] d] 1,1 2, (A)) .

(5.1)
Here d;,,,a creates a particle in the state n,l,j,m,.

The definition adopted for reduced matrix elements
is that of Racah.® However for transfer of a neu-

(8.13)

tron and proton pair, when the isospin formalism
is not used, the 0., factor should be omitted and
d} and df commute.

If the structure of the nuclear states is defined
in terms of quasiparticles o' related to particles
through,®

dl-lrm = Uu azm + Vaa

am?s

(5.2)

= (=)™

ay,-m?

where U and V are coefficients of the Bogolyubov-
Valatin transformation, then

laldf]=-U,U,A % (a,b)+(=) ™V, V,A;_,(a,b)
~U, V,Nl(a, b) (=) *¥V,U,N,_,(a, b)
+ Van(3'a)l’2 844040,
(5.3)
where
Alya,b)=-[afal ]y,
(5.4)
N;u(a, b) = (=)0 MN;_,(b,a) =~ azab]‘} .

A. Two-Quasiparticle States

As an example of the calculation of the parentage
coefficients, we consider a simple model. If the
ground state is described as the BCS vacuum, and
excited states as two-quasiparticle states, then
four types of parentage coefficients enter the prob-
lem, illustrated by Fig. 1. We write the two-quasi-
particle wave functions for nucleus (4) as

a4

24q.p. - s
3 2

Vacuum ~____»

p(A+2) t(A)

FIG. 1. Four types of parentage coefficients occur in
a nucleus with the vacuum ground state and two-quasi-
particle excited states.
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la(@)am) =1 3 1 (WA (e, D) wy),  (5.5)

a,b

where the sum on &, b is not ordered (i.e., both

J

Bups(1) =(37)Y2 V,(A +2)U,(A)d,, 6 5o,

J 1/2
Buns®= (155 ) TEHAVA+ DV, A D,
ab

/2
Bapsl3) = '<(1—+15§> nSp% (A +2)0, (AU (A)0

EXTENSION OF TWO-NUCLEON TRANSFER THEORY...

419

a,band b,a occur).” Here |w,) is the BCS vac-
uum, and similarly for nucleus (A +2). Then the
parentage coefficients for the four types of transi-
tions numbered in Fig. 1 are':

1/2
Bass() =(7,/2)26(ax,, @)V, (A +2)0,(A) 050500, 4, + <——-1+6 > (=)D [ U, (A) V, (A +2)X5 (e, @)
ab

where
o(ay, a) =32 na P A+ 2 (4), (5.10)
cd
g J 9,
Xolay, @)=y n2®@+2ms™ @)y
d Ja Ja Js
(5.11)

Note that © represents the overlap of a two-quasi-
particle state in (A) with one in (4 +2). For the
lowest collective 2% states in adjacent nuclei, this
overlap will usually be close to unity.

B. Two-Phonon States

In analogy with the vibrational model, we may
use the collective operator

Qlau) =3 2375, (4) Alula, b) (5.12)
corresponding to the lowest 2} state to generate a
triplet of “two-phonon” states

loy M) =7 QIR ww),  (5.13)
and similarly for the nucleus (4 +2). The quasibo-

son commutation relations are approximately [as-
suming identical BCS vacuum for (4) and (4 +2)],

[Qap.r,M' (A +2), QL,J,M, @] =6(a,, a,)o,, Ouputy -

(5.14)

The two-particle operator [d'd")does not connect
the vacuum ground state to the two-phonon states.
The additional parentage factors needed are illus-
trated in Fig. 2. They are computed in the quasi-
boson approximation to be

Bana(5) = [(20) 2/ 1081 (208,04, (5.15)

(5.6)
(5.7)
(5.8)

Jd,
+(_)ja_jb+JUb(A)Va(A+2)Xba(ap7 at)] ’ (5-9)
Bups(6) = V2 081 (3)8120 45, (5.16)
BapoT) =0 o 3(1)5;,.7, , (5.17)

where the subscripts “col” denote that these quan-
tities involve the amplitudes 7 of the collective 2{
states in (A) and (A +2). In (5.15) and (5.16), © is
the overlap between the two-quasiparticle state
and the collective 2 state from which the two-pho-
ton states are built, whereas in (5.17) it is the
overlap between the collective 2 states in the two
nuclei. Therefore the coupling is weak except
with another two-phonon state or with the collec-
tive 2} state, in which cases © =1,

7. COMMENT ON INELASTIC SCATTERING

Beside the source terms, the structure of the
nuclear states enters the evaluation of the matrix
elements of V in (2.1) and (2.5). The point at which
a knowledge of nuclear structure enters can be re-
duced finally, as was shown in Ref. 3, to the eval-
uation of a certain set of amplitudes which express
the nuclear form factors in terms of those for
single-particle transitions. These amplitudes
(see Sec. 3 of Ref. 3) can be written as

7
2 Phonon —/\_—_—.
6 5
2 q-p:
p (A+2) t (A)

FIG. 2. Microscopic two-phonon states have parentage
coefficients connecting them to other two-quasiparticle
states or to each other.
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59 (a,a,) = ()" V2 (e, | [dhd, 1]l @pdy)

that is to say, they are reduced matrix elements
of the scattering operators [d'ﬂ;i' ,,], for the various
shell-model states @, b that enter the nuclear de-
scription. The evaluation of these amplitudes for
the same nuclear model described in Sec. 5 A ap-
pears in Ref. 3.

