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A simple three-part density-dependent effective interaction is used to calculate several
general properties of the semiinfinite nuclear surface. This interaction, which is referred
to here as the modified 6 interaction (MDI), is quite similar to one introduced by Skyrme.
The three parameters of the MDI are fixed by fitting the binding energy and density of in-
finite nuclear matter with N=Z and also the ground-state energy of 0, all in first-order

perturbation theory.

The nuclear surface properties are calculated in several different ways. First, they are
extracted directly from the single-particle wave functions of a one-dimensional static
Woods-Saxon potential. The diffuseness and depth of the potential are obtained by minimiz-
ing the surface energy. This procedure is called the independent particle model (IPM).

The resulting surface thickness of 2.2 fm and surface energy of 19.3 MeV and the approxi-
mately Fermi shape of the density distribution are in good agreement with empirical re-

sults.

The calculations were then repeated using the Thomas-Fermi approximation to obtain
the density. The resultant surface thickness and surface energy, 2.0 fm and 16.0 MeV,
are considerably smaller than the IPM results. Furthermore, the calculated density dis-
tribution has a longer “shoulder” inside the nucleus and a shorter ‘“tail” outside than the

IPM distribution.

1. INTRODUCTION

A. Nuclear Surface

An important aspect of finite nuclei is the nu-
clear surface. There have been many studies of
the nuclear surface, mainly using the Thomas-
Fermi approximation (TFA). Bethe' has investi-
gated the properties of the nuclear surface, namely,
the mass density distribution and the surface en-
ergy. He starts with a realistic nucleon-nucleon
interaction® but then makes various approxima-
tions. (Use of the semiinfinite-nuclear-matter
model, replacement of the tensor interaction by an
effective central interaction,® and the replacement
of the short-range repulsion by a density-depen-
dent 6 interaction.) He then obtains a formulation
quite similar to that used by Wilets®* previously,
but with the important difference that no free pa-
rameters are used.

Recently, Brueckner® and his collaborators also
developed a Thomas-Fermi treatment of nuclei,
and they obtain quite reasonable density distribu-
tions. Both Bethe and Brueckner et al. took the
calculated binding energy of nuclear matter versus
density as a starting point of their treatment of
the nuclear surface. Bethe used the results from
the Reid hard-core potential.? In Ref. 5 and a part
of Ref. 1, the energy density is assumed to be of
the form

e=pW(p)+t(Vp), (1.1)

where W(p) is the calculated energy per particle
of nuclear matter at nucleon density p. The only
explicit dependence on the nuclear force enters

Do

into the coefficient ¢ of the gradient term. The
density distribution can then be obtained by either
a variational treatment or the solution of a differ-
ential equation.

A more detailed TFA of the nuclear surface,
again starting from a realistic interaction, the
Reid soft-core interaction,? but making fewer ap-
proximations than in Ref. 1, was given by Németh
and Bethe.® In their paper, the density distribution
at the surface is obtained as a solution of an inte-
gral equation (which was mentioned but not worked
out in detail in Ref, 1). Their calculated surface
thickness” 2.2 fm, and surface energy® 19.5 MeV,
are in good agreement with empirical values.

There have also been some studies of the nuclear
surface in which the TFA is not made. One such
calculation using a realistic nucleon-nucleon inter-
action was made by Brueckner et al.® using the
Gammel-Thaler interaction. However, most of
the other non-TFA calculations do not use realis-
tic interactions as a starting point, but rather,
simplified effective interactions.

B. Effective Interactions

The use of effective interactions in nuclear-
structure calculations is somewhat parallel to that
of realistic interactions. The idea behind the
former is the hope that by simplifying the interac-
tion it becomes easier to calculate some nuclear
properties in terms of others and also to gain bet-
ter insight into the physics involved. Various
kinds of effective interactions have been used in
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recent calculations. In most of them, there is
less emphasis on fitting nucleon-nucleon phase
shifts than on fitting average nuclear properties,
especially those of nuclear matter (binding energy
and density). With such interactions it may be
easier to do Hartree-Fock calculations. We just
mention a few of the effective interactions which
have been used. The group of Davies, Krieger,
and Baranger'® calculated properties of double-
closed-shell nuclei (energy, density distribution,
and single-particle energies.) They used interac-
tions which fit the properties of nuclear matter
(in first-order perturbation theory), and also the
low-energy parameters of the two-nucleon interac-
tion.!

Volkov'? made use of a simple effective interac-
tion (Gaussian with arbitrary spin and isospin de-
pendence) whose parameters fit the binding ener-
gy of *He and '°0, for calculations of properties
of 1p~shell nuclei., This interaction was general-
ized by Manning,'* who made the interaction densi-
ty dependent so as to also fit the properties of
nuclear matter.

Pearson et al.'* used effective interactions which
fit, first of all, the properties of nuclear matter.
In addition, instead of fitting the two-body data,
they required that the long-range part of this ef-
fective potential in the 'S, state should coincide
with the one-boson-exchange potential at distances
21 fm. For smaller distances, the one-boson po-
tential breaks down, and Pearson ef al. use a
purely phenomenological potential.

A slightly different approach was taken by Brink
and Boeker.'® These authors examined several
classes of density-independent interactions, for
example, an attractive Gaussian plus a repulsive
6 interaction. For almost every class, there are
several interactions which differ only by the val-
ues of the parameters. The latter were chosen so
as to fit the binding energy and density of nuclear
matter, and the binding energy and rms radius of
the @ particle, all in first-order perturbation
theory. Brink and Boeker then calculated the
ground-state energy and harmonic-oscillator
spacing (they use oscillator single-particle wave
functions) for other light double-closed-shell N=Z
nuclei, namely, '°0 and “°Ca. These interactions
do not fit nucleon-nucleon scattering phase shifts,
but this is hoped not to be serious. If the interac-
tion fits ground-state properties of the @ particle
and of nuclear matter, it should be reasonable for
intermediate N =Z nuclei. Indeed, for most of the
interactions used by Brink and Boeker, the agree-
ment between calculated and empirical values is
good.

