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The generalized Hartree-Fock approximation of Kerman and Klein is extended to include
continuum states of a collective nature. The equations for scattering in the random-phase
approximation ar e rederived.

I. INTRODUCTION

Theories of nuclear scattering which proceed
from an atomistic viewpoint have recently been
developed. "' These owe their derivations to the
techniques of nuclear many-body perturbation
theory. The equations of the random-phase approx-
imation (RPA) or quasiboson approximation also

have been employed in the context of the nuclear-
scattering problem. ' ' Furthermore, calculations
in the continuum using the RPA have been per-
formed, and the analytic properties of the predict-
ed 8 matrix ha.ve been examined. "The essential
feature of these methods is that a unified picture
is obtained which predicts both the bound and res-
onant states, and allows the calculation of an 9
matrix.
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Typically, the problem under investigation is of
the generic type A.(n, n)A* where A is a nucleus
one hole away from a doubly-closed-shell nucleus
8, and A* is the same nucleus in an excited state.
In the RPA an S matrix for the processes A(n, n)A*
is obtained and simultaneously the bound and res-
onant states of the nucleus 8 are obtained. Of
course, both the structure and scattering informa-
tion are correct to the degree that the RPA is cor-
rect in nuclear physics.

The purpose of this paper is to show that the
generalized Hartree-Fock approximation (GHFA) )
of Kerman and Klein, ' which finds extensive appli-
cation in nuclear structure, can be extended to the

continuum problem with suitable modifications
necessary to accomodate the scattering states.
We shall rederive the equations of the RPA and
further illustrate in the GHFA that one can calcu-
late not only the A.(n, n)A* scattering amplitude but
also the S matrix B(n, n)B* in an approximation
consistent with the RPA. In Sec. II we shall review
the equations of Kerman and Klein of interest to
us, and extract from them the Hartree- Fock equa-
tions. In Sec. III we shall rederive the RPA equa-
tions for nuclear scattering using the GHFA, and
demonstrate the 8 matrix. Furthermore, in Sec.
VI we shall calculate an approximate ~ matrix for
scattering in the B(n, n)B* problem.

II. GENERALIZED HARTREE-FOCK APPROXIMATION

We start our considerations by displaying the Hamiltonian of our system.

H = t(x, x')q (x)y(x') +-,' V(x, y;x', y')q "(x)y (y)g(y')y(x'),

where

t(x, x') =t*(x',x),
and

V(x, y;x', y') = V*(x', y';x, y) =-V(y, x;x', y') = —V(x, y;y', x') ~

Our interest resides in the following sets of states:
(i) The ground state of the N-particle system B, l 0), and l ~), the continuum states of the N-particle sys-
tem at excitation energy (u;

(ii) the bound states of theN —1-nucleon system, la), and la, ~), states of the N —1 system which corre-
spond to the continuum states of the N system;
(iii) the particlelike states of the N+1-nucleon system, lA), and IA, ~), states of the N+
responding to the continuum excited states of the N system.

The corresponding energies, when measured relative to the ground state of the N-nucleon system, are
to 0(1jN):
(I) (u = W~(&) —W~(0), (4)

e, = W„(0) —W„,(a),

e, —(u = W„(0) -W„,(a, v),
e~ = W„„(A)—W„(0),

~ „+&u = W„„(A,~) —W„(0) .

g, (x) =-(a
I tt'(x) l o),

and

It is envisioned that among the energies e„ there are two sets, &&& 0 and e„=k„ /2m & 0, corresponding to
bound and scattering solutions, whereas the energies &, are such that &~& 0. These energies are to emerge
from the Hartree-Fock problem which comes about as follows'. One defines single-particle amplitudes

y„(x) =(Ol y(x) IA).

Then by studying the appropriate matrix elements of the equation of motion

[ y(x) 8 ] = t(x, x ') tt(x ') + —,
' V(x, y; x ', y ') g t(y) g(y ') g(x '),

and by using (4) along with the GHFA one finds that

e,y. (x) =It(x, x )y, (x'),

(s)

(1Oa}
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e„y„(x)=I((x, x') y„(x') .

a(x, x') = t(x, x') + I'(x, y;x', y')Z (t'. *(y)4.(v').

In going from the matrix elements of (9) to (10), collective amplitudes such as (a I y(x) I ~) are ignored and

only ground-state quantities such as (aI p(x) IO) and (Ol)t' (y)p(y') l0) are retained. Since t( is Hermitian,
one can take the set to be a complete set, i.e.,

The symbol f„is used to denote a sum on bound levels and an integral over continuum levels. Since we
wish to keep the discussion as lucid as possible, we have deferred to the Appendix questions concerning
angular momentum and continuum-state normalizations.

