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and

S,'. ,'(e(k)) = 1. —2~i T, , (e(k)), (A16)

where

dry'r'y'
2 j, k, r '0,", y, y' g, k y' (A16)

Here the total Hartree-Fock Hamiltonian is assumed to have a form

'U
&,,(r, r') = Q 'JJ, &, (r)'JJ, „~t(f')&, ,, (r, r') . (A17)

Further Clebsch-Gordan algebra useful in simplifying (A13) may be done; however, we shall not pursue
this avenue.
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The binding energy of He and 0 was calculated using reaction matrix elements of Taba-
kin s potential. A separable form of the potential has been used to reduce the basic equation
to a simple linear algebraic system. The Pauli operator Q defined in terms of harmonic-
oscillator intermediate states permits an easy and accurate calculation. Our numerical re-
sults for the binding energies include the first- and second-order contributions. A very re-
sonable agreement between the experimental and theoretical values has been obtained, since
the occupied-state energies are made nearly self-consistent and a cancellation of other im-
portant higher-order contributions has been achieved by a shift of the entire harmonic-oscil-
lator spectra.

I. INTRODUCTION

A uniform description of the free nucleon-nu-
cleon scattering and nuclear-structure data be-
longs apparently to the most important and very
popular problems in present-day nuclear theory.
It is now well known that the Brueckner reaction
matrix t should be introduced in the nuclear-struc-
ture calculations rather than the free N-N inter-

action v. The idea is to treat the interaction in-
side the particle pairs ("two-body cluster" ) to all
orders before letting any of the particles from the
pair interact with the remaining particles. New
progress is understanding the nature of Brueck-
ner's perturbation expansion was provided recent-
ly in articles by Rajaraman and Bethe' and Bran-
dow, ' where earlier references can also be found.

The t matrix can be defined by the operator
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equation

t=v —v —tQ
e

where the Pauli operator Q prevents scattering
into the occupied states, and the energy denomina-
tor e stands for the difference between intermedi-
ate and starting energies: e =8»-E, .

The reference-spectrum method' has proved to
be the most useful approximation in solving Eq.
(1). One introduces a simple expression Q"/e"
(where Q"= 1 is a frequent choice) and defines the
reference matrix I' by

(2)

By iterating the exact relation

gR P g (3)

a perturbation expansion for the I' matrix in powers
of ~ originates. The method is practicable if the
first two terms of the expansion provide a suffi-
ciently accurate result.

At present, two types of free-nucleon interac-
tions are available, which are derived from the
experimental scattering data:

(1) The realistic potentials with infinite repul-
sive cores such as the Yale, Hamada-Johnston,
and Reid potentials enjoy a great popularity mainly
because of their correct (from the point of view of
the mesonic theory) asymptotic behavior and ex-
tremely good fit to the scattering data.

(2) The nonlocal potentials which describe dynam-
ically the N-N repulsion at short separation dis-
tances constitute another widely accepted class of
realistic nucleon-nucleon interactions. Tabakin's'
separable potential, being fitted with a very rea-
sonable accuracy to the scattering phase shifts up
to 320 MeV, is, so far, probably the best of the
given class.

It has been pointed out as a result of numerous
calculations, "that Tabakin's and other realistic
potentials are to a great extent equivalent from
the point of view of nuclear-structure investiga-
tions. A comparison of the relative-motion ma-
trix elements of Tabakin's potential with those ex-
tracted directly from the experimental phase
shifts by Elliott et al. ' show a striking similarity
as well.

The recent nuclear t-matrix studies by Kuo and
Brown' and Wong have been performed with the
Hamada- Johnston potential. It is felt, however,
that the original ambitious program of investiga-
ting such a complicated potential in the Brueckner
theory could be diminished considerably by the
computing difficulties. In particular, a rather

crude treatment of the Pauli operator Q (Q"= 1) in
Refs. 8 and 9 should be mentioned here. Becker,
MacKellar, and Morris" observed, when compar-
ing Wong's' results with their own calculation, that
the use of the rather accurate Eden-Emery" ap-
proximation Q for Q" in the reference-matrix
calculation has a greater effect than the use of the
same Q in calculating correction terms to ~ ob-
tained with Q = I. Moreover, a slow convergence
of the t-matrix expansion in powers of t has been
found by Bhargava and Sprung" in a nuclear-mat-
ter calculation with Q = 1. A similar situation
would be expected in finite nuclei.