Pandharipande®® has used similar criteria for
the interactions he considered. These are attrac-

tive Yukawa plus a density-dependent (or momen-
tum-dependent) 8-repulsion interaction. Again,
the binding energy and rms radii of the a particle,
180, and *°Ca were fitted quite well. Seyler and
Blanchard'” used a momentum-dependent Yukawa
interaction, whose three parameters (for N=Z nu-
clei) were adjusted to fit the ground-state binding
energy and density of nuclear matter and also the
empirical surface energy. Treating the problem
in the TFA they obtained quite realistic particle
density distributions. This interaction was used
by Myers'® and Myers and Swiatecki'®? to study cor-
rection terms to the semiempirical binding-ener-
gy formula. The Seyler-Blanchard interaction was
also used by Kohler'® in his calculation of the nu-
clear surface properties; he did calculations both
with and without TFA and obtained values of 18 and
21A%3 MeV, respectively. Other calculations
using effective interactions but not with the TFA,
were made by Tabakin and Amos?® and by Donnelly
and Naqvi.?!

Recently, Vautherin and Veneroni?? have made
extensive Hartree-Fock calculations for the prop-
erties of closed-shell nuclei, especially 2®Pb,
using mainly the Brink-Boeker!®:?® interaction B1
and an interaction proposed by Skyrme.*

The interaction which we use in this article is
close to the latter. It is essentially a d-function
interaction whose strength is a function of the rel-
ative momentum of the interacting particles and
also of the local density. The interaction is of the
form:

V=ad(T)+ % B[p26() +6(¥)p?]+ npo(¥)P, (1.2)

where a, 8, and 7 are constants (which may be den-
sity dependent). The quantity P is the relative mo-
mentum of the interacting particles taken as an
operator, —-iV,

For the density dependence, Skyrme assumed
that a is a linear function of the local?®® density p(R)

a=-a+yp(R) (1.3)

and B, n are independent of p. (» is the distance be-
tween the interacting particles and Ris the posi-
tion of their c¢.m.) The parameters were adjusted
to fit the nuclear-matter binding energy and den-
sity of nuclear matter and also the nuclear sur-
face energy. Skyrme used this interaction to cal-
culate shell-model matrix elements in light 1p-
shell nuclei, and he obtained rather good agree-
ment with empirical matrix elements deduced

from experimental level spectra.

C. Summary of Present Paper

In this article, we use an effective interaction
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which we call the modified 6 interaction (MDI), of
the same form as Skyrme’s except that we set n
=0 (which implies no interaction in odd states) and
the density-dependent part is assumed to be pro-
portional to p?/%, as suggested by Bethe.! It is
readily seen that the MDI acts only in S states of
relative motion. In this paper we consider only N
=Z nuclei, and we neglect any spin or isospin.de-
pendence of the interaction.

In the next section we discuss the form of the
MDI and obtain explicit expressions for the poten-
tial energy for both infinite nuclear matter and
finite nuclei.

In Sec. 3, we determine the values of the MDI
parameters so as to fit the binding energy and den-
sity of nuclear matter and the binding energy of the
the ground state of '°0. These criteria are very
similar to those of Brink and Boeker,' except that
the latter used *He as an “anchor point,” rather
than '®0, Using this interaction, it is easy to de-
rive related properties of nuclear matter, such as
the compression modulus and the depth of the one-
body potential as a function of the momentum for
a nucleon in nuclear matter.

Section 4 deals with the binding energy and rms
radii of the ground states of *He, '°0, and “°Ca.
The single-particle wave functions are assumed to
be harmonic-oscillator wave functions, and the
oscillator spacing is varied to minimize the ener-
gy. The calculated binding energies and rms radii
come out in quite good agreement with empirical
values.?®'2” This variational calculation, as well
as others described in Secs. 5 and 6, are, of
course, not Hartree-Fock calculations, in the
sense that we do not attempt to reach self-consis-
tency between the density and the one-particle po-
tential by iteration,

In Sec. 5 we discuss the problem of the nuclear
surface using a plane semi-infinite nuclear model.
We solve the Schrédinger equation for a one-di-
mensional Woods~-Saxon potential to obtain the one-
particle wave functions, and then the particle den-
sity and kinetic energy density. Neglecting all dy~
namical correlations, we obtain a surface energy
of 19.3 MeV and a 90 to 10% fall-off distance of the
density equal to 2.2 fm. These results are quite
close to the empirical values of 19.5 MeV?® and
t=2.4 fm” for finite nuclei.

Section 6 deals with results obtained with the
TFA. Just as in the independent-particle model
(IPM) case, we minimize the calculated surface
energy with respect to the diffuseness and depth of
the generating nucleon-nucleus potential. However,
in the TFA the particle and kinetic energy density
may be obtained analytically in terms of the
Fermi energy and potential. The main result is
that the surface thickness and surface energy are
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significantly smaller than the IPM results, name-
ly, 2.0 fm and 16.0 MeV. Three other TFA calcu-
lations were made, in which both the energy-den-
sity relation and the density distribution are taken
to have a simple form, and the surface energy is
calculated without using a generating potential,

The last section lists the main conclusions,
chiefly the comparison of the results obtained
with TFA or IPM. It is suggested that great care
be taken in nuclear-structure calculations involv-
ing the TFA approximation.

