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The Hartree-Fock-Bogoliubov (HFB) equations with generalized isospin pairing are numeri-
cally solved without any approximations, except imposing certain self-consistent symmetries.
Realistic forces are used to make definite conclusions concerning the shapes of nuclei and the
existence of isospin pairing. Comparison with previous approximations shows that in the s-d
shell the HFB equations may not be quantitatively approximated by HF+ BCS, HB —BCS, or
by iterating between HF and BCS. Isospin pairing offers an explanation for axial symmetry
in Mg and 'S and for the existence of low-lying vibrational states in Ar.

I. INTRODUCTION

Nuclei in the first half of the s-d shell exhibit
rotational features such as energy level spacings
which obey an I(I+1) law and enhanced electro-
magnetic transition probabilities between states
within a rotational. band. A very useful technique
for calculating the wave functions of these states
involves the construction of an intrinsic state, and
the subsequent projection of angular momentum
using the Hill-Wheeler integral' or various approx-
imations based on the adiabatic nature of the rota-
tional motion. ' Intrinsic states have been calcula-
ted using deformed potential models' and, more
recently, they have been calculated using Hartree-
Fock (HF) theory. (A review of HF calculations
in the s-d shell has been presented by Hipka. ")

The HF description fails for the N=Z even-even
nuclei beyond "Ne. These failures have been dis-
cussed in detail in a previous publication' (here-
after referred to as I). However, to summarize
the most important points of that discussion we
note, (1) there are several experimental investiga-
tions which strongly indicate that the intrinsic
shape of ~Mg is prolate and axial while HF unam-
biguously predicts the shape to be triaxial, (2) for
"Si, HF. predicts both a low-lying oblate and an
orthogonal low-lying prolate intrinsic state which

is in contradiction to the experimental spectrum,
(3) for "S, HF predicts a triaxial shape' with P,
= 0 again in contradiction to the experimental spec-
trum, and (4) experiments suggest that "Ar can
be interpreted phenomenologically as a vibrator,
while HF predicts a well-deformed oblate intrinsic
state giving low-ener gy rotational levels. Thus,
if we are able to adopt the concept of an intrinsic
state, then a more complicated one must be used.

In I we pointed out that the Hartree-Pock-Bogol-
iubov method (HFB) might be useful for describing
the intrinsic states in the s-d shell. Recently,
these calculations have been carried out by two
groups" and they conclude that the usual J=O
pairing does not occur for N= Z even-even nuclei.
As clearly pointed out by Sauer, Faessler, and
Wolter' and in I, this result should not be taken to
mean that HFB will not produce new intrinsic
states, since these authors have omitted neutron-
proton correlations which have been shown to be
important for ¹Znuclei. " In I we solved the
HFB equations including neutron-proton correla-
tions using an approximation similar to that em-
ployed by Kumar and Baranger. " In this paper we
solve the HFB equations exactly and make a care-
ful examination of approximations which are usual-
ly employed in their solut;ion. %e also comment
on the relevance of pairing in the intrinsic states
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of the N=Z even-even nuclei in the s-d shell. We
use realistic interactions in this paper in order to
make our conclusions about the existence of neu-
tron-proton pairing and the shapes of these nuclei
in a parameter-free manner. In Sec. II, we brief-
ly develop the formulation of HFB, and discuss in
some length the concept of self-consistent sym-
metry in HFB and the importance of the particular
phases that we introduce. We also comment on
the various approximations to HFB that have been
used in discussing pairing. In Sec. III, we de-
scribe our calculations, attempt to justify the sol-
utions, and discuss the effects of truncation and
the imposition of self-consistent symmetries. In
Sec. IV, we give the results of our calculations
and discuss the validity of previous approxima-
tions. The implications of paired intrinsic states
on the interpretation of experimental data in the
s-d shell are discussed in Sec. V. In Sec. VI we
present our conclusions.

ticle energies. In the definition of X,

p and n refer to the isospin indices for the proton
and neutron, while A~ and A.„are Lagrange multi-
pliers. P' and not H must be transformed, be-
cause when P»& is neglected, the quasipartiele
vacuum lCo& is an eigenstate of the independent-
quasiparticle Hamiltonian but not of the neutron
and proton number operators. The Lagrange mult-
ipliers are chosen so that

The part of H' which must be transformed to give
the independent quasiparticles is written

H,' =Q (X —X),q,„.'Ctqc, .v:
PV

II. SUMMARY OF HFB THEORY

Quasiparticle Transformation

+ops o~ C vc,„:+,g.a, „,„:C .C
ij ij
PV PV

We assume that a nucleus can be described by a
two-body Hamiltonian

ff=g &iplFli v&Ct, „C„

where the normal order is taken with respect to
the quasiparticle vacuum, and

i P.yV ~i P yV i y.gV ~

+&o p &i' vlV, lkpl6&ct, „ct&„c,oc,
i jkl
p vs

where T is the kinetic energy and V is some ef-
fective two-nucleon interaction. Since we choose
to work in an oscillator basis, lir& denotes a
wave function with quantum numbers ln;f, j,m, v) .
The Hamiltonian is next transformed to one writ-
ten in terms of quasiparticles

a o„Q(uo„,v C «v+vnv. ~vCiv) ~

iV

F;, .=5 &iu~plv. lj «&p
kl
PO

6.,», =
~o Q&igjvl ,VklPof&too,

N
PO

(10)

ployv= @&l ogCvscpl '4o&Zva qovvoo, v,

p is the single-particle density matrix, and t is
called the pairing tensor. They ean be written in
terms of the quasiparticle transformation

where the p, „,, and v „,„are complex coeffici-
ents of the HFB transformation. They are deter-
mined by requiring that the quasiparticles must be
Fermions and that the Hamiltonian describes in-
dependent quasiparticles except for a residual in-
teraction, i.e.,

O'=P-AN=Eo+Q E pa~ vaov+Hsr,

where

i;o qv
= &C'olc~vc;~IC'o) Zaoodvvno, so ~

The vacuum energy is given by

@0=@HF+EPAIR ~

where

Esp =Q (T —A. + +o F);» ~„p)v (o+ Av Z+A.„(A —Z),
ij
pv

+=get„c,.„ (4)

is the number operator, and E
&

are the quasipar-
~PAIR 2 ~ iP JV'jV i P '

PV
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The coefficients in the transformation (2) and the
quasiparticle energies are given by the solutions
of the HFB equations

(z- a)
(14)

The matrix to be diagonalized in (14) is often re-
ferred to as the a matrix. Since the potentials de-
pend on the solutions to the equations, the equa-
tions must be solved by iteration until self-con-
sistency is achieved.

Self-Consistent Symmetries

The HFB equations contain both the HF and BCS
equations as limits. The generalized BCS equa-
tions result from choosing an initial transforma-
tion having the form

a~ip =Q(uip &~C~i~+ v&„,.—,C;,),

where Ii) is the state time conjugate to Ii), and

Ii& is some single-particle state chosen so that
for any relevant set of isospin indices

&iilv. lii & «&iilv. li~&

&i~ lv I ~ I& «&I'Iv. I~~ & .