In the present approach, we would like to intro-
duce the Pauli operator Q in the most accurate
way, stating clearly all the approximations with
the aim of calculating the corresponding correc-
tion terms according to Eq. (3) later. Because of
the mentioned equivalence of the realistic poten-
tials, we have chosen the Tabakin potential for
calculating the I' matrix elements in the He' and0"nuclei. Using the separability of the Tabakin
interaction, Eq. (1) reduces to a system of linear
algebraic equations, instead of much more compli-
cated integrodifferential or differential equations
which arise in the case of local potentials with
static repulsion.

Of course, Tabakin's potential can be formally
used in the nuclear-structure calculation even in
its bare form. From the physical consideration it
is clear, however, that at least corrections for
the multiple-scattering processes must be includ-
ed in this case. The problem has been investigated
up to the second order in Hartree- Fock bases by
Bassichis and Strayer. " They used a truncated
but very large configuration space, and the calcu-
lation can, in this respect, be considered complete
for light nuclei. Their results are twofold: (i) Total
second-order correction to the binding energy is
comparable or even larger than the first-order
term (Hartree-Fock energy), and (ii) the most
important contributions to the second-order term
originate from the intermediate states lying as
high as 6k' and 8k~.

Consequently, there is no good reason to expect
small third- and higher-order terms, and the cal-
culation of the reaction matrix, which represents
a sum of all higher-order processes, seems to be
inevitable.

The problems of the single-particle (s.p) basis
states in the Brueckner theory are briefly re-
viewed in Sec. II. Our choice of the harmonic-
oscillator s.p. basis is supported mainly by the
possibility of an accurate representation for Pauli
projection operator Q, which is introduced in Sec.
III. In Sec. IV, the basic equations are derived.
The accuracy of our numerical procedures is dis-
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cussed in Sec. V, and the final results for the bind-
ing energy in He' and 0" together with the most
important conclusions are given in Sec. VI.

II. BASIS STATES

Brueckner's approximation to the ground-state
binding energy in the first order [Fig. 1(a) ] is
given by

OCC OCC

h & .h + — hz h2 t E~2 hih2

h

(4)

where T symbolizes the kinetic-energy operator,
the s.p. states are labeled by a set of quantum
numbers n; —= (n, , l, , j;,m&, v, ), and the summa-
tion is over the occupied states. All our two-body
matrix elements are antisymmetrized. The reli-
ability of the lowest approximation [Eq. (4)) de-
pends on the choice of the s.p. basis used in cal-
culating the t matrix.

Definition of the Hamiltonian for a system of A
particles

V'2 1H=-— ~+— vi j = 1" +V
i=1 i& j i=1

may be rewritten in the usual way as
A

H=H, +(V- Q U,. ),

with

A A

H, =QH, (i) =P(T, +&, ),
i=1 i=1

where U; is an external potential.
For further calculation, it is essential to per-

form transformation from the individual-particle
basis into the relative and the center-of-mass
(r.c.m. ) coordinate systems. It can be done in a
simple way for two cases only.

(1) Free state spectrum (plane waves)

(b) (c)

u ———XU

———'X U

(e)

~n, l „n,l„LSM,M, &

= Q (nl, st+; L
~ n, l „n,l„L)~ nl, Ot g; LSM~M~),

n L'Jt,S

(10)

where n, l, %, 2 stand for principal and orbital
quantum numbers of the relative and the c.m. mo-
tion, respectively. Transformation coefficients
(nl, OIL; L ~n,l„n,l„L) were tabulated by Brody and
Moshinsky. " Round brackets symbolize r.c.m.
states, angular brackets the individual particle
states.