2. MODIFIED § INTERACTION

A. Form of Interaction

In this paper we will use an effective central nu-
cleon-nucleon interaction which acts only in S
states of relative motion. Then the general S-
state matrix element of the interaction (with wave
functions normalized to unity per unit volume), is

('VIR)= f V()i o) jo(kr)d% . (2.1)

For small momenta or for a short-range interac-
tion we can expand in powers of 2. This gives

(k’lVlk)=‘[V(1')d3r-—%(k2 +k'2)fV(1f)72d3r

by B R B R k) [V e
(2.2)

The main assumption in our effective interaction
is to drop all terms of higher order than 22, Thus
for the diagonal matrix element we obtain

(|V]R)= f V(r)dsr = B2 | V(r)r2dr. (2.3)

In coordinate space, this interaction can be
written as

V(p,T) =[ f V(r)ds r]é(?)

- %U V(r)?dar][p 26(%) +8(F) pz] .o,
(2.4)

Thus this interaction depends explicitly on the rel-
ative momentum of the interacting particles. The
first term in (2.4) is a conventional & interaction.
The next term also looks like a 6 function, but it
appears only if the interaction has a finite range.
It is explicitly dependent on the relative momen-
tum of the interacting particles. Thus we denote
this interaction as a modified 6 interacticn (MDI).
In addition, we allow for a density dependence of
the interaction such as that suggested by Bethe.!
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This term appears because of both the short-
range repulsion (through the disperison?® effect)
and the tensor interaction. Both mechanisms
give more repulsion (or less attraction) with in-
creasing density. As a crude approximation, this
density-dependent term can be written as y& ;2(R)
X §(¥), where kx(R) is the local Fermi momentum.
R denotes distance from the center of the nucleus,
and the dependence of the strength on density is
p?/3. 1t has, however, been pointed out by Németh
and Bethe® that the density dependence should
have a finite range, owing mainly to the action of
the tensor force.

Altogether, the MDI has three independent pa-
rameters which we will denote by @, 8, and y.
Thus

V(B, R, T)=-ad(F) + & Bl p26(F) + 6(F) p?]

+ykp2(R)6(F), (2.5)

where
= f V(r)ddr, (2.6a)
p==} [ Virrrar. (2.6b)

As can be seen by comparison with Eq. (1.2), this
interaction is quite similar to Skyrme’s.

B. Energy of Nucleus with MDI

Let us consider the interaction energy of a two-
nucleon pair in a many-body system, such as the
nucleus. The direct-interaction energy between a
pair in states ¢ and j is (in first-order perturba-
tion theory)

(ilelz’j)=fpi(?1)pj(?z) V(F, - 7,)d%, d%, .
(2.7)

For the exchange term, one obtains:
CINIDE f p,(F,F,)p, F, ) V(F, - F) doridsr,,

(2.8)

where p;(T,, T,) is the density matrix equal to
lpi *(71) z/){ (1’2)'

For an interaction which is present in spatially
even states only, such as the MDI, it is readily
verified that the interaction energy of a pair of nu-
cleons is (apart from a constant multiplying fac-
tor) just the sum of the direct and exchange terms,
even when the wave functions used are antisym-

metrized. Then
AE;;=%ij|VI]ij)+ ¢ Gjlv]id). (2.9)

Next we expand the density in powers of T=7, - T,
up to second order in ¥. This gives

(i]'IV'ij>=fp,(ﬁ)pj(ﬁ)d"Rf V(r)d3r
1 fvo.®R) vo,®@R[ VoI,

(2.10)
where

R=%(T,+T,), (2.11)
and we have made use of the spherical symmetry
of the interaction by averaging over the direction
of T. The density matrix p, (¥,, T,) can also be ex-

panded in powers of T. One obtains, again after
averaging over the direction of ¥,

p; (1}, T5) = 9i* (¥,) ¥; (T,)
=9:2(R) + F 2[4 4, RV, (R)
+$ V24, *R)Y; (R) - vy, *(R) - vy, (R).
(2.12)
The quantity in brackets is, apart from a constant

factor 72/2M, the kinetic energy density. Let us
define

T E= 3PV =~ 3(VEY RN HE VY e VY
(2.13)
Then the first two terms of the density matrix are
p; (7, %,)=p,(R) - 1727, (R), (2.132)

and the exchange contribution to the interaction
energy of a pair is

<ij|V|jz‘)=fp..(ﬁ)p,(ﬁ)dSRfV(r)d%
1 [ 1o, (Byr, (R) + 7, (Fp, ()]
&R [Virer. (2.14)

The kinetic density is often defined not by Eq.
(2.13) but by
Ty ==, * V2, . (2.15)

It is readily verified that both forms give the
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same total kinetic energy T; .

ﬁz
g TR

However, for the calculation of the potential ener-
gy integrals, for example, [p;7;d®R, these two
forms give different results. (Of course, in the
TFA the two expressions give identical results
for all the required integrals.) The form (2.13)
used here appears to be the more natural one to
use in an expansion of the density matrix as dis-
cussed here. Summing over all pairs of states 7
and j, we obtain the potential energy including
both direct and exchange contributions:

P.E.= %fp2d3Rde31f - %f(v;;)z d3RfV72d3r

(2.16)

_Tl-sprd3RjV1’2d3r. (2.17)
The first and third terms on the right-hand side
appear also in the expression for the energy of nu-
clear matter. To obtain the total energy, we must
add to Eq. (2.17) the kinetic energy and also a con-
tribution from the density-dependent part of the 6

interaction. This gives

E =2}Z—;If Td*R~-%a| p?d*R+ %pr'rdsR

kr?
p02/3
where @, B, and y have been defined in Egs. (2.5)
and (2.6), p, and k refer to nucleon density and

Fermi momentum of nuclear matter at normal
density, as discussed in the next section.