III. RANDOM-PHASE APPROXIMATION

Let us turn our attention to the following amplitudes:

(13)

(14)

(i5)

(i6)

y. (x, ~r) -=(al P(x) I ~),

y, (x, (u) -=(a, (uIy(x)I0),

y„(x, (u) -=(~I y(x) Ia),
V~(x, ~) -=(oI 0(x) I&, (u).

In the course of the following discussion the approximation for {y,(x), qrz{x)J defined by (10) will be used;
furthermore, it is assumed that the amplitudes

(a, u I p(x) I (u') =—5(( —(u'}(I', (x), (1

(~'I 0(x) I&, (u) = &(~ —~')(I~(x) .

(19}

These latter approximations are the extension to the continuum of the RPA assumption that the static
ground- and excited-state densities are the same and is perhaps the most suspect approximation.

The Iinearized equations of motion obeyed by the off-diagonal amplitudes (13) and (14) can be derived as
follows. By taking appropriate matrix elements of the equation of motion (9}, we find

((u+ e, )j,(x, (u) = t(x, x') y, (x', (u) + —,
' v(x, y; x', y')(a I y t(y)(t(y')(t(x') I (u),

(-co+a, ))t'. (x, (u) =t(x, x')y, (x, (u)+-,' V(x, y;x', y')(a, (uI j) t(y)4'(y')y(x') I0).
The GHFA' approximates the matrix elements of three operators appearing in (19), for example, by

where

(~'I e'{y)P(y') I ~) = &(~ (u')Z(t. (y') t.-*)( ),y

«I y'(y) v(y') I ~) =-Z [(t, (y', ~)()&.*(y) + 4.(y')@.*{y,(u}] .
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Equations (22) and (23) are accurate to first order in a density fluctuation. Both (22) and (23) require the
use of (17) and (18). With these crucial approximations we may rewrite (19) and (20) in a linearized form,
so that

[{u)+e,)5(x —x') —8{x,x')]y, (x', (u) =Q V...(x, x') j), (x', (u)++U. ..(x, x')T)),.*(x', (u), (24)

[(-(u+e, )5(x —x') —h'(x, x') ]T(), *(x', u)) =Q U, ,*(x,x')T(), *(x', &u) +Q V, ,*(x,x') g, (x', &u),
6 gt

(25)

I '(x, x ) =I (x', x),

V...(x, x') = V(x, a'; a, x') -=V(x, y;y', x')g, *(y)g, (y'),

U, ,(x, x') = V(x, x';a, a') =- V(x, x';y, y')y, (y))t), {y').

(28)

(27)

(28)

N'otjce in (24) and (25) that although the integrals over x' correspond to the complete set of Hartree-Fock
single-particle wave functions, only the particle states contribute a nonvanishing result. ' This result can
be obtained by looking at the effects of the Pauli principle. Specifically, since to the degree of approxima-
tion used above

o = y. *(x)q, .(» )&& 0I [C(x)C'(x ) + t'(x') S(x) l l ~&]

=—(j), (a, (u) + ))), *(a', (u),

Q V(x a'a a")P (a" (()) + V(x a" a a' )T() *(a" (u) =0
I all

We have used the notation

(y, (a, (u) -=y, +(x)))),,(x, (u) .

Thus only the projections of g, (x, &u) and T(), (x, &u} on

(~, ~') f( (*)0 "(*)-' (30)

are determined self-consistently by (24} and (25). With the understanding that, for example, the (1),(x, ( )

in (24) and (25) mean r(x, x')(j), (x', ~), we shall proceed further.
Let us now specify the states ~

(()) more closely by appending an additional subscript 6 and a superscript

+ or —to e, i.e.,

and correspondingly

j,(x, ( ) -)t),'(x, (u„) =&a~ y(x) ~ u), '&. (31)

Such states are to be interpreted a,s continuum states which at time f =+~ consist of the target (N —1 nu-

cleon system) in the state b, and the projectile in the continuum state (p, (»'(x), where
b

e(k(, ) = ()) (, + e(, . (32)

With this identification, we display this implied boundary condition in a more convenient form, i.e.,

g, , exp ji[e(k,}—e, —(u, ]t}q),(, )"+(x)y, '(x, u), ) =6(u), —((),)6, , (33)

We defer questions of normalization and angular momentum to the Appendix. The 8 matrix elements «
interest may now be calculated as follows:

&&,', alSI&„h& = ...&~'. , al~, '&=z( +-%.&, ) *(x, t)V.'{(x,f), ~&)

=5, ,&O;~s"'~a, &-2)(i 5(~, —~,)Z~, (,d, ,[~, —e(&,)+e, ]y, '(y„~,)

From (24) and (34) for g, '(x, ~„) we find

&&'„aISI&„b&=5, ,,&f ', IS IA „& —2~i 5(~, —~,K][4„. , V, ,y, .+(~,)]+[4„,U, ,y, *(~,)]&.
a'

(34)

(35)
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In (34) and (35) (O', I SHFlk„& is the S matrix for scattering off the Hartree-Fock potential, and is described
in more detail in the Appendix.