In accordance with Refs. 10, 15, and 16, we fol-
low systematically the procedure suggested by
Eden and Emery" and modify the energy spectrum
of the h.o. Hamiltonian in such a way that all prop-
erties of s.p. wave functions, including that of Eq.
(10), are preserved. The modification consists in
assuming for the s.p. Hamiltonian of ith particle
the form

FIG. 1. First- and second-order Brueckner-Goldstone
diagrams.

themselves. '" As far as we know, such a pro-
gram has never yet been performed. Another
drawback of the plane-wave basis in the finite-nu-
clei t-matrix calculation is a rather difficult and
less transparent treatment of the Pauli exclusion
principle (see also Sec. III).

(2) The harmonic-oscillator (h.o.) basis has be-
come rather popular in the most recent &-matrix
studies, in both nuclear matter" and finite nu-
clei. "'"'" It is also the choice adopted in the
present paper. An L-~ vector-coupled pair func-
tion of h.o. orbitals can be transformed into the
r.c.m. system, Eq. (9) by

with

i( kg ~ r~+k2 ~ r } i( k o r +K ~ R}2 (8)
OCC

H,(i) = T, +V,".' g q„~ h&&.h( -C,

k = (k, —k, ) /v 2, r = (r, —r,)/v 2,

K = (k, +k,)/W2, R = (r, + r, )/v 2,
appears naturally in the nuclear matter I' matrix.
It has also been frequently used for the intermedi-
ate states in finite nuclei. To do it consistently,
the procedure must include an orthogonalization of
the continuum states to the low-lying localized
states as well as new continuum states among

where T;+U ' =H; ' s the usual h.o. Hamilton-
ian, h stands for n and l quantum numbers of the
s.p. state h below the Fermi sea, and the state
vector ~h) is the same for both H and H, (i).
According to the above choice, all the states of
the h.o. spectrum are shifted by a constant amount
C. An additional state-dependent shift q„applies
to the occupied states only.

Many higher-order contributions to the binding
energy may be included already in the first order,
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if the parameters C and q„are appropriately
chosen, S.p. States below and above the Fermi sea
should be considered separately as discussed be-
low.

(i) The most preferable choice for the occupied
s.p. states consists of calculating the Hartree-
Fock energies with a s.p. potential satisfying
Brueckner self-consistency. Then the terms with
bubble and potential insertions in hole lines I Figs.
2(a), 2(b) j cancel each other; in part'icular, all sec-
ond-order processes, Figs. 1(b)-1(e), give zero
total contribution.

Energy shifts in the hole states defined by the
self-consistent condition

&hl vlh&=&hl U"'lh&-q, -c
OCC

=Q&hh'I f(E&s ) I h h'&

f(Es)=v v-~ ~ „~ E f(Es),+ 2 S

is unfortunately not easy to apply in calculation,
because Eq. (13) cannot be properly solved without
many additional approximations. Therefore, we
attempt here rather to minimize the contributions
of diagrams with the potential inserted into the par-
ticle line by an appropriate choice of the constant
C. The most important gl Rph of this type seems
to be the one given in Fig, 2(d). The corresponding
contribution to the binding energy can be written
as"

OCC UnOCC

hh, ~E, ab
hyb2 a bCd

E (&al~l~»bd-+&&IUld&~;;k
ab a

together with the f-matrix definition, Eq. (1),
cRuse CRncellRtion of dlRgonRl insertions into hole
lines only. Complete self-consistency including
off-diagonal insertion would require refraining
from using the h.o. wave functions. In particular,
all the second-order diagrams, Figs. 1(b)-1(e),
must and will be calculated in our approach. Since
the right-hand side of Eq. (12) depends on the indi-
vidual j„quantum numbers, the spin-orbit split-
ting has been removed in calculating g„.

(ii) Such a choice is not suitable when treating
insertions in particle lines, since the bubble-inser-
tion diagrams of Fig. 2(c) is a part of the three-
body cluster term, which absorbs several appar-
ently large contributions. Their sum is usually
expected to be small, following an analogy with
infinite nuclear matter. '

The theoretically interesting result of Kohler, "
that the potential insertions in particle lines are
included to all orders by defining

f(Es) = v —v — t(Es),
8

instead of the usual expression

E &«lf(E.)lh, h.&,
cd s

E =Z„' '+E„""—2C —g —v)It~ a2

The contribution of the simplest diagram which
contains only excitations of order Ncu is exactly
zero with

C = (2n~+ l~+ ,')Ru)/2-,

where n& and l& stand for the quantum numbers of
the lowest unoccupied state, i.e., one which en-
ters only into the considered dia, gram (OP for He',
1s0d for 0").