The HFB equations may then be approximated by
the usual 4&4 system of BCS equations. " It is,
of course, not obvious a Priori that such single-
particle states can be found, and one of our im-
portant conclusions is that such approximations
are not valid in the s-d shell. The HF equations
can be obtained by simply choosing trial wave
functions so that all f,, =0 since from (10), 6 =0.
The structure of (14) insures that at each stage of
the iteration, b remains zero so that the HFB
equations converge to the HF solution.

This is an example of a symmetry which pro-
pagates through to the final self-consistent solu-
tion when it is initially built into the HFB equa-
tions. We will call these propagating symmetries
(PS). It is important to consider such symmetries,
because a seemingly arbitrary trial wave function
might contain one or more of them, perhaps mak-
ing it impossible to obtain the solution with the

largest binding energy. Moreover the solution of
a completely unrestricted HFB problem is im-
practicable even in the s-d shell. From (2) and

(14) we see that this would involve diagonalizing
48x 48 complex matrices until self-consistency is

achieved. Thus it is imperative to use PS's to re-
duce the numerical problem. To this end we wish
to specify a subset of the PS's which we will call
self-consistent symmetries (SCS), and which can
be uniquely defined. There are other PS's which,
to our knowledge, can not be uniquely defined and
which from time to time we have discovered nu-
mer ically.

A SCS is defined as a unitary or antilinear uni-
tary operator S which commutes with the H2 part
of the Hamiltonian [see (7)]. Sufficient conditions
for such an operator to be a SCS are that:

(1) The total Hamiltonian (3) is invariant under
the symmetry operation, i.e. ,

[IJ', s] = o.

(2) The trial wave functions are invariant up to
a phase under the symmetry operations, i.e. ,

(18)

(3) S maps the single-particle basis states into
them selves.

The proof of this theorem and a rather complete
discussion of SCS's has been recently given by
Sauer. " If 112 commutes with S, then, of course,
the quasiparticle states a~ „and a~.

u
~ =Sa~ „S

are degenerate, and may be specified by the labels
of the irreducible representations of the symmetry
group S. Thus, if we can show that our trial
wave function satisfies conditions 1, 2, and 3 for
some operator S, and if the matrix (14) is reduced
to block form because of this symmetry, then, be-
cause we have a PS, we only need diagonalize the
smaller blocks. Moreover with time reversal one
only needs to solve one-half of the problem, since
the time-conjugate states may be obtained from
the relation

For every SCS introduced, the generality of the
theory is reduced, but often the dynamics of the
problem suggest that such symmetries will be con-
tained in the physically relevant HF or HFB solu-
tions, "i.e., even if the SCS is broken in the trial
wave function, it will be recovered at the end of
the iteration process. We now list the SCS's used
in this work and briefly discuss their implications.

Parity. The quasiparticles are labeled by the
parity quantum number, and so the I(.

" matrix is
diagonalized separately in spaces of positive and

negative parity. There can be no inversion-non-
invariant deformations in the intrinsic state.

Time reversal. Use of this SCS allows one to
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further decompose the K matrix into blocks which
define quasiparticles connected by time conjuga-
tion. In this paper we use harmonic-oscillator
basis states and choose our phases so that

Because T acts only on the space-spin coordinates,
we wiB suppress the isospin coordinate for the
discussion of time reversal. We divide the basis
states into two sets, the first containing states
with m —

~~
= an even integer and denoted by ~i); the

second contains those states having m —~2= an odd
integer. They are chosen to be the time-conjugate
states of the first set and are denoted by [i ). In
this paper we restrict the pairing to be between
time-conjugate states, i.e. , we write the trans-
formation (2) either with I„, and v„-;, or u~-;
and v, Making this restriction in the trial wave
functions breaks the ~ matrix into blocks and in-
troduces a PS. However, since we are dealing
with even-even systems, we can choose time re-
vel sal as a SCS. This implies the l estrietion

which yields the relations

Ql 1 0 -vl 1

Nl, l -V1,2

lyl lg2 1 1

v)+~ vl l 0

(23)

s-d shell do not have this symmetry.
Rotations in Isospace. Since we have a gener-

al transformation which includes the coupling of
neutrons and protons, there may be various SCS's
in isospaee. For example, we might demand ro-
tational invariance, but this would restrict us to
N= Z nuclei and T = 0 pairing. Since we limit our-
selves to N= Z even-even nuclei in this paper,
this would be a possible symmetry. However we
want to explore the possibility of lowering the en-
ergy by allowing noneonservation of isotopic spin
in the intrinsic state. We might also demand ro-
tational invariance about the z axis, but then we
would restrict ourselves to neutron-proton pairing,
and we wish to include neutron-neutron and proton-
proton pairing as well. For N= Z nuclei, it is
physically reasonable to expect that the ground
state has the property ( T ) = 0." With this sym-
metry, the transformation in isospin space is
written

g~ ~ gag ayp vn, g
= -ve, T~

and finally the HFB equations reduce to

(21)
and further, we choose the matrices u» and v»
to be real. %'ith this transformation, the pairing
potential 6 may be written

(ii~u ~~.)
+Pn ~PP

(24)

where in contrast to (14) X= (K);z, & =(a),.;. , and
both X and 6 are Hermitian.

Axial symmetry. This introduces a new quan-
tum number 0 (the z projection of angular momen-
tum) into the specification of the quasiparticle.
This symmetry is introduced by restricting the
quasiparticle transformations to states ~i) with
the same value of m, and states ~i ) with -m. AI-
though this symmetry is too restrictive' in HF
(in "Mg and "S the lowest solutions are triaxial),
it 18 one of the main pul poses of this paper to Bx
amine whether this is still true in HFB,

Rotational symmetry. The quasiparticles are
specified by the quantum numbers jm. This sym-
metry may be introduced by restricting the trans-
formation so that the states (i) have the same jm,
and the states (F) have j—m. This symmetry is,
in general, too restrictive, and in HF is valid
only for doubly magic nuclei. We find within the
framework of HFB that the lowest solutions in the

—g 7-1 + gT-0
Pn Pn -" Pn

A close examination of 6 shows that diagonal ele-
ments of 4~ ~ vanish if we choose the PS so that
all coefficients are real (see Ref. 18). This re-
sult is independent of any SCS in isospaee. Con-
sequently, a complex HFB transformation is re-
quired for simultaneous T=0 and T= 1 pairing.