This system of Eqs, (24), (25), and (35) is particularly transparent in the schematic model where one

takes the two-body potential to be

I'(x, y', x', y') =8 v(x, x')v(y, y'),

so that, for example,

V...(x, x') = 8 & x
I
v

I a& &
a'

I
v

I
x'& .

Upon solving (24) and (25) subject to the boundary condition (33) we find

(37)

(k'„alSlk„b&=5, ,&k, IS"lk & 2vib(& „),&q.i I "I'&&bl "I q":& (38)

where

(39)

The first term in (38) represents the potential scattering term and the second term the resonant scattering
term. The multiple-cut structure of d '(&u) reflects the coupled-channel aspect of the problem; the branch
points in the physical region for scattering u»l e & I occur at ~ =

I e, I and at each of the other hole energies
I e, I, reflecting the fact that as ~ gets large enough new exit channels open up. One may verify that the S
matrix is unitary, for example, for &u~&leg I,

1 2mig(k„c ISI k, ', b')*(k„c ISI k„b) = b(cu, —(u, )bp, g -2aiB (Q„;"lvlb'& d,
C

x l(k, Ivlc&l'il(~, — (ke. )+~, ) &blvl &p,,'& b(~, —~, )
C

sip, ce
= 6~ ~i b(4)p —&y') pi

2'll sg
8(co, —e(k, )+e, ) I (k, I vlc)'.

Furthermore, zeros of d(v) which in a discrete single-particle basis would have yielded bound states
now yield resonating continuum states for ~ &I e, I. For 0«u, &l e, I and 8 &0, one can have zeros of d(&u)

which can be interpreted as physical bound states E„of the N-particle system. Notice that because of the
inclusion of ground-state correlations in the RPA d(&u) is an even function of &u, and there exists an un-

physical image set of singularities of d(&u) for u&&0.

IV. ODD-MASS SYSTEM

Let us now turn our attention to the scattering in the N+1-nucleon system. Since the scattering of a par-
ticle from a resonating state is in reality a three-body problem, we shall ignore such complications and
only ask for the S matrix for a nucleon of momentum P impinging upon the ground state of the N-nucleon
system going into a nucleon of momentum P, with the target possibly excited to a discrete state E„, i.e.,
(P', E„ISIP, 0&. Further, we shall ask that the amplitude be consistent with previous quantities calculated.
To see what is involved, let us rewrite (p', E„ I Slp, 0& remembering that the states IE„& have the interpre-
tation of being "bound eigenstates of H. " Thus,

(p', E„ I lp, 0& =z, ,„(E„I y(x, t) Ip, 0&;„q)~ ~(x, f) =-2vib(e~ —e~ E„)g ~ . ..a (~p Ep, E-„)y,'(p', E„), -
(40)

where in accord with (15)

(41)

and satisfies the equation
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&x[&e,—@„-&&l*'&w &»', & & 8=f [«&;*',~&v.'&&~&

where g and g are known from the previous calculation in the B system, and are normalized so that

r, f [I &.&&, z.&l'-I&. &&, z.&l*«=. (43)

(44)

One may use (41) and a similar equation for &l&~(x') to define a coupled-channel calculation for the X + 1
nucleon system. However, we shall not do this, and merely calculate the direct reaction inelastic ampli-
tude using (42) so that

&p, ~. isl», o&= 2»n&..-., z&zf [~& -, ~;»', ~&&. &~, ~&+&« -,.;»-,»&.&~, ~&l,

which in the schematic model equals

-»f~(ep- ep &.-)O(f '
I ~IP'»(&„),

A(E„)=st/3, (46)

sd((u)
I QJ= E+

In summary we have seen how the GHFA can be applied to scattering problems when augmented by bounda-
ry conditions such as (33). In particular, in the case of collective motion of a vibrational type, the results
of I emmer and Veneroni are reproduced for the scattering process A(N, n)A* Furt. hermore, the GHFA
predicts an S matrix for Ii(n, n)fl*, albeit here in a simple approximation. It would be interesting to inves-
tigate further the well-known coupling of particle and hole amplitudes in the GHFA in the context of the
s cattering problem.
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APPENDIX

Angular Momentum and Continuum Normalization Considerations

In practice it is important to fix the normalization of the continuum solutions and also to decouple the
RI&A equations in the spin space of the compound nucleus (referred to as 8 in the text). We indicate below
in a schematic manner what additional considerations will affect the decoupling for the simpler problem of
the Tamm-Dankoff approximation (TDA).