Our choice for the constant C can be compared
with the one adopted by Becker, MacKellar, and
Morris. " The last-named authors put an addition-
al condition, qo, = 2'~, in their O" calculation.
Then both go, and C can be calculated from the
Brueckner-Hartree-Fock Eqs. (12) and (14).
It implies almost twice as large a value for C as
that given by Eq. (16), and the resulting energy
gap between the occupied and unoccupied s.p.
states seems to be underestimated.

III. PAULI PROJECTION OPERATOR

The exclusion principle represented by the
Pauli projection operator

UDOCC

9= Z lpr&(prl,

(c)
FIG. 2. Third-order Brueckner-Goldstone diagrams
used for modification of harmonic-oscillator spectra.

introduces tremendous complications into reaction-
matrix calculations for finite nuclei. Both Q
and the angle-average approximation borrowed
from the nuclear matter calculations have been
frequently chosen in earlier investigations" per-
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formed with plane-wave inter mediate states.
The most advantageous property of a h.o. basis

is probably the possibility of a simple and accurate
approximation for the operator Q which carries
the main bulk of the exclusion effects and permits
an easy evaluation of the corresponding correction
terms. Moreover, the expression we derive below
can be considerably simplified, and still retain
good accuracy. The latter approximation was sug-

gested by Eden and Emery"; a comparison of the
results corresponding to Q with our more accu-
rate treatment is presented in Sec. V. A Pauli
operator defined in terms of oscillator states has
also been used together with a free-particle plane-
wave spectrum. g

In the h.o. basis Eq. (10) and with modified
energy spectra implied by the Hamiltonian, Eq.
(11},we have for the propagator

L 8',Ns

UQOCC

(n,l „m,Z„L in, l„n„l„;I,)(n, l„n„l„;I.in, l„st,g„L)
~a 2 I.sAf~gs

i n, l ~, St,g „LSMtMe) (n2l2, Km@ 2; LSM~Me i

~h~re Q~, goes over n~, l~, n„, and l„p, goes over n„ l;, I;, and &,. with i =1, 2. The energy E~„of the

intermediate state depends in our model Eq. (11), on the shell number p~„=2n~+l~+2n, +1„. Omitting

throughout the additive constant SS+, we have

Ep~ = (2n g, + l~ + 2n ~ + l~ )jt(U —2C = (2n ~ + l ~ + 295~ + 8~)54& —2C .
Transformation to a relative ~-representation where 1;+8 =J, , i = 1, 2 gives

Q ~ ~ i n,l,SZ M„x,g, BR,)(n,l,SZ M„m,,z,mr, , i

ZyAf g@N2
m,oz s

X(n,i,S& M„m, Z,om, i jin, l,SZ M„m, ~,gg,),
where the matrix elements of Q include the summation of the Clebsch-Gordan coefficients

(1igi2)=Q Q(n l„st,z„I in~i~, n„l„;I)(n~l,n„l Li„ l st g.L)

x( Q (l,a, m, gg, iLM,)(l,sm, M, i& M,)(l,x, m, an, iLM,)(l,SI,M, i J,M,)}.
s

(21)

The exact expression in Eq. (20) of the Q/e propagator is nondiagonal in all the quantum numbers of

both the relative and c.m. motions including the relative-motion total momentum ~. Two approximations

adopted in the present investigation are:
(i) We keep only terms diagonal in the c.m. -motion quantum numbers, i.e., R, =X,=st, g, =S,=2, and

OR, =OR2 = OR in the- model operator- Q".
{ii) Since the matrix elements of Q" still depend on the projections %, we use their average value Calcu-

lation of the average applies only to expression in braces of Eq. (21) with the result