+ 38 (VoraR+§vE [ R, (2.18)

3. NUCLEAR MATTER

Using the MDI it is easy to obtain an analytic ex-
pression for the energy of nuclear matter (per
particle) as a function of density (or more explic-
itly, as function of the Fermi momentum). In
this paper we consider only nuclear matter with
equal numbers of neutrons and protons. Also,
only the first-order perturbation energy is calcu-
lated.

A. Saturation Conditions

To obtain the total energy of nuclear matter per
particle, W, we use the well-known relations

po=(2/3m)k 2, (3.1a)

(3.1b)

-3 2
TO—'S-kF Po>

which are both valid in the plane-wave approxima-

Ino

tion. The result is

W)= o k2 v 2R [ o (4 B o)k,
(3.2)

One obtains two relations among the three param-
eters «, B, and y by requiring that the interaction
reproduces the correct empirical saturation con-
ditions: binding energy and density of nuclear
matter, We use

W,=~15.7 MeV ,? (3.3a)

kp=1.36 fm™.}! (3.3b)
The latter corresponds to a radius constant 7,
=1.12 fm for hypothetical finite nuclei with the
same density as nuclear matter but with zero sur-
face thickness,” namely, p,=0.170 nucl/fm® The
two relations are

@ =1160 MeV fm?®, (3.4a)

0.3 8+7=298.8 MeV{im®. (3.4b)
As we have already seen, the MDI has both mo-
mentum-dependent terms and a density-dependent
term. The coefficients of these two terms, B and
¥, are not uniquely defined by the nuclear-matter
conditions alone. This means that, as far as the
fit to the nuclear matter energy is concerned, the
density dependence of the interaction can be simu-
lated by the momentum dependence, and vice versa.
This is, however, not quite true for finite nuclei,
especially light nuclei.?®

B. Compression Modulus

The compression modulus! (often referred to as
compressibility) of nuclear matter can be defined
by

2w
K:sz<akF2>. (3.5)

For a MDI, which fits the nuclear-matter satura-
tion conditions, i.e., for which Eqgs. (3.4) hold,
one obtains K =306 MeV, regardless of the values
of B and y separately. For more realistic inter-
actions, K ranges from 150 to 200 MeV.! It
should also be mentioned that a good approxima-
tion to the nuclear-matter energy as function of
density is given by**

W(p)=1Woll -2 p/po*p?/pe2]. (3.6)

For this energy-density relation (and with p
=0.170 nucl/fm® and |W,| =15.7 MeV) one finds
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FIG. 1. Energy versus density relation of nuclear mat-
ter obtained for the MDI, and for the simple quadratic
term Eq. (3.6).

K =283 MeV quite close to the MDI value. The
energy versus density relation for the MDI [Eq.
(3.2)] is plotted in Fig. 1 and compared with the
W(p) relation (3.6).

C. Average Potential Felt by a Nucleon
in Nuclear Matter

The formal expression for the average potential
felt by a nucleon of momentum %;, in nuclear mat-
ter at normal density, is

Uk, ,kp)=A"" 2, (k|VIR)+AUg, (3.7)

by <kp

where k=1[k, -k, . The last term, the so-called
rearrangement energy,% is nonzero if the interac-
tion is density dependent, as is the case here, or
if second or higher terms in the perturbation
series are considered.

For the MDI, the calculation simplifies greatly.
The rearrangement energy is given by

AUg=%po X5 7vk5, (3.8)

and the total nucleon-nucleus potential has the fol-
lowing simple form:

U(ki’kF) =%p0[—0[+(2—30 B+ %'}/)sz]
+&0,Bk ;2. (3.9)

As is evident, the potential is momentum depen-
dent unless $=0. However, for the MDI, there
are no terms of fourth or higher order in 2. Thus
this momentum dependence can be simulated by a
reduction of the effective mass.

We have already shown that the fit to the binding
energy and density of nuclear matter specifies the
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value of the parameter a and the linear combina-
tion 0.3 B+7%. In the following section, we obtain
the values of B and y separately, by requiring a
fit to the ground-state energy of ‘60, Substituting
these values into Eq. (3.9) we obtain

Uk, ,kp=1.36 fm™")=—-80.7+26.8 k,2/k z2.
(3.10)

The rearrangement contribution AUy is 12.9 MeV.
This value is in excellent agreement with the 13-
MeV rearrangement energy obtained by Brueck-
ner et al.®! using a realistic but complicated in-
teraction, but it is only about half as large as the
values quoted by Masterson and Lockett.®? Our
result corresponds to an effective mass in nuclear
matter m*=0.59m.

It is readily verified that expression (3.9) for
Uk, k) satisfies the Hugenholtz-Van Hove theo-
rem: Single-particle energy at the Fermi surface
equals the energy per particle of nuclear matter.

€l =Tk p)+Ulkp,kp)==15.7 MeV=W(k).
(3.11)

For nucleons in the lowest state (the 1s state)
the single-particle energy, i.e., minus the removal
energy, should approach 81 MeV, at least in the
limit A =, For finite nuclei, the removal energy
is expected to be less, because of the finite kinetic
energy of the nucleons, even those in the 1s state.
The expectation value of this kinetic energy can be
roughly estimated by replacing the potential well
by a harmonic-oscillator potential. For example,
for the heavy nucleus 2°®Pb, the kinetic energy is

T(1s)=4hw~5 MeV. (3.12)

Thus in the present model, the 1s single-particle
energy is —=81+5==76 MeV. This value is the
average of neutron and proton binding energies,
neglecting the symmetry part of the potential and
the Coulomb potential, The former raises the neu-
tron energy by about 5 MeV in 2%®Pb and lowers

the proton energy by the same amount. The Cou-
lomb potential raises the proton energy by about

20 MeV. Thus we obtain a 1s single-particle en-
ergy of —=70 MeV for the neutrons and —60 MeV for
the protons in 2®Pb. These values are intermedi-
ate between those obtained by two sets of authors,
all of whom use density-dependent effective inter-
actions: (a) the recently calculated results by
Davies et al. and Meldner® —(95 to 92) MeV for
neutrons and —(85 to 75) MeV for protons, but
without explicitly taking into account the rearrange-
ment effects, and (b) the results quoted in Ref, 32
as well as some recent work by Brink and Vauther-
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in®® and Negele,** all of whom obtain a 1s single-
particle energy of —(62 to 64) MeV for neutrons
and —(52 to 55) MeV for protons.