In our discussion of time reversal, we showed
that restricting the pairing to time-conjugate
states gives time reversal as a SCS. This, how-
ever, excludes a possible mode of neutron-pro-
ton pairing where both particles are in the same
space-spin state o.' and are coupled to T=O, i.e.,
we could consider na pairing in addition to the
usual ee pa~ring. Such a mode could in principle
be included in the general transformation. This
would make the numerical calculation essentially
impossible, since one loses the advantage of



breaking up the space into time-conjugate blocks
(although the solution could still have time re-
versal as a. SCS). Further, we no longer can
have rotational invariance about the z axis as a
SCS. In the next section we will calculate this
mode Rnd attempt to argue numerically that it is
much less coherent than the usual mode. Thex e-
fore, it ean be safely neglected. The lack of co-
herence of the en-type of pairing can be explicit-
ly demonstrated in the case of a simple 4= 1

force. '6

transformations. The first transformation is
wrltteQ Rs

The isospin structux'e of this transformation con-
sistent with the SCS 8 is

Canonical Basis

In this subsection, we wish to describe sever-
al approximations to the most general HFB forma-
lism Rnd describe oui method fox' presenting wRve

functions. Thi.s is done by use of a theorem simi-
lar to that of Bloch and Messiah" which states
that the most general transformation B&,„ is given

by the product of three transformations": (l) a
transformation D in particle space which defines
the canonical basis, and is obtained by diagonaliz-
ing the density matrix; (2) a generalized BCS
transformation 8», and (3) a transformation ft in

the quasiparticle space,

&~„=RB, D.

The well-known BCS approximation consists of
assuming that we know a priori the canonical bas-
is, and further that X and 6 are diagonal in the
space-spin part of this basis. Then the ~ matrix
breaks into 4~4 blocks. If there is no neutron-

proton pairing, the x matrix further reduces to
the familiar 2x 2 matrices yielding the gap equa-
tion for the pairing of identical particles. In the

HFB calculation of Baranger, " this simplification
is achieved by use of the pairing-plus-quadrupole
Hamiltonian. IIl this CRse, + 18 tl ivlRlly dlRgonRl In

the HF representation of the Q. Q force. The ap-
proximation that we used in I was to take the cou-
pled HRx'tx'66-Bogollubov Rnd BCS equRtlons

which are equivalent to the HFB equations up to a
unitary transformation, and note that if the off-
diagonal elements of 4 are small, then they re-
duce to coupled generalized HF and BCS equations.
Although this might intuitively seem a better ap-
proximation than BCS, it still depends on 6, being
diagonal in the canonical basis. In any diagonal 4
approximation, R is the unit matrix. One of the
majox points to be explored in the present paper
is the extent the nonzero off-diagonal elements of
6 affect the solution.

In Sec. IV we wi11 discuss the various approxi-
mations numerically, and it will be useful to ex-
press the wave functions in terms of the three

where D» =D„„. With our choice of SCS's, the sec-
ond transformation B,z may be written in terms
of the submatrices

O &r &rll 1j. »

+» ~n

~» ~I2 +j.l
r@»

where m» and v» are real numbers, and v» is
complex. The third transformation is written

C(P ~g, lr~P + y 0+ y

and the isospin structure consistent with our SCS's
becomes

where R»=R». The general transformation ean

thus be specified by giving the xeal orthogonal
matrices D Rnd R„, Rnd the coefficients u"„, e"„,
Rnd e». It is interesting that the canonical basis
is doubly degenerate. Thus by taking appropriate'8
linear combinations of the degenerate solutions,
it is possible to define the pairing between A@0

single-particle states which become linear com-
binations of proton and neutron states with com-

ple coefficients. These are the states which de-
fine the Bloch-Messiah canonical basis. " %'6 do

Qot use this mixed neutron-proton canonical basis,
81Qce lt 18 inconvenient when comparing with pre-
vious results.

III. DESCRIPTION OF THE CALCULATION

A. Method of Sohition

To solve the HFB equations (l4) it is important



LIGHT NUCLEI. II.

to have reliable initial guesses. In the first
place, using completely random guesses may in-
troduce undesirable PS's, In addition, such bad
guesses may take a prohibitively long time to con-
verge. Ne solve this problem in the following
w'ay:

(1) We first obtain various HF solutions. In par-
ticular, we find axially asymmetric, and both pro-
late and oblate axially symmetric solutions, and
we often find several solutions that have the same
shape. The HF single-particle states may be
written as

ppp
=p"„„=v~~ + jr~2[

ppn =~np =0 (38)

(37)

tpn +zxVj.a ~np ~ (38)

l~;, ]
= (I —p,",)"'.

p» =p and f p
=t

p y Qgg may be
obtained from (35) as

~'p=ZD'u. uci. * (32)

(2) We next calculate the coefficients of a general-
ized BCS transformation

%e choose uii 0, and then v",~ and v12
tained from (37) and (38).
(3) Since Bz,„, D, and B,~ are now known, R can
be determined from (26). Further details can be
found in Ref. 18.

I

+e 0 vo. vn C np
I

(33)

.+c2 .ve vo, &n Ce. .

+QLP jlP II
.P Qct 5P P

Fl &ve~. ~x
=-v~2, i2 = ex. ~~va ~ (34)

~ I
A'1, i 2 OtZ y $1 O'I ~ 41

(4) The starting value of X is also obtained from
solutions of the generalized BCS equations. "
(5) With these starting values, we obtain the final
solutions by iteration until self-consistency is
achieved.

Once the HFB transformation has been deter-
mined we express it as a product of the three
Bloch-Messiah matrices which we discussed in
Sec. II. The procedure for determining them is
outlined below.
(1) The canonical basis is obtained by diagonaiiz-
ing the density matrix (11). This gives us the
transformation D of (27). We then determine p
and t in the canonical basis.
(2) We now express p and f in terms of the coef-
ficients of the second transformation B,~, [see
(29)]. We then have the following relations:

where u~ and v~ are real, and v~ is complex. The
method of solving for the u's and v's has been
given in an earlier paper. "
(3) The star ting values of the HFB transformation
coefficients are now given as

8. Choice of Force

In I, we used a Rosenfeld- Yukawa force in our
calculations. Since the existence and importance
of the isospin pairing correlations depend on the
nature of the effective interaction (for example,
the relative strength of T=0 versus 7=1 matrix
elements or the s-wave triplet to singlet strength),
we have used three types of force in this work;
the first two are commonly regarded as realistic.
The rationale for using such forces in both the HF
and HFB calculations is that these calculations
are to be regarded as a caricature of an exact
shell-model calculation in a sufficiently large mod-
el space.

(1) Yale f matrix. The Yale potential20 was de-
termined by very accurate fitting of the nucleon-
nucleon scattering data. Since a hard core is in-
cluded, one must replace the matrix elements of V
by those of t. The t-matrix elements used in this
paper are those calculated by Shakin, %aghmare,
and Hull" from the Yale potential. As is custom-
ary, the dependence of the I; matrix on the single-
particle wave functions and energies (double self-
consistency) is ignored. The shell-model space
is confined to the lowest three oscillator shells.
The oscillator parameter (h =Vh/m&u) that we
choose is 43.1 fm. This enables us to compare
our results with previous HF ealeulations.

(2) Nestor-Davies-Krieger-Baranger (NDKB)
potential. ~s This potential was specifically de-
signed with no hard core for Hartree-Pock calcu-
lations. The effect of the hard core is simulated
by using a velocity-dependent term in the poten-
tial. In fitting the force parameters (we use set
number 3), primary emphasis was given to re
producing the binding energy and equilibrium den-
sity of nuclear matter, so that the second-order
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corrections to the binding energy are small.
(3) Rosenfeld- Yukawa effective interaction.