2L+ j.
(2l, + 1}(2m+I)

(22)

It follows from the assumption (i), Eq. (22), and from the properties of the Brody-Moshinsky transforma-
tion brackets that also n, =n, =n Then the. final expression for the operator Q"/e" is

qs ~ inly, SIZII)(nlSZM, St&lii „„e" ~ (2n+ l +2R+ 2)K(u —2C E, —



2L +1 2
g g ( )( g )

(nl 9KB Linpl» n l 4) (24)

IV. REACTION MATRIX IN AN OSCILLATOR BASIS

Equation (14) can be rewritten with the operator Q"/e" given by Eq. (23) in a matrix representation by

(nlSZMSlsml) f'(E) [n l S Zm, St'Z Il ) =(nisei) ~) n 1 Spf(SZ~XCSu; S Z'M'm'Z Xl )

~. (nial~In, ESJ)(n, l S~X,Slm~f F(E,)fn'l~S ZM, ~ S Il )
1 (2n, +1,+ 2%+ C)he@ —2C E, -

&(f," f„;j,"j„)=1 if i, =j, 0=1 ~ .. n

otherwise.

With &(S&MKZR; S'&'M'9V&'Il') =0, the inhomogeneous equations (25) degenerate into a homogeneous sys-
tem which has zero as its only solution; we conclude, therefore, that the (nonzero) f" matrix elements are
diagonal in quantum numbers SJM and KZ%, and obey the equation

( lSg[ f (E ] l S ~ ~g (nlSJ'( 'U[n l SJ)(n l M'( l (E )(n l SJ)
(2n, +l, +2et+ &)R(u —2C E, -

1 1

(26)

The t -Qlatrlx diagonal 1n the ~J~ quantum num-
bers originates from the interaction diagonal in
them; on the other hand, the diagonality in the
c.m. motion has been assumed by us explicitly,
and the accuracy of such a model must be inves-
tigated.

The method of solution of Eq. (26) is based on
the separability of Tabakin's potential. Matrix
elements in relative coordinates are of the form

where the two terms in the sum on the right-hand
side represent the repulsive and attractive parts
of interaction according to whether E =+I. De-
tailed formulas for the corresponding radial inter-
grals G„,'~~& can be found in Ref. 5.

Introducing a 2X2 matrix

C('~ 6» A~'
W ~ P

ny1ysz nylons J niIz' (2n, + l, + 2%+ Z)Km —2C —E, '
nj7~

rve can write a linear algebraic system

enter the final formula for calculating our t ma-
trix elements

(niSZ(~ fs(E, ) (n l Se)
2

Z hi C»lsd(Cn'F81 n't BXK~) '(~) (~)

A concluding remark concerns the starting en-
ergy E» = (2n +l + 2'X+ Z)h(a& —2C —fJ» —'il» since
the trace of the individual-particle quantum num-
bers h, and h2 has been formally lost in the Talmi-
Moshinsky transformation to the r.c.m. system.
This is not the case, however, for the lightest nu-

l s hasHe adO, whchwe o sd he e.
Kith p=2n'+1'+2%+8, we have

0 2',
1 qo +pop
2 2/op

In more complicated nuclei, an additional approxi-
mation must be introduced at this point; e.g. , an
assumption that 2q» = qo, +q,~, would be sufficient
and probably appropriate for the Ca'0 nucleus.

2 2

x~'"+ Q W(, x~'~ = Q W~, G„'I.~~, (29) V. NUMERICAL PROCEDURE

for the coefficients x~'~ =@~',~, 8~~ ~ & j = 1, 2 which
The radial integlals G„&~& of Tabakjn~s poten-

tial have been calculated by the 15-point Gauss-
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I aguerre quadrature formula. %e use here mod-
ified parameters of the 'P, -channel potential sug-
gested by Baranger and Clement in Ref. 5.

The time-consuming calculation of the &„& coef-
ficients can be considerably shortened by employ-
ing the completeness of the Moshinsky-Brody
brackets, since a sum complementary to that of
Eq. (24) involves fewer terms and simpler trans-
formation brackets.