Suppose the compound nucleus 8 has spin zero so that h(x, x') is spherically symmetric and possibly has
a spin orbit term. The eigenstates of h then are of two types: bound states, i.e. ,

[&&, (r) =R„, , (r)'JJ, „,(r)~ ',
and continuum states which we may write as

ieger&

(Al)

(A2)

2mk '~'sin
y- mK

(A4)

The asymptotic condition (A4) implies that
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J R'*(k, r)R'(k', r)dr = b(e(k) —e(k')),
0

where

e(k) = k 'k'/2222 .

The expansions (Al) and (A2) allow one to write a typical potential matrix element of interest, such as

V((k', v), a', a, (k', v')) (Direct),

(A5)

(A8)

as

Q X., '5,;„,,(k.) „
iIP, )

~l pl )I

I,N

I

SaSa "Jg'.('.2' (k)X, I" ((1, l), j;(j', l'), j'„e(k), e(k')},
M p. ' p, , M

(A7)

where

—( )&a ((g

If one further sets

((.'((i7', ~), ~ ) J.("-=(*) "',(*(, )«

= g g, 'g, „,(k) ', ",S, 'g (0')y, g'((j, l), j„(j',l'), j„e(k),e(k')),

where

e(k') =(u, +e, ,

then p obeys the equation in the TDA

[~—&(k)+&, ]g ((j, l), j„(j',l')j „.e(k), e+e, ) = Q il ((j, l), j„(j",l"),j„e(k),e}
~II )II ~

&& P ((j", "),j„(j',l'),j „e,~ + e, ) .

The boundary condition in (33) reads

exp (2 [ f (k) —e —(d ( ]t) p ( (j, l ),j;(j, l), j(, ' 6(k), ((((, y E )2= t% 6( 2 5„6(e(k) —6 —((( ( ),
so that

„exp(i[@(k)—e, —~, ]t](l(,'((k+, o), ~, ) = f(» t(„& 5(e(k) —e, —&u, }5(k—l2')5. .
and the 8 matrix in TDA is

&(k', o'), a'I SI (k, o), a&

(A8)

(A9)

(A10)

(A11)

(A12)

X.. 'JJ,',„,2 (k') „,
J'2P2)

S.S. 'JJ, '(k)X S'(0', l'), j.;U, l), j.; (k'), (k))

(A13)

Here

S'((j ', l '),j, ; (j, l), j„~(k'), e(k) )= 6(~, —(((,.) [ 5. . .5», 5„,, S", , ( e(k) }-222i

+'((j', 1'),j, ;(i",l"),i. ; e(k'), e) x0 (0",l"),j.-;(j l) j «(k))]
~II )It ~

(A14)
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and

S,'. ,'(e(k)) = 1. —2~i T, , (e(k)), (A16)

where

dry'r'y'
2 j, k, r '0,", y, y' g, k y' (A16)

Here the total Hartree-Fock Hamiltonian is assumed to have a form

'U
&,,(r, r') = Q 'JJ, &, (r)'JJ, „~t(f')&, ,, (r, r') . (A17)

Further Clebsch-Gordan algebra useful in simplifying (A13) may be done; however, we shall not pursue
this avenue.
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The binding energy of He and 0 was calculated using reaction matrix elements of Taba-
kin s potential. A separable form of the potential has been used to reduce the basic equation
to a simple linear algebraic system. The Pauli operator Q defined in terms of harmonic-
oscillator intermediate states permits an easy and accurate calculation. Our numerical re-
sults for the binding energies include the first- and second-order contributions. A very re-
sonable agreement between the experimental and theoretical values has been obtained, since
the occupied-state energies are made nearly self-consistent and a cancellation of other im-
portant higher-order contributions has been achieved by a shift of the entire harmonic-oscil-
lator spectra.

I. INTRODUCTION

A uniform description of the free nucleon-nu-
cleon scattering and nuclear-structure data be-
longs apparently to the most important and very
popular problems in present-day nuclear theory.
It is now well known that the Brueckner reaction
matrix t should be introduced in the nuclear-struc-
ture calculations rather than the free N-N inter-

action v. The idea is to treat the interaction in-
side the particle pairs ("two-body cluster" ) to all
orders before letting any of the particles from the
pair interact with the remaining particles. New
progress is understanding the nature of Brueck-
ner's perturbation expansion was provided recent-
ly in articles by Rajaraman and Bethe' and Bran-
dow, ' where earlier references can also be found.

The t matrix can be defined by the operator