This force has been widely used in the s-d shell
(see discussion in I). For the HFB calculations
we truncate to the X=2 oscillator shell, and re-
place the kinetic energy by single-particle ener-
gies (see I and Ref. 4). As inl, we use single-
particle energies which correspond to the experi-
mental ones found in "0 (Rosenfeld 1) and also to
energies which were used in the HF calculation"
of "Mg (Rosenfeld 2). We use this force in order
to make a comparison with the results in I, and
so that in the future a comparison can be Inade
with the results of exact shell-model calculations.

C. Validity of Number Nonconservation Approximations

In I we compared number nonconserving BCS
with the results of exact number projection for T
=0 pairing. Although we found that the total ener-
gies do not change appreciably, the pairing energy
was reduced by approximately 309o in the number-
conserving case. This was due to the drastic re-
duction of the dispersion of the particles across
the Fermi surface (see Fig. 1 in I). For number
nonconservation to be accurate, we would expect
that the binding energy should vary linearly with

¹ Because of the dominance of n-p pairing, this
linearity will be particularly important between
odd-odd and even-even X=Z nuclei. A cursory
glance at the experimental mass symmetries of the
s-d shell even-mass nuclei, shows the presence
of a sharp discontinuity at the N= Z even-even nu-

clei. For example, the mass discontinuity at ' Mg
is AM( ~Mg) —= M(26AI) —2M( Mg) + M(2 Na) = 10.5
MeV. However, this experimental discontinuity is
of no relevance in pairing theory. Rather it will
be the discontinuity calculated with the underlying
HF wave functions. It is interesting to note that
with the triaxial HF solution calculated in Ref. 22,
AM('4Mg) = 11.3 MeV. This is caused by the pres-
ence of a large gap in the triaxial solution. In I
it was shown that it is just this gap which prevents
the (number-nonconserving) pairing field from
building up in the triaxial HF basis. Qn the other
hand, using the axially symmetric prolate HF solu-
tion given in Ref. 22, one obtains AM('~Mg) = -3.8
MeV. Since the mass discontinuity is relatively
small in this case, a strong number-nonconserv-
ing 7= 0 pair field builds up on this solution (see
Secs. IV and I). However this discontinuity is
large enough to severely limit the accuracy of the
number-nonconserving BCS method. To our knowl-

edge, a number-conserving HFB calculation has
not been carried out. One can get a rough esti-
mate of the validity of the number-nonconserving
method by calculating the discontinuity for the

canonical basis. Using the canonical basis func-
tions given in Sec. IV, we find 4M('4Mg) = -3.7
MeV, hM("S) =-7.1 MeV, and AM("Ar) =5.0 MeV.
This suggests that the number -nonconser ving
method is not any more valid in HFB than in BCS.

D. Absence of O.-n and T=1 Pairing

In Sec. II we pointed out that we have not includ-
ed the possibility of e-n pairing in our calculations,
but in I it has already been shown that a dominance
of a pair field of one kind precludes the emergence
of other pairing fields. For example, T= 1 pairing
is suppressed by the T= 0 field for all N= Z even-
even nuclei. This remains true for the solutions
presented in this paper. %Kith the Yale force and
a space of three oscillator shells we also investi-
gated n-e pairing, and found'4Mg has a binding en-
ergy of -130.53 MeV, while 3'S and 36Ar have bind-
ing energies of -225. 12 and -291.07 MeV, respec-
tively. These solutions are obtained with the nu-

clei artificially constrained to be axially symmet-
ric. %hen this constraint is removed, the nuclei
either gain -0.3 MeV in binding energy or fall into
the triaxial HF solutions. For pure e-e pairing,
the binding energies for these nuclei are -132.53,
-229.66, and -291.76 MeV. The relative lack of
coherence of the n-e pair field is clear. It is there-
fore expected that this field will be suppressed by
the stronger O.-e pair field in a more general cal-
culation, although this has not yet been investigated
numerically.

IV, NUMERICAL RESULTS

A. Comparison of the HF and Canonical Basis and the

Validity of the Approximation Used in I.

In Table I we give the HFB wave functions for
the solutions with the largest binding energy in
terms of the three Bloch-Messiah transformations
defined in Eqs. (26)-(31). These wave functions
were obtained with the Yale I; matrix using a basis
of three oscillator shells. As pointed out in Sec.
II, a measure of the deviation of our previous ap-
proximation from the complete HFB is given by
the deviation of R from the unit matrix. It can be
seen from Table I, that this deviation is appreci-
able for '~Mg and "8, and is very large for "Ar.
A similar measure can be obtained by comparing
the HF wave functions D' given in Ref. 21 with the
canonical wave functions D of Table V. Again
large deviations are due to the fact that 4 is not
diagonal in the canonical basis. In Table II we

give the matrix 4 in the canonical basis for 2~Mg,

s28, and 'Ar. Not surprisingly, we find that 4
has large off-diagonal elements for all three nu-
clei. Although ~4Mg has large off-diagonal ele-



GENERALIZED PAIRING IN LIGHT NUCLEI. II.

TABLE I. HFB wave functions for the lowest-energy nontrivial HFB solutions for '
Mg, 8, and Ar. Calculations

are done with the Yale-Shakin potential in the s-P-s-d-shell basis. &7t denotes the component of total angular momen-
tum on the symmetry axis and the parity, respectively, for each orbital. E denotes the quasiparticle energies in MeV.
The general quasiparticle transformation is displayed as a product of three transformations as explained in the text. In

the column giving [Imv&2], the sign of Imeq2 is given in the parenthesis. Note that ~« =Fee&2=0 for all the solutions. A.

is the Fermi energy.

Transformation R [Imv(2] Transformation D

2+

4Mg $, =-9.150 MeV)