In Fig. 3, some of the coefficients &„; are plot-
ted against the shell number for /=0, 1, 2 channels.
It is clear from the figure that only a few coeffi-
cients need actually be calculated. The substitu-
tio»„& = 1 becomes well justified rapidly with in-
creasing shell number. Nevertheless, the differ-
ent rates of convergence for various l channels
should be emphasized.

As already noted, our approximation A„,
' for the

Pauli exclusion principle can be further simplified
according to the suggestion by Eden and Emery. "
They put

0 0 0 0 0 0

6 ~ ~ 0 0 0 0 0 0

5+i& ~ 0 0 0 0 0 0

+4i~lq 0 0 0 0 0 0

-~, 0 0 0 0 0 0

0 0

0
0 I 4 5 6

2np+Lp ~
FIG. 4. The Eden-Emery approximation for the pair

states in the 0'~ nucleus. The states allowed and exclud-
ed by the Pauli principle are indicated by circles and

squares, respectively. The operator Q permits scat-
tering into states above one of the dashed diagonal lines.

A"„', =0 if 2n+l+2%+S& p

=1, otherwise.

(31) [Eq. (31)] should be compared with the "exact" re-
sults [4„', from Eq, (24)] rather than with the ex-
perimental values, since a model interaction

The model can be visualized in Fig. 4, where cir-
cles and squares correspond to the states allowed
and forbidden by the Pauli principle, respectively,
and the shadowed areas indicate the states left out

by the Eden-Emery method, with a different p~jg.
The binding energy of the 0"nucleus in the low-

est order, together with some of the most impor-
tant t matrix elements calculated in the model

I.O

0.8"

G„is~(MODEL) = G„,z~(TABAKIN) if 2n+/ - 12

(32)
= 0, otherwise,

has been used in this case. Although the Eden-
Emery-approximated matrix elements exhibit con-
siderable deviations, both to smaller and larger
values, from the exact results (column 6 of Table
I), an integral effect represented by the binding
energy is nicely approximated in the Eden-Emery
method with p;„=5. The model assumption, Eq.
(32), clearly cannot be used apart from the de-

0.6 -.

cf 0.4 " P'g 00
pg-0, 1

JYS =0,2

I
5

taj

"2 0'

UJ

CI

0.2"

4 6 8 IO I 2 14p~
FIG. 3. Dependence of Pauli coefficients A~~ [Eq. (24)]

on the shell number p =2n+l+2&+ in 0~6.

FIG. 5. First-order contribution to the He binding en-
ergy plotted against number of intermediate states in-
cluded in the sum of Kq. (28) and subsequent increments
4E& ~(p) =E&j&(p) -&& ~(p -2). The h.o. spring constant
b =1.3 F. The right-hand-side scale applies to AE~~).
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scribed test of the Eden-Emery approximation,
and all the results below correspond to the usual
Tabakin interaction.

%e show in Figs. 5 and 6 the dependence of E ",
the binding energy of He and 0"nuclei in the low-
est order, on the number of high-lying intermedi-
ate states included in the summation, Eq. (28).
Non-negligible contributions come even from rath-
er highly excited states. The calculation could be
easily extended beyond the 30jf&u limit (all 2„,' = 1

in this region). It would be very hard, however,
to justify such a procedure, since the phase shifts
are known and have meaning only below about 300
MeV. The matrix elements of specific potentials,
such as that of Tabakin, should already be quite
unreliable for large values of n~, n„which corre-
spond to 30 jt&u (roughly 500 MeV in s-d-shell nu-

clei) excitation. The contributions from the "dan-
gerous" high-lying states constitute, however, on-
ly a few percent of the total result, and we can con-
sider the binding energies calculated with p,„=30
as a reasonable compromise between the extreme
requirements of terminating the summation in Eq.
(28) at about 300 MeV and extending it up to the
point where a clear asymptotic value of the binding
energy has been reached. The same problem
arises, of course, in all t-matrix calculations;
only it may be hidden by a more complicated for-
malism.