It may also be of interest to estimate the single-
particle energy of a 1s nucleon in the light nucleus
160, For this case, the calculated average of neu-
tron and proton binding energies is much smaller
than in nuclear matter, so that we cannot simply
use Eq. (3.10) with%k, =1.36 fm~!, However,
Wong® has suggested using k,=1.2 fm™! for this
case. With the same parameters as for 2°°Pb,
which was treated like nuclear matter, we find for
180 that U(0, 2p=1.2 fm~!) =—63 MeV and the kinet-
ic energy, using the oscillator model, is 12 MeV.
Also it is probably more reasonable to use k;#0,
in particular, the value 0.76 fm~!, which corre-
sponds to a kinetic energy of 12 MeV. When this
term and the kinetic energy are added to the po-
tential term in Eq. (3.10), we find the energy of a
1s nucleon in 0 to be —45 MeV, again in rough
agreement with empirical values and previous cal-
culations,

We have already noted in Sec. 3 that the fit to
nuclear matter alone fixes the value of the combin-
ation 0.38+9. Thus if one sets f=996 MeV fm®
and y=0, the resultant momentum-dependent but
density-independent potential gives too much bind-
ing of the 1s nucleon in nuclear matter, namely,
112.7 MeV, and an effective mass m*=0.4m. Con-
versely, if =0 and y=298.8 MeV fm®, i.e., a
strongly density-dependent but static potential,
the 1s binding energy is 55 MeV, and the effective
mass is exactly m.

4. DOUBLE-CLOSED-SHELL N=Z NUCLEI

An important test of an effective interaction,
such as the MDI, is that it can account for the
ground-state binding energies and density distri-
butions of finite nuclei. In this paper we restrict
ourselves to the double-closed-shell N =Z nuclei
“He, '°0, and *°Ca. (In a subsequent paper by
J. Ehlers and the present author, we investigate
N #Z nuclei as well, and use a Woods-Saxon and
also a momentum-dependent nucleon-nucleus in-
teraction.) The single-particle wave functions are
taken to be eigenfunctions of a harmonic-oscilla-
tor potential, and the total energy (with c.m. terms
subtracted out), is minimized as a function of the
oscillator length b.

b=[rn/(Mw)]*2, (4.1)

As we saw in the previous section, the fit of the
MDI parameters a, 8, and y to the nuclear-mat-

ter saturation properties fixes the value of @ and
gives one relation between the coefficients B and y.
Another relation between B and ¥ can be obtained
by requiring a fit to the empirical ground-state
energy of any one of the three nuclei under con-
sideration. In previous work,% the author fitted
the *He ground state, following the treatment in
Ref. 15, but a better over-all agreement with
properties of light nuclei is probably obtained by
requiring instead a fit to the %0 ground-state en-
ergy’” (with the Coulomb energy subtracted). This,
together with Eq. (3.4b), gives f=454.3 MeV fm®
and y=162.6 MeV fm®, The energies versus oscil-
lator lengths for *He, '°0, *°Ca are:

FOHe) 2.8 1 ~ i 15 * o
%:7;‘33'4753)/5 (4.2a)
E(0)=17.95 iz 25, & 188,
+(§2)73-/32 z‘g , (4.2b)
B(°Ca) =592 1z - 10t £+ S92,
+ (—;-:%2- x . (4.2¢)

We also calculated the rms charge radius of the
closed-shell nuclei. This is related to the em-
pirical rms charge radius by®®

b2
A

[ SR

(r?) emp=<7’2> MDI = +<7’2)prot .

(4.3)

The two corrections are due to (1) a c.m. term
and (2) the finite extent of the proton charge dis-
tribution, The results are listed in Tables I and
II. As can be seen, the calculated and empirical
ground-state energies®®%° of *He and *°Ca are
quite well reproduced. The fit to empirical rms
radii is not as good, but still satisfactory in view
of the uncertainty in the experimental results.

5. NUCLEAR SURFACE—SEMI-INFINITE-
SLAB MODEL-IPM

In this and the next section we discuss the appli-
cation of the MDI to the calculation of the nuclear-
matter distribution at the surface, especially the
surface thickness and the nuclear surface energy.
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TABLE 1. Ground-state energies in MeV. Comparison
of MDI and empirical results.

Nucleus  Eeyp® E Goulb Eemp —E coul Enmpr
‘He ~28.2 0.3 -28.5 -29.8
150 -127.6 11.9 -139.5 ~139.4
0ca  —342.1 68.7 —410.8 —402.6

3See Ref. 39. bSee Ref. 40.

We restrict ourselves to considering a semi-in-
finite slab of nuclear matter. Thus the curvature
of the nucleus is neglected. The calculations are
basically variational, i.e., we minimize the sur-
face energy as a function of the diffuseness of the
generating potential.