(+)o.o34
«d P2
1.000

2.651
7.982

0.167 0.986
0.986 -0.167

(+)o.oos
(-)0.684

«d5/2
0.347
0.938

-0.938
0.347

—+1
2

a
2

2.158
5.058
6.503

49.655

16.958
26.094

0.247
0.926
0.285
0.024

0.923
-0.134
-0.361
-0.011

-0.296
0.351

-0.888
0.036

0.990
-0.139

0.015
-0.036

0.021
0.999

0.139
0.990

(+)o.o«4
(-}O.317
{+)0.953
(+)1.000

(-)o.eev

(-)o.ee6
(+}0.998

«S g/2

0.143
0.024
0.067
0.987

«P 3/2

1.000

«P 3/2

0.570
0.821

«d5/2
-0.409
-0.6«7

0.672
0.029

«P i/2
0.821

-0.570

2~ i/2
-0.747
-0.175
-0.622

0.155

«d3/2
0.504

-0.767
-0.396
-0.027

8 P =-14.245 MeV)

1.000
«d5/2
1.000

2.931
5.337

0.906 0.422
0.422 -0.906

(+)o.52v
(-)0.949

«d 5/2

0.712
0.702

1G3/2

0.702
-0.712

3.238
5.425
6.468

55.521

0.322
0.378
0.868
0.010

0.937
-0.260
-0.235
-0.000

-0.136
-0.884

0.435
0.100

0.011
0.086

-0.052
0.995

(-)O.«OV

(+)0.480
(-)o.ev4
(-}o.eee

«8 g/2

0.106
0.039
0.158
0.981

«P 3/2

1.000

1d5/2

0.487
0.643

-0.591
0.017

2~ i/2
-0.533
-0.306
-0.765

0.193

«d 3/2
-0.684

0.702
0.199
0.014

1
2 21.848

28.358
0.998 0.068
0.068 -0.998

(-)o.ee«
(+)o.e96

«P 3/2

0.734
0.680

P i/2
-0.680

0.734

2.488
6.771

1.000

0.830 0.557
0.557 -0.830

(+)o.svv
(-)o.eso

«d5/2
1.000

«d5/2

0.703
0.711

«d3/2

0.711
-0.703

2.750
4.927
6.486

57.983

31.500

0.608 0.754
0.793 -0.561

-0.041 0.343
0.014 -0.002

0.964 0.267
0.267 -0.964

-0.249
0.239
0.938
0.042

0.003
-0.022
-0.038

0.999

1.000

(-)0.322
{+)0.852
(-)o.ess
(-)O.eee

(+)0.998

(-)o.e94
(+}o.ees

«~ i/2
0.088
0.042
0.105
0.990

«P 3/2

1.000

«P 3/2

0.741
0.671

0.451
0.635

-0.627
-0.000

«P 1/2
-0.671

0.741

-0.528
-0.368
-0.752

0.142

«d
-0.715

0.678
0.173
0.017
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TABLE II. The T =0 pair potential (in MeV) in the canonical basis, corresponding to the solutions in Table I.

2+5 1.372 14372

1.428 0.678
0.678 -2.604

1.189 0.378 -0.116 1.058
0.378 -2.589 0.845 -0.458

-0.116 0.845 2.647 0.367
1.058 -0.468 0.367 1.656

-3.707
-0.365
-0.530
-0.402

3.355
0.466

-0.365
3.561

-0.103
0.019

0.466
-2.166

-0.530 -0.402
-0.103 0.019
-1.940 -0.989
-0.989 -4.104

-3.862
-0.553
-0.264
-0.610

2.508
0.425

-0.553
-2.755
-0.256

0.039

0.425
-1.526

-0.264 -0.610
-0.256 0.039
-1.360 -0.310
-0.310 -4.016

-2.178

-2.264 -0.022
-0.022 2.637

3.411

-4.153 -0.015
-0.015 3.524

2.620

-4.003 -0.034
-0.034 2.707

ments, the canonical basis is remarkably similar
to the HF solution, and the dispersions calculated
from the HFB and the diagonal 4 approximation of
I are also very similar. Thus, for this particular
case only the third transformation is effected by
the nondiagonal elements of 4. We know of no
criteria that mill tell a Priori whether d mill be
diagonal in the canonical basis. Therefore we con-
clude that in the s-d shell the complete HFB is
necessary, since the diagonal 4 approximation
may be misleading. This is especially true for ex-
cited-state calculations mhich depend on quasi-
particle energies and mave functions.

In TRble III me compare EHF Eppes p RIld EyoTAL
for the HF+ BCS approximation, 'o the diagonal 6
HFB approximation of I, and the complete HFB
calculated for this paper. From this comparison,
we conclude that HFB always gives the largest
binding energy. Second, me observe that the pair-
ing energy increases in the HFB (1argely at the ex-
pense of HF energy) often by more than a factor of
2. This is understandable, because the HF wave
functions were derived in order to maximize the

HF binding energy. When the pairing field is al-
lowed to build up simultaneously Rnd self-consist-
ently, it should be expected that the pair field mill
gain energy at the expense of the HF field.

B. Physical Properties of the HFB Solutions

In Table IV, me list certain properties which de-
scribe the intrinsic states for all the paired HFB
solutions me have obtained for all the N= Z even-
even s-d shell nuclei mith all the forces m'e have
discussed in Sec. III. The NDKBI solutions were
obtained in a space of three oscillator shells using
the Nestor-Davies-Krieger-Baranger force. The
NDKB2 solutions mere obtained using the same
force, but in a space expanded to include four os-
cillator shells. The parameters characterizing
the HFB intrinsic states that we shall discuss are
defined belom. We specify the shape of an intrinsic
state by giving its quadrupole and hexadecapole
moments

TABLE III. A comparison of pairing theories. EHF,
EpA~R, and @TOTAL denote the Hartree-Fock, pairing,
and the total energies in MeV.

Method

HF+ BCS
Approx. HFB
HFB

HF+ BCS
Approx. HFB
HFB

Mg
—126.02
-126.63
-124.73

32S

-219.01
-218.94
-216.32

&PAm

-6.31
-5.68
-7.80

-4.75
-4.88
-9.21

+TOTAL

132%33

-132.11
-132.53

-223.76
-223.83
-224.63

It is also usual to define the shape of a nucleus
with the size-independent shape parameters P2
and P4 which for axially symmetric deformations
are defined by

(41)

(42)

HF+ BCS
Approx. HFB
HFB

"A.r
-283.71
-282.76
-282.24

-3.39
-3.92
-9.52

-287.10
-286.68
-291.76

where 8, is taken to be the rms radius
A

(43)
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TABLE IV. Paired HFB solution in the s-d shell. Only nontrivial solutions are displayed. In the third column denot-
ing the shape of the HFB solution, the shape of the trial HF wave function is also shown in parenthesis: P: prolate,
0: oblate, S: spherical. In case there is more than one HF solution of a given shape, they are distinguished by an addi-
tional member, e.g. , P1, P2, etc. The numbers in the gap column are the sum of the two smallest quasiparticle ener-
gies.

Nucleus

Ne

24Mg

28S

Force

Rosenfeld 2

Yale

Rosenfeld 1

Rosenfeld 2

Yale

NDKB 1

NDKB 2

Rosenfeld 1
Rosenfeld 2

NDKB 1

NDKB 2

Rosenfeld 1

Rosenfeld 2
Yale

NDKB 1

NDKB 2

Rosenfeld 1
Rosenfeld 2
Yale
NDKB 1
NDKB 2

Shape

Oblate (0)
Prolate (P2)
Prolate (S)

Prolate (P2)
Oblate (01, 02)
Prolate (Pl)
Oblate (01,02, 03)
Prolate (P)
Oblate (01, 02)
Prolate (P)
Oblate (0)
Prolate (P)
Oblate (0)

Prolate (02)
Oblate (02)
Prolate (03)
Prolate (P, S)
Prolate (02)
Prolate (02, S)

Oblate (02, 03)
Prolate (P)
Prolate (S)
Oblate (01, 03)
Oblate (NDKB1-0)
Prolate (P)
Oblate (0)
Prolate (P, S)
Oblate (0)
Prolate (P, S)