The subsequent increments of E ' are also plot-
ted in Figs. 5 and 6. It can be seen that the most
important excited states which contribute to the
0"binding energy are those with (4-8)jt&u excita-
tion energy in qualitative accordance with earlier
findings by Bassichis and Strayer. " The last-
named authors consider, however, only the second-
order diagrams.

As a result of the above numerical experiments,

TABLE I. Diagonal singlet and triplet S-state reaction
matrix elements (p = 0), and binding energies of 0 6 cal-
culated in the Eden-Emery approximation for the Pauli
projection operator Q @ and with the accurate Q opera-
tor defined in Sec. III. A simplified Tabakin interaction
f Eq, (32)] has been used in the calculation.

)EE

&min =4 &min =5 &min=6

Sp 00
0 1
0 2
1 0

-9.8397 -9.5083
-9.8105 -9.8105

-11.1041 -9.8105
-11.1041 -9.8105

-9.5083
-9.4775
-9.8105
-9.8105

-9.5952
-9.5850
-9.8569

-10.3389

Si 00
0 1
0 2
1 0

-14.2517 -12.8252 -12.8252
-14.0195 -14.0195 -12.6179
-18.8855 -14.0195 -14.0195
-18.8855 -14.0195 -14.0195

-13.0916 -8.2345 -6.9365

1301373
-12.9975
-13.9191
-15.1796

-7.7084

summarized in Figs. 3-6 and Table I, the follow-
ing prescription has been adopted: %e calculate
&„f coefficients from the formula in Eq. (24) for
2n+l'+2K+ 12 and put A„', =1 for larger values
of the shell number. Contributions from all ex-
cited states through 30kcu are included in our t ma-
trix.

VI. RESULTS AND DISCUSSION

The binding energies of He' and 0" have been
calculated with reaction matrix elements corre-
sponding to the model described in Secs. II-V. The
results are presented in Fig. 7. The solid curves
are for the total binding energies E =E ' +E~',
where Ei'j corresponds to our Eq. (4) corrected
for c.m. (n. E, = -4jt&u) and Coulomb effects.

The second-order corrections [Figs. 1(b)-1(e)]
are calculated with intermediate states from the

Ole

5
e

IO 20
p ~

"P LLj

0
4"

4J

I.O

l ie~0
l r

io E(2)

~ He4

1.5
b(F) -'

FIG. 6. The same as Fig. 5, but for the Oie nucleus.
The spring constant of the h.o. wave function is b =1.4 F.

FIG. 7, Dependence of total binding energies and sec-
ond-order contributions for He4 and 0' on the oscillator
length unit. b = (k/m ~)
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TABLE II. Energetics of He in MeV calculated from t+ using the Tabakin interaction. The columns correspond to
different choices of the constant C which controls the gap between occupied and unoccupied states. Self-consistency was
imposed on qp„b =1.3 F.

Ca 0.5 0.75 1.25

nl j
00-,'

~S

E (2)

-21.940

46.476

-0.001
-6.196

-22.243

40.671

-0.0003
-6.347

-22.992

29,192

-0.0001
-6.722

-23.468

23.517

-0.001
-6.961

-24.735

12.430

-0.008
-7.601

-26.722

2.006

-0.038
-8.624

In units of ~.
lowest unoccupied major shell only. The dashed
curves in Fig. 7, which show E~' terms, exhibit
remarkable minima for b =1.3 F. Such a minimum
in the Brueckner-Hartree- Fock-violating term
should be interpreted as an additional improve-
ment of the self-consistency. Our conditions, Egs.
(12) and (14), ensure the cancellation of potential .

and bubble insertions in diagonal matrix elements
only. A minimum in the calculated E ' curve then
means that a certain nqndiagonal insertion has
been canceled as well. Therefore, the most rea-
sonable choice for the value of the parameter 4 is
to take it at the minimum of &

We have stressed already that the proper defini-
tion of the parameters q„and C in Eq. (11)modify-

ing the s.p. basis is crucial for the rapid conver-
gence of the Brueckner expansion. The self-con-
sistent prescription [Eq. (12)] is well justified;
much work, however, remains before the problem
of appropriate modification of particle spectra can
be completely settled. In Tables II and III we show

how the binding energy of He' and 0" depends on

the choice of the parameter C, which modifies the
particle-hole gap in our calculation. It can be
seen that much better agreement between calcu-
lated and experimental data. would be obtained with