Turning briefly to the empirical results, the
surface energy in the semiempirical mass formu-
la is 19.5 MeV.® There is some ambiguity in the
definition of the skin thickness. Following custom-
ary notation, we shall identify it as the 90 to 10%
fall-off distance. The magnitude of the surface
thickness, as deduced from empirical charge den-
sities in many nuclei, is about 2.4 fm.*

Bethe'! has proposed a different definition of the
surface thickness, namely, the reciprocal of the
maximum slope of the density distribution (nor-
malized to unity in the interior). However, the
usual definition may be more appropriate for a
Fermi-type density distribution, which turns out
to be close to the IPM density distribution,

A. Calculation of Nuclear Surface Energy

Let us now apply the MDI, with its three param-
eters fixed, to the calculation of the nuclear sur-
face energy. We start with the general form of the
energy as given in (2.18). This can be greatly con-
densed by introducing the energy density. Thus
the total energy equals

E=fe(p, 7,vp)dR, (5.1)
i.e., the energy density is a function of the density
and its gradient and of the kinetic energy density

TABLE TI. rms charge radii in fm. Comparison of MDI
and empirical results.

Nucleus rims byvpr= &/ Mw)? By
‘He 1.63 to 1.712 1.47 1.75
169 2.70° 1.67 2.58
400, 3.49P 1.87 3.32

3See Ref. 26.
bSee Ref. 27.
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alone. It should be pointed out again that this re-
sult holds only for a restricted class of interac-
tions such as Skyrme’s and the MDI. For a more
general nucleon-nucleon interaction, e is a func-
tion of higher derivatives of p and also of other
terms beyond p and 7 in the expansion of the den-
sity matrix.

Furthermore, for the MDI, the energy density
can be written as a sum of two terms:

e(p, 7,Vp)=e,(p, )+ & B(Vp). (5.2)

The energy, as obtained by integrating (5.2) over
d®R, contains contributions from both the interior
and the surface, i.e., both volume and surface en~
ergy. To obtain the surface energy, we must sub-
tract from (2.18) the volume energy.

E, o =W, A =WofP(R)d3R =eofﬁ(R)d3R,

(5.3)
where

b=p/po (5.4)

and p, denotes the energy density of nuclear mat-
ter at normal density. Thus the surface energy is

Esurf =f [el(p, T) "eoﬁ]dsR"' '3% Bf(vP)zdsR .
(5.5)

The first integral denotes the loss of binding en-
ergy because of the lower density at the surface,
while the second integral is due to the apparent
finite range of the interaction.*® The main contri-
bution to both integrals comes from the region of
the nuclear surface.

For the semi-infinite-slab model, the density p
and the kinetic energy density 7 are functions of
only one coordinate, which we denote by z. This
model corresponds to the limiting case A+, The
integration d°R over volume can be reduced to a
one-dimensional integral over z. Restricting our-
selves to a spherical density distribution, we ob-
tain

2/3
A7 . (5.6)

o 1’0

d°R=4T1R%R~ 4nr 2 A¥® dz ~

Thus the expression for the surface energy be-
comes

Esurf=w[f<[e‘(5f)]-eoﬂ> iz

%o

+§iﬁpof (%—S) 2 dz], (5.7

where 7=7/7,, T, being the kinetic energy density
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of nuclear matter of density p,. For the actual cal-
culation of the surface energy, we express the en-
ergy density e, as a sum of terms each of which

is a function of p and 7. The contribution of the
gradient term (dp/dz)? can be evaluated directly.
Also, since (at least in the TFA discussed in Sec.
6) p and 7 are functions of z/aU, we introduce a
new variable s =z/ay, where a; is the diffuseness
parameter in the generating potential. Thus for
the kinetic energy terms, we have

e] =(n*/2M)T, (5.8a)

ed=po T pv (5.8b)
where T 5, is the average kinetic energy per part-
icle in nuclear matter. The contribution of this
term to the surface energy is

3 7t T A 3
sut =5 A ont ;,‘:f (T=p)dz =~ A" Ty Loty ,
(5.9)
where
I =f(f-5)ds. (5.10)

The surface contribution from the potential energy
can also be obtained easily. The complete expres-
sion for the surface energy is

342/ n®
E gurt =—,;,;—— au'}si% ﬁklfz[o*'% Po [— al
3425
ST IRTIA T | SE-
{ 7voay
(5.11)
where
1,=[ " Ut =pls)as,
fo=7,
f=P?, (5.12)
fo=PT,
fs_—_ﬁB/S
and
[~ d_ﬁ_) 2
I, f_m (ds ds. (5.13)

B. Independent Particle Model (IPM)

In the calculations discussed here, we used a
one-dimensional Woods-Saxon potential to gener-
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ate the single-particle wave functions. Thus we
do not attempt Hartree-Fock self-consistency. On
the other hand, this IPM calculation should give
more accurate results than the Thomas-Fermi ap-
proximation discussed in Sec. 6. The potential is
written as

U(s)= -U,/(1+e®). (5.14)
The single-particle wave functions are, of course,
separable in Cartesian coordinates, and thus they
can be written as

Ik, 1) =e it 2y ok, 2), (5.15)
where the ¢ are the eigenfunctions of the one-di-
mensional potential-well problem. We set U,=50
MeV and assume that all states up to an energy
—-11.5 MeV are occupied. This corresponds to a
Fermi kinetic energy 7,=38.5 MeV, which is the
value in nuclear matter at normal density p,. Each
single-particle wave function ¢(&,, z) is normal-
ized such that in the interior it approaches sinl%,z
+ é(kz )] without an additional normalization factor.

The particle density and kinetic energy density

may be obtained directly from the wave functions
by integrating over momenta. Thus

p)=2[ " 02k, 2)a%/ [ a®
p(e) 2fo 0% b, , )%/ M &
=3kF'3ko(kF2-k22)¢2(kz,z)dkz, (5.16)
0

T(2) =7, (2)+ 7,(2) + 7, (2) (5.17)

(5.18a)

kF
2f k%2 (k,,2)d%
z)=—4 -
f F gy
0

kF‘kaF(sz k2P, 2)dk, |

0o

3

L (2)=7(

wfr

kF
[0k, 2= 00,2007k, )%
0
R
0

=_g_kF_5ko(sz _kzz)(qyz_ ¢¢”)de ,
0
(5.18b)

7,(2)=

'=9¢/8z. (5.19)

The next step is to calculate the various integrals
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I,, I,, etc., and sum the various contributions to
the surface energy. The one-particle potential
used here has an arbitrary parameter a; which
specifies the diffuseness. In order to calculate
the correct surface energy, we must of course,
minimize the calculated value of E ;,; with respect
toay.