Prolate (P, S)
Prolate (P, S)
Oblate (P, S)
Prolate (P, S)
Prolate (P)

Mode

T=O
T=O
T=O

T=O
T=O
T=O
T=0
T=O
T=O
T=O
T=0
T=O
T=O

T=O
T=O
T=O
T=O
T=O
T=O

T=0
T=O
T=O
T=O
T=O
T=O
T=0
T=O
T=O
T=O

T=O
T=O
T=O
T=O
T=O

EPAIR

-7.625
-6.587
-2.324

-6.438
-6.551
-4.576
-6.858
-7.802

-17.205
-8.121

-11.802
-9.637

-15.887

-7.234
-2.207
-6.050
-9.933

-14.375
-8.359

-5.835
-7.276

-12.724
-1.385
13.233
-9.208
-6.988
-6.031
-9.977

-10.953

7 0722
-5.079
-9.523
-5.904

-11.260

-41.697
-41.444

-101.505

-77.526
-77.238
-95.170
-93.865

-132.527
-132.049
-110.388
-109.301
-116.651
-114.131

-123.420
-150.041
-147.808
-140.610
-138.733
-146.853

-178.385
-178.179
-176.173
-212.901
-229.658
-224.531
-179.696
-179.266
-183.910
-183.153

-237.234
-277.826
-291.765
-224.664
-226.519

-5.9
2.7

15.4

15.6
-13.0

15.6
-12.4
19.0
12 0 1
15.9

-12.5
22.5

-16.6
0.13

-0.5
0.14

15.1
3.1

24.9

108

6.5
3.4

-1.5
-17.0

18.6
-15.5

12.8
-20.4

16.8

4.9
3.9

1103

6.0
7.5

@40

25.9
-53.5

80.0

-14.9
40.8
-0.5
58.1

-12.1
31.4
13.4
47.5
6.0

52.8

116.0
-96.5
110.5
-20.9
-84.0
-72.0

-110.0
-94.5

37.9
-95.8

2.5
-66.3

5.9
-38.2

0.9
-52.6
-26.3
-21.5
-37.0

17 07

-19.9

Gap

4.78
4.76
4.74

5.68
5.44
5.20
4.80
4.32
5.98
4.98
4.22
5.76
5.28

4.70
5.72
8.80
3.76
3.72
4.40

5.62
5.76
4.74
5.30
5.86
4.58
3.24
3.94
4.14
5.94

4.36
3.74
4.58
2.72
3.94

(44)

and A is the mass number. From TabIe IV, we
conclude that HFB theory is less ambiguous than
HF+BCS in the sense that as many as four differ-
ent HF+BCS solutions converge to the same. HFB
solution. All of the forces lead to more or less
the same conclusions about the physical proper-
ties of intrinsic states, Also, we observe that the
energy gape are, on the average, 20'%%uo larger in
the HFB solutions compared with the HF+ BCS ap-
proximation, which indicates an increased stabili-
ty for these solutions. Finally we observe that in-

creasing the shell space to include the next major
shell has the property that deformation increases
due to core polarization, reflected by a substan-
tial increa, se (of approximately 40/o) in P,.

Also from Table IV one can see there is a defin-
ite tendency for the pairing energy to increase as
one expands the shell-model space. The amount
of increase is only 20'%%uo in 2'Mg, but increases to
90'%%ua in ~'Ar. The effective energy gap of two quasi-
particle excitations displayed in the last column of
Table IV increases from 20% in "Mg to 45%%uo in the
case of "Ar, which is due to the enlargement of
the space. This demonstrates that the solutions
become more stable as one enlarges the shell-
model space.

The effect of various factors on the underlying



self-consistent field, such as the truncations of
the shell space or the inclusion of pairing corre-
lations, can be demonstrated in a pictor'ial man-
ner by plotting the mass distribution def1ned by

Figures 1-6 present the equidensity contours of
various HF and HFB solutions. All of these plots
show the projection of the density distribution on
a plane in which the axis of symmetry is the ver-
tical axis. The densities are normalized with re-
spect to the corresponding maximum density taken
arbitrarily as unity.

In Fig. 1 we plot the contours of constant density
fol pail ed 8 cRlculRted %1th R 8pace including
only three oscillator sheH8. A similar plot but
now including four oscillator shells is given in
Fig. 2. Apart from the conspicuous increase in
the ovex -all deformation, a comparison of the two
figures reveals that the enhancement of pairing
correlations is associated with a considerable
shift of mass towards the center of the nucleus.
The effect of pairing correlations on the nuclear
shape and, in particular, the tendancy toward
hlghex' symmetry due to pail 1Dg 18 demonstrated
in Figs. 3 and 4 by compax'ing the density distri-
bution of the pxolate HF solution and the prolate
HFB solution fox' Mg. In this cR86 lt cRD Rlso be

FIG. 2. Constant-density contour plot for the oblate
HFB solution of 3 8 within the space of s-p-s-d-p-f orbit-
als, again using the NDKB force. rms radius =2.870 fm.
The densities are given in un1ts of 0.296 fxn

seen that there is an n-particle clustering in the
HF solution, and that this effect is reduced in the
HFB solution. A similar comparison is given for
36Ar in Figs. 5 and 6 where we plot the density
distributions for the oblate HF and HFB solutions.

2

NDKB HFB
Six Orbifgls

O,95
Q.86
G.79
Q,7$
Q.58
Q.44
Q3Q
Q. l6

G.G9

FIG. 1. Constant-density contour plot for the oblate
HFB solution of 8 w1.tllln the space of 8-p 8-d oscilla-
tor orbitals. The calculations were done for the NDKB

or rIQ8 rad1us = 2.877 fxn. The den81ties ale given in
units of 0.276 fm 3.

FIG. 3. Constant-density contour plot for the prolate
HF solution of 24Mg obtained with the Yale potential.
rms radius = 2,853 fm, The den81. ties ale given ln un1. ts
of 0.240 fm
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~~Mg

YOIe HF8 Yale HF9

~0
0.86
0.79
0.72
0.65
0.5
0.37

0,2

FIG. 4. Constant-density contour plot for the prolate
HFB solution of Mg obtained with the Yale potential.
rrns radius = 2.856 fm. The densities are given in units
of 0,246 fm

Here again, a big reduction in deformation due to

pairing is clearly demonstrated. It mill be shorn
later that this reduction is responsible for cor-

36A

Yate H F

FIG. 6. Constant-density contour plot for the oblate
HFB solution of Ar obtained with the Yale potential.
rIns radius =3.018 fm. The densities are given in units
of 0.300 fm 3.

recting the discrepancy in the HF description for
"Ar.

The changes in shape of the HFB intrinsic states
are also reflected in the total angular momentum
contained in each state. It is interesting to com-
pare the values of &4') calculated with the wave
functions given in Table I and the solutions with
largest binding energy which are quoted in Ref.
22. When the values of (8') are expressed in
units of O' a comparison shows '~Mg(22. 4 vs
24.4), "S(19.5 vs 25.4), and "Ar(13.0 vs 16.5).
(The value from the HFB calculation appears
first. ) The decrease in angular momentum for
the '~Mg and ~'8 HFB intrinsic states occurs be-
cause the HF solutions ax'e triaxial and such non-
symmetric shapes contain large amounts of angu-
lar momentum.