8. SUMMARY

A theory of two-nuclear transfer reactions which
includes the effects of inelastic processes has been
formulated. In addition to the direct production of
the final state from the target ground state, these
processes allow for its production through inter-
mediate states produced by the inelastic scattering
of the incoming or outgoing particle. The reaction
is treated as the weak process it is, only in first
order, but the inelastic processes are treated to
all orders among the retained channels. The
theory can be applied easily to microscopic calcu-
lations of nuclear structure, because the entire
content of such descriptions can be inserted into
our formulation very concisely through reduced
matrix elements of two types of operators; namely,
the transfer operators [d'd}]; and the scattering
[d'd,);, evaluated between the nuclear states for
the various configurations a, b entering the struc-
ture calculation. This obviously makes all struc-
ture calculations readily accessible to use in cal-
culations of transfer and scattering. However, for
many-particle shell-model calculations the job re-
quires an intimate knowledge of the conventions
employed, and generally can be done best (or only)
by the structure theorist himself.

APPENDIX

We consider the spin overlap Ag in a more gen-

|

eral two-nucleon transfer reaction
a+A~(@—-v-1)+(A+v+m),

where @ contains # and p neutrons and protons, and
v and 7 of them are transfered (v +7=2),

Although our theory does not contain exchange
processes implied by antisymmetrization, we do
carry the statistical factors that weight the direct
integrals considered.!?

Thus we define Ag to contain those factors cor-
responding to the light nuclides [as B does for the
nuclei (Sec. 5 and Ref. 2)].

w{)(0)]

X(x5, @[ xs,(@=v-mxsv+m]g ).

[ Resolve any ambiguity in interpretation by com-
parisons with (3.7) and (3.8) for the (p, f) reaction. ]
For various light particles

Xs(@) = XG5 Xl 5) s,
= Xu(Oxe(5p5,),  triton,
= Xl(g,. 5,) ’ deuteron.

Thus we find

Ag=0g, (p, ) or (n, He?),
=vV3 bg,, (a,a),
=-(1/V2) (85, - V305)), (p,He)),
=(1/V2 ) (65 +V30s), (n,0).

However there is some evidence®® that the strength
of the stripping interaction is different for $=0
and 1. This may be taken into account for example
for (p, He®) by rewriting

AS = ‘(l/ﬁ)(aoﬁso"' ﬁalésl) ’

where a,/a, gives the relative strengths.
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Different methods of calculating the number of degrees of freedom N¢s in statistical cross-
section fluctuations are compared. The underlying physical assumptions of the methods are
discussed critically, and numerical examples for N ¢ are given.

I. INTRODUCTION

The number of degrees of freedom N is a fun-
damental quantity in analyses of cross-section fluc-
tuations, since its knowledge allows one to estimate
the relative values of the direct and compound-nuc-
leus cross sections. In Sec. II we investigate the
“basic cross-section method” for the calculation of
N¢; and the modifications of it due to Gibbs. We
show that the lack of statistical independence of the
basic cross sections raises difficulties when one
solves for N.¢; within the Gibbs model. In Sec. III,
we present calculations of N; for recently pub-
lished experiments on 27Al(q, p)3°Si and 3'P(d, @)?®Si
in order to demonstrate the differences between the
approaches discussed in Sec. II.

In addition, it is pointed out that a realistic calcu-
lation of the fluctuation damping coefficient does not
require the knowledge of the capture cross sections
of all open compound-nucleus decay channels.

II. COMPARISON OF DIFFERENT FORMALISMS

In an article on the “Limitation of the Number of
Degrees of Freedom in Fluctuation Analysis,”
Gibbs! discusses the applicability of an expression
for this number given by Bondorf and Leachman.?
These authors decompose the differential cross sec-
tion o(0) into a number N of “basic cross sections”
o, and write

0=230,, (1)
M

where the p are the four spin projections of the col-
liding and outgoing particles. The variance of the
fluctuations of each o, is

(@ = @)/ *=1, )

where the angular brackets represent energy aver-
ages. In Ref. 2, the 0, are assumed to be statisti-

cally independent; and hence the number N ¢ of de-
grees of freedom, which is defined as

Nesi(0) =<0 (0))*/[©0?(6)) - (0(6))*] , ®)
reduces to
N N
NEO)=] 21 @, 60?2/ 23 ©, 60 . (4)
b= p=1

For computational purposes the averaged basic
cross sections (0,) may be identified with Hauser-
Feshbach expressions. Thus the analysis of sever-
al fluctuation experiments®® has been based on Eq.
(4). However, the o, need not be statistically inde-
pendent. Indeed, if their number N is larger than
the number A of statistically independent scattering
matrix elements U7, responsible for the reaction
cross section, the assumption of independence of
the o, must fail. The purpose of the paper by
Gibbs! is to give an appropriate correction to N3}
in this case. From a schematic model, in which
all basic cross sections are assumed to be equal
and each of them is constructed out of A indepen-