This procedure was followed and the resulting
minimum surface energy of 19.4 MeV was obtained
at a diffuseness parameter a; =0.60 fm. The cal-
culated E ¢, is in excellent agreement with the
empirical value® and also with the results obtained
by Németh and Bethe.® This latter agreement is
probably coincidental, since these authors used a
realistic interaction radically different from the
MDI, and also since they used the TFA, which
was not done in the present work. The present
particle density function obtained differs little
from the Fermi form (same as Woods-Saxon).
This is illustrated in Fig. 2. Thus if we fit p to
the Fermi form,

p=(1+e /%)™, (5.20)
Then,
a,~0.8a; =0.5 fm . (5.21)

This corresponds to a 90-to-10% surface thickness
of 2.2 fm, in good agreement with the empirical
values for finite nuclei, especially when the finite
radius of the proton is taken into account.

It is also evident that the potential extends fur-
ther out than the density, even apart from its
larger surface thickness. This well-known feature

i LA I B S S S R N A I B
— p(@) for IPM
Wz — ~—-— p@) for TFA
n U i
- -
o .
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-4 3 -2 - 0 | 2 3

FIG. 2. Particle density and potential at the nuclear
surface (semi-infinite-slab model), both in units of the
nuclear-matter value, assuming static generating Woods-
Saxon potential of depth 50 MeV and diffuseness constant
0.6 fm.

is a consequence of the saturation feature (mo-
mentum and density dependence) of the MDI, or of
any other saturating effective interaction.*

Finally, it has been verified that these results
are quite insensitive to the depth of the Woods-
Saxon potential. The minimum surface energy of
19.3 MeV (instead of 19.4) is obtained for a well
depth of 57.5 MeV and diffuseness constant 0.6 fm.
Of course the results may be different if the gen-
erating potential is momentum dependent, such
as the one discussed in Sec. 3C. This point was
not investigated for the semi-infinite-slab model.
However, in our current calculations both static
and momentum-dependent Woods-Saxon potentials
are being treated.

6. THOMAS-FERMI APPROXIMATION (TFA)—
SEMI-INFINITE-SLAB MODEL

A. Calculations Using a Single-Particle Potential
as Starting Point

The Thomas-Fermi approximation was discussed
in some detail by Bethe.! This approximation is
valid to the extent that the density and one-particle
potential are slowly varying functions of position.
In the TFA, the particle density p can be immedi-
ately calculated in terms of the Fermi energy E
and the single-particle potential U(R). If U is
static, then p is just the density

p(R) =3—i‘5 kp%(R) =3—12;2- {E/I-[i%;—t]@} ¥ 6)

which would be obtained if U were a constant,
Even if U is momentum dependent, i.e., of the
form (3.9), the first part of relation (6.1) still
holds.!

The second simplification in the TFA is that the
kinetic energy density is taken to be a simple func-
tion of p. Specifically

T(R)=%p(R)kp*(R) =& (§ 1°)*° p**(R).  (6.2)

Once p and 7 are calculated, the surface energy
may be obtained by varying the diffuseness param-
eter so as to minimize the energy. Actually the
value of a; which gives minimum energy is close
to 0.6 fm in both the IPM (Sec. 5) and the TFA.
We chose this value in order to make a direct com-
parison between results obtained by these two
methods.

The values of the integrals I, I, etc., defined
in Sec. 5, are listed in Table III.

Thus the kinetic-energy and potential-energy
terms are about 10% smaller than the IPM values,
while the gradient term is about 10% larger. It
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TABLE III. Values of surface integrals defined in Sec.
5 for IPM and TFA methods, assuming Woods-Saxon po-
tential with U;=50 MeV and ay=0.6 fm.

Integral Term IPM TFA
I, T ~0.582 —0.544
I, p? —0.842 —-0.738
I, pT -1.176 ~1.042
Iy p¥3 ~1.147 -1.042
I vp +0.204 +0.231

should also be mentioned that all I, integrals cal-
culated in the TFA are independent of the diffuse-
ness parameter a;. Thus from Eq. (5.11) it is
clear that the two parts of the surface energy, the
terms giving e, and those proportional to (Vp)?,
contribute equally. This is not the case in the
IPM, where the e, term is about twice as large as
the gradient term.

The TFA and IPM particle densities are plotted
in Fig. 2. As can be seen, the TFA density (un-
like the Fermi distribution), is not symmetric
about its half-density point. Its maximum slope
occurs at about p~ % rather than 3 as for the
Fermi distribution. This asymmetry of the TFA
density distribution was already noted by Bethe.!
Also, p obtained in the TFA vanishes at the point
where the classical kinetic energy vanishes, i.e.,
at the point R where U(R)=E . By comparison,
the p obtained in the IPM has a longer tail. Bethe
estimated that the TFA breaks down significantly
where p <0.15, and he modified his TFA densities
so as to roughly match the more realistic IPM val-
ues in the outer part of the nuclear surface. In
comparing the results obtained using the IPM or
TFA, we assumed a diffuseness parameter of the
potential equal to 0.6 fm. However, for the TFA,
the minimum surface energy =16.0 MeV occurs at
a slightly smaller diffuseness, namely a, =0.56
fm. This is equivalent to a surface thickness of
the density equal to about £~1.8 to 2.1 fm, depend-
ing how this “thickness” is defined. Thus, for the
MDI interaction considered here, the IPM treat-
ment gives good agreement with the empirical
surface energy and surface thickness, while the
TFA underestimates both quantities significantly.
In the Thomas-Fermi approximation the energy
density is a function only of p and (Vp)?. In fact,
it is readily seen that the energy densities given
in Eq. (5.5) are

e,(P)=p,pW(P) (6.3)
and

e,=poW(p,) . (6.4)
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Thus, in the TFA the surface energy can be ex-
pressed in the form:

2/3
Esmf=3—%—- {f plw(p)-w(pylaz}

3A2/3 f(dﬁ>2
- i -
+ . < B0, T dz. (6.5)

It was attempted by Weizsadcker® to simulate the
deviation of the kinetic energy density 7 from the
TFA value by adding a term equal to

(72/8M)(Vp)2/p (6.6)

to the TFA value of 7. Later Berg and Wilets*
showed that such correction should be consider-
ably smaller in order to fit the results of a more
exact calculation. Thus for particles moving in a
periodic potential such a gradient correction does
appear, but with a coefficient of only ¥ the Weiz-
sdcker term.* This result has also been obtained
by several authors in work on atomic physics.%®

In the case of the nuclear surface, however, the
deviation of 7 from the TFA value as a function of
position is more complicated. In fact the deviation
is not even positive everywhere.*’

B. Phenomenological TFA Calculations

We have seen that, for a modified 6 interaction,
the IPM reproduces the empirical surface thick-
ness and surface energy better than the TFA
based on a one-particle potential. It may be of in-
terest to compare the IPM results also with those
from other TFA calculations using analytical den-
sity distributions directly. This comparison will
be made for the simple energy-density relation

W(p)=|W,|(-2p+p?), (6.7)
which reproduces Eq. (3.2) quite well, and for

three different TFA models. The gradient term in
the energy is, according to Eq. (5.5),

Egraa =upo-1f (VoRd°R, (6.8)
where
k=% Bp, (6.9)

has the value of 7.2 MeV fm? for the chosen value
of B in the MDI. If the density distribution is a
Fermi distribution [ Eq. (5.20)], the surface ener-
gy is minimized when the diffuseness parameter
a,, defined by Eq. (5.20), is

a,=(u/3[Wol)2. (6.10)
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FIG. 3. Comparison of Fermi and Skyrme particle
density distributions at the nuclear surface.

This model will be called the Fermi model. Ac-
cording to Skyrme,? the optimum form of the den-
sity distribution with Eqgs. (6.7) and (6.8) is

=tanh? (1 - 2=2a
p =tanh <1 w/'1_2ap> for z<z,+V12a,,

=0, forz>zo+map,

where @, is given by (6.10), and z, is the point
where p =tanh?(1) =0.580. This distribution re-
sembles that of Bethe' in the sense that it is not
symmetrical about the half-density point. Figure
3 shows a comparison of the Fermi and Skyrme
distributions. Finally, as the third model, we use
Wilets’s result* that the optimum distribution is
just the Fermi form (5.20) if in the gradient term
(6.8) (p,)~! is replaced by (3p)™.

Using the MDI values of the parameters, one
finds a surface parameter a, of 0.39 fm, i.e., a
surface thickness of only 1.7 fm, for all three mo-
dels. The calculated surface energy,

Esurf=(3A2/3/'ro)'Wo'ap, (6.12)

is 16.5 MeV for the Fermi and Wilets models. For
the Skyrme model, E . is less than (6.12) by
7.5%, i.e., 15.3 MeV. Thus we see that all three
phenomenological TFA models give surface thick-
ness and surface energy considerably lower than
the value obtained with the IPM for the same com-
pression modulus K and inhomogeneity coefficient
T8

The TFA results can be brought closer to the
IPM values (a,=0.5 fm, E ¢ =19.3 MeV) if one
adjusts the values of u and K. Thus if u is multi-

NUCLEAR SURFACE PROPERTIES... 413

plied by a factor 1.8, we obtain the much more
reasonable values of a,=0.5 fm, Eg,s=21.0 MeV
(Fermi and Wilets) and 19.4 MeV (Skyrme). If the
compression modulus K is also varied as in Wilets,
by using a more general form of the energy-den-
sity relation than Eq. (6.7), then a fit to the IPM
result can be obtained in the Wilets model with u
=12 MeV fm? and K =210 MeV. However, these
parameters are significantly different from those
deduced from the MDI.

7. CONCLUSION

We have seen that a simple phenomenological
three-parameter effective nucleon-nucleon inter-
action can correlate a number of nuclear proper-
ties surprisingly well, It is perhaps not unexpect-
ed that if one fits the '°O ground-state energy, in
addition to the nuclear matter properties, one
also gets good agreement with the ground-state
energies and rms radii of *He and *°Ca. What is
surprising, however, is that this interaction also
fits the surface energy and nuclear density dis-
tribution of semi-infinite nuclear matter quite
well, even though the effective interaction leads
to a compression modulus of nuclear matter about
twice as large as the conventional value of 150 to
200 MeV, given by most Brueckner-type calcula-
tions of nuclear matter. It is also significant that
the calculated value of the surface energy (and
surface thickness) using the Thomas-Fermi ap-
proximation is 10 to 15% less than the value ob-
tained in the independent-particle calculation. Re-
garding the last point, it has, of course, not been
proved here that the 3-MeV difference between the
IPM and TFA results for the surface energy holds
for an arbitrary effective interaction, even one
which fits the saturation properties of nuclear
matter. However, there is some indication from
work by K6hler'® that this difference may indeed
be more general. This probably means that care
has to be exercised in the use of the Thomas-
Fermi approximation as applied to nuclear-struc~
ture problems.
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