Before me conclude this section ere note that the
inertial parameter A (=O'/OF where F is the mo-
ment of inertia) is calculated using the lnglis

crafting model. 25 The expression fox the moment
of inertia for an HFB intxinsic state is

FIG. 5. Constant-density contour plot for the lowest
oblate HF solution. of 36Ar obtained with the Yale force.
rms radius=3. 017 fm. The densities are given in units
of 0.302 fm

2 g &igloo„ling&&@vlf, lfv& „CfP ~ if' AP ~ klI

ijp 0 0

~~8~ llI +&& dP
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In this expression, E, is the vacuum energy, E is
the energy of a two-quasiparticle state (E,=E,
+E„~+Ea,), and the sum on o is made in such a
way as to avoid double counting the two-quasi-
particle states. On observing the structure of
(46), one might expect that since the gaps in-
crease in HFB over the values obtained from the
HF+ BCS approximation, that the inertial param-
eters will be somewhat 1arger. The 1imitations
of the cranking model have been discussed in I.

V. COMPARISON WITH EXPERIMENT

It was pointed out in Sec. III that the HFB solu-
tions with the largest binding energy exhibit only
T=0 pairing. This was also a feature of the cal-
culations in I, and the reasons for this phenomen-
on are discussed there. Another general feature
of the HFB solutions is the near degeneracy (in

(H)) of several solutions. These solutions have
a large overlap, and so only one of them is physi-
cally relevant as.far as the low-energy spectrum
is concerned. Self-consistent field calculations
are usually unable to make the proper choice
among these nearly degenerate solutions because
of the neglect of many higher-order corrections
(see discussion in I). Nevertheless, it is often
possible to compare properties predicted by the
various intrinsic states with experimental infor-
mation, and eliminate the nonphysical states. Be-
low, we will consider the nuclei individually.

' Ne. The ground intrinsic state is adequately
described by a prolate HF solution. " For this
solution, pairing corrections are smalP' and can
not be calculated by our methods (see discussion
in I).' Mg. HF theory predicts" the ground-state
shape to be triaxial (in agreement with SU, theo-
ry"). In I we discussed in detail experimental
evidence which shows that this nucleus is best de-
scribed by an axial prolate intrinsic state. ""
Since that time an exact projection of angular mo-
mentum has been carried out'2 which shows that
this intrinsic state does not produce an I(I+1)
spectrum for either the K = 0 or K = 2 bands, a
feature which is in sharp contradiction to experi-
ment. Further, the K=0 and K=2 band splitting
is underestimated by 1.7 MeV. %ith Yale-Shakin
t-matrix elements, the HFB equations give al-
most degenerate solutions: (1) the triaxial HF
state with (H) =-133.14 MeV, (2) a prolate paired
state with (H) =-132.53 MeV, and (3) an oblate
paired state where (H)=-132.05 MeV. The HF in-
trinsic state is incompatible with experiment. Re-
cently, the quadrupole moment of the first 2+

state of '~Mg has been measured, "and is found to
have a negative sign consistent with a prolate

shape for the intrinsic state. This rules out the
axial oblate solution. The axially symmetric pro-
late solution seems to be consistent with experi-
mental data. It trivially gives the I(I+1) spectra
for the K =0 and K =2 bands. The cranking value
of the inertial parameter for the ground band is
found to be 0.33 MeV, and the unperturbed posi-
tion of the lowest K=2+ two-quasiparticle state is
4.81 MeV. The paired prolate intrinsic state
gives a much more consistent description of ex-
perimental data than any HF state.

"Si. It is well known that HF predicts two near-
ly degenerate and orthogonal solutions, one being
axially symmetric prolate, and the other oblate.
The ordering of the two states, based on the value
of (H), depends on the particula, r force used. "'4
Experimentally, one does not see two low-lying
K =0 bands, and it has been theoretically shown

that the bands can not be separated by mixing. "
Furthermore, recent experimental measure-
ments" of the quadrupole moment of the first 2+

state show that the band is in fact oblate. But the
ground-state band deviates considerably from an
I(I+1) spectrum, since the J=O member of the
band is too low. It has recently been suggested"
that this depression could be explained by the in-
teraction of the J= 0 member with a coexisting
spherical state. However HF calculations with
realistic forces predict a spherica1 state that is
much too high to be associated with the coexisting
spherical state seen at 4.98 MeV. Unfortunately
the solutions to the HFB equations also give force-
dependent results. The Yale t matrix gives iden-
tical results to HF, because both the prolate and

oblate HF solution have single-particle gaps that
are too large to permit pairing correlations using
our methods. However, with the NDKB potential,
we find an isospin-paired axially symmetric pro-
late solution almost degenerate with the prolate
and oblate HF solutions. This HFB prolate solution
has a significant overlap with both the HF solu-
tions, since all the single-particle states are
partially occupied because of the pairing correla-
tions. %ith this potential, one can discard the
prolate HF solution because of its small energy
gap, and the prolate HFB solution because of its
large overlap with the oblate HF solution. The
latter solution appears to be in essential agree-
ment with experiment if the coexistence picture
is accepted. However, we are unable to produce
a low-energy spherical solution with any of the
potentials used.

"S.HF theory predicts a triaxial intrinsic
shape for "S. This state is very peculiar, since
the inertial parameters about all three axes are
equal, and it has a vanishing quadrupole distortion
parameter. ' Physical predictions made from this
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intrinsic state do not agree with experiment. How-

ever, it is possible to interpret the experimental
data using an axially symmetric intrinsic state if
one considers coexistence37 of a spherical intrinsic
state which appears at 3.78 MeV. The solutions to
the HFB equations again give three solutions with
similar binding energies. With the Yale t matrix
we find the triaxial HFB solution with (ff) = -227.74
MeV, a paired axially symmetric oblate state with
(H) = -229.66 MeV, and a paired axially symmetric
prolate state with (H) = 224. 53 MeV. All three so-
lutions have slgniflcRQi overlRp and oQly oQe CRQ be
an acceptable intrinsic state. The asymmetric
state can be eliminated since it disagrees with the
experimental data. However, since there has been
no experimental measure of the quadrupole moment
of the first 2+ state, we can not choose between
the oblate and prolate axially symmetric solutions.
As in the case of "Si we were not able to find a
spherical solution with a sufficiently low energy-
to be the coexisting state.

"Ar. This nucleus is very interesting because
phenomenologically one can interpret the low-ly-
ing spectrum as being vibrational. On the other
hand, HP calculations give a deformed oblate
state ((H) =-291.07 MeV for the Yale f matrix)
with a large energy gap and a small value for the
inertial parameter. This intrinsic state of course
predicts low-lying rotational structure which is
in disagreement with experiment. The solutions
to the HFB equations offer a possible answer to
the'problem. One obtains a paired oblate solu-
tion lower in energy than the HF solution ((II)
=-291.77 MeV). This HFB solution is remark-
able in that its inertial parameter is unusually
large (A =0.62). This means that the rotational

states appear ai energies comparable with the
two-quasiparticle states which results in the de-
struction of the rotational structure.