C values different from those of Eq. (16). For ex-
ample, the procedure adopted by Becker, Mac-
Kellar and Morris" gives in O'6 roughly the same
value for three different realistic potentials-
(C=-66 MeV=-(-", Sou), which should be compared
with our estimate in Eq. (16) of C =-(~)&~. The
binding energy of 0" for C =-(-", )Re and Tabakin's
potential mould be about -8.4 MeV, in surprisingly
good agreement with Becker's, MacKellar's, and

Morris's" results -7.3, -7.5, and -7.8 MeV for
Yale, Reid, and Hamada-Johnston potentials, re-
spectively. The choice of the constant C should,
nevertheless, be made independently in order to
minimize the higher-order contributions to the
binding energy, rather than be made from the nu-

merical fit to the experimental value. Inclusion of
the third-order processes [Fig. 2(d)] with more
than 2k~ excitation in the intermediate states is
indeed highly desirable in the place of our crude
guess [see Eq. (16)].

To our knomledge, the previous results of bind-
ing-energy calculations with true rea1.istic poten-
tials are in most cases in rather strong disagree-
ment (B.E. =-2 to —4 MeV) with the experimental
values B.E.(He') = —7.07 MeV and B.E.(O") =-7.975
MeV, unless additional tailor-made assumptions

TABLE III. Energetics of 0 in MeV calculated with Tabakin's potential for different choices of the constant C, and

the self-consistency condition [Eq. (12)] imposed on 'l)ps and 7){)p compared with corresponding results of Becker, Mac-
Kellar, and Morris (see Ref. 10) obtained with the Hamada-Johnston potential and the additional condition qps=2&pp.

e' 1.75 2.5
Tabakin

3.0 3.5
Hamada- Johnston b

3.25

n l j
0 0 —,

'
0 1
0 1 —'

~S

gp

E (2)

E

-64.87
-32.93
-18.41

59.54
43.94

-0.113
-6.727

-65.91
-34.12
-19.76

44.85
29.48

-0.168
-7,378

-66.77
-35.17
-20.95

35.12
20.01

-0.229
-7.956

-67.80
-36.56
-22.52

25.44
10.66

-0.332
-8.733

-60.29
-34.96
-25.54

24.05
12.02

-0.46
-7.80

~In units of Rv. hRef. ].0, b=1.414 F.



are introduced. The better agreement obtained by
the present approach is probably due to the more
appropriate treatment of the Pauli exclusion prin-
ciple, and consistent modification of s.p. spectra.
The most important additional effects responsible
for our slightly underestimated results are: (i) the
three-body cluster term, (ii) the second-order dia-
grams f Figs. 2(b)-2(e)] with excitation over sev-
eral major shells, and (iii) a better choice for the
parameter C, as already discussed.

In our treatment of the c.m. motion, only the
3term —~ha corresponding to the unperturbed

ground-state wave function has been taken into
account. A more consistent description of the c.m.
effects in the He4 nucleus has been suggested re-
cently by Blank" in the framework of the I ipkin
model with an external h, o. potential field acting
on the c.m. degrees of freedom. His preliminary
results obtained with the Hamada- Johnston poten-
tial show that c,m. Inotion probably influences the
expansions for the rms radius and charge distri-
bution only.

The present approach is based on the assumption
that the three-body forces produce negligible ef-
fects on the nuclear states. Tabakin's potential
was used for the evaluation of the two-body re-
action matrix elements in terms of modified h. o.
states for He4 and 9". Two approximations in the
treatment of the Pauli projection operator Q are:
(l) We keep only terms diagonal in the c.m. quan-
tum numbers st, 2, Sg, and (2) the 5K-dependent
matrix elements of Q are replaced by their aver-
age values. The validity of the last two assump-
tions should be carefully investigated, despite
very reasonable numerical results obtained for
He4 and 0"binding energies.
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