A recent paper by de Swiniarski et al. '8 has
used a coupled-channel analysis of inelastic scat-
tering data to determine the P, and P4 values for
the N=Z even-even nuclei. In Fig. 7 we compare
our calculated values with the results of their
analysis. The theoretical numbers are calculated
with the wave functions in Table II for '~Mg, 32S,

and "Ar. We use the wave functions from Ref.
21 for "Ne and "Si. In Fig. 8 we compare the in-
ertial parameters calculated with these wave
functions with the values obtained from experi-
ment Rs discussed ln I. We also plot the HF re-
sults. A comparison of Fig. 2 in I and Fig. 8
shows that the inertial parameter increases in
HFB over the HF+ BCS approximation by 20%. As
pointed out in Sec. IV, this is caused by the in-
crease in the gap.

VI. CONCLUSION

In previous work"' we have investigated the
existence of generalized isospin (T=O and T=1)
pairing with the assumption that the pair potential
is diagonal in space-spin coordinates. The HFB
equations have now been solved without making
this approximation and also using "realistic
force." All approximations to the HFB equations
(HF and BCS, iterating between HF and BCS, and
HB+ BCS) have serious defects. They fail to ap-
proximate the exact (HFB) wave functions. The
first two approximations underestimate the pair-
ing energy (often by a factor of 2 or 3). The HFB
canonical single-particle basis often bears no
similarity to the HF single-particle basis.

The third transformation of the Bloch-Messiah
theorem may not be approximated by the unit
matrix, nor is the pair potential diagonal in the
canonical basis.
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FIG. 7. The calculated values of distortion parameters
P2 and P4 are compared arith the experimental values of
de Swiniarski et gl. (See Ref. 38.) For 20Ne and 288i the
theoretical value corresponds to the HF value.

FIG. 8. The theoretical value of the moment-of-inertia
parameter ~/2S (in MeV) are compared rvith the experi-
mental values. For Si and S, the experimental values
given are as extracted in Ref. 37. For Ne and 288i the
HFB value corresponds to the HF value.
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Iterating between the HF and the BCS equations
in an attempt to permit both degrees of freedom
to interact with one another' results in an even
worse approximation to HFB than merely solving
the BCS equations with the trivial HF basis but
allowing HF single-particle energies to be modi-
fied by pairing. Presumably this results from the
lack of self-consistency in the former method. To
permit both T =0 and T = 1 pairing it is necessary
to use complex quasiparticle coordinates. In prac-
tice, however, T=O pairing always suppresses
T = I paj. rj,ng.

Nevertheless, the results regarding the equili-
brium shapes remain much the same as in I: T =0
pairing produces an intrinsic state which is axially
symmetric for '~Mg and 328. These paired solu-
tions are likely to be closer to the physical intrin-
sic state on the basis of comparison with experi-
ment. T =0 pairing also provides an explanation
for the lack of rotational structure in "Ar. %e
conclude that isospin (7=0) pairing is an impor-
tant correlation effect for light nuclei. As far as

we know, this is the only occasion that pairing
occurs in nature in other than singlet 8 states.
Furthermore, the isospin-pairing phenomenon is
distinguished by the largeness of the pairing ener-
gy. Much work, theoretical and experimental,
remains to be done before a complete understand-
ing of this phenomenon of isospin pairing is
achieved.
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The reactions C(TLi, t) 70 and C( Li, d) 0 have been studied at 17 and 18 MeV, respective-
ly. Both reactions are selective in the states they populate, although this is more evident in

the ( Li, t) case. Angular distributions were extracted for 15 levels below 8.5-MeV excitation.
These exhibit pronounced structures and are generally indicative of direct-reaction mechan-
isms. Transitions to the negative-parity states at 3.06, 3.85, and 4.55 MeV are the strongest
observed below 7-MeV excitation. These levels are discussed within the framework of the
weak-coupling model and the transitions compared with those from the C( Li, t) and C( Li, d)
reactions leading to the first K=0 rotational band in O. Strong transitions are also observed
to levels at 7.38, (8.46, 8.49), (8.87, 8.95), and (9.14, 9.20) MeV.

I. INTRODUCTION II. EXPERIMENTAL TECHNIQUES AND RESULTS

The level structure of "0has been the subject of
many experimental and theoretical studies.
The simple shell model which treats the "0core
as inert is unable to account for the low-lying nega-
tive-parity states or the multiplicity of positive-
parity states which lie just above 5-MeV excitation.
These states originate from excitations of the core
and a number of calculations have been performed
for ' 0 within the framework of an excited-core
model ' "

In order to investigate the particle-hole configu-
rations of "0, it is convenient to employ transfer
reactions in which the "hole" component is already
present in the target nucleus. In this respect, "Li-
induced reactions offer a convenient means for
studying ' 0. In particular, recent studies" ' of
the o, -transfer reactions ('Li, d) and ('Li, t) with
nuclei in the 2s-1d shell have shown them to be
rather selective in the states they populate and that
a direct-reaction mechanism plays an important
role. It was therefore of interest to determine
whether the "C('Li, d) and "C('Li, f) reactions
would also show similar selectivity, and in partic-
ular it was hoped that the negative-parity states
in "0having predominantly 4p-3h configurations
could be identified. For purposes of comparison,
the latter also prompted a study of the "C('Li, d)
and "C(~Li, f) reactions leading to the first If =0
rotational band in ' O.

The "C('Li, d) and "C('Li, f) reactions were
studied using 18-MeV 'Li-ions and 17-MeV 'Li-
ions from the University of Pennsylvania tandem
accelerator. Self-supporting "C targets were em-
ployed with 60+14 pg/cm' thickness, as deter-
mined from a differential weighing measurement.
The deuterons and tritons were momentum-ana-
lyzed in a multiangle spectrograph over an angular
range 3 4 to 1722' and detected in nuclear emulsions.
The angular interval with which distributions could
be measured in a single exposure was 7-,''. How-
ever, by rotating the spectrograph through 34'
and performing two exposures for each reaction,
angular distributions were obtained in 3&4' intervals.

A deuteron spectrum measured at 30' and a tri-
ton spectrum at 7-,'' are shown in Fig. 1. The over-
all energy resolutions (full width at half maximum)
were 60 and 85 keV for the ('Li, d) and ('Li, f) stud-
ies, respectively, determined mainly by the target
thicknesses. Groups corresponding to states in "0
are indicated by their corresponding excitation en-
ergies and those to states in "0are shown cross
hatched. The latter arise from ' C impurity in the
"C targets, and from carbon buildup during the ex-
posures. The relative strengths of groups "0,
and "0„ indicated by the broken lines in the spec-
tra, were determined from a separate study of the
('Li, d) and ('Li, f) reactions on "C (see below).


