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Relativistic nucleon-meson field theory is cast in a forxn appxopriate to the nuclear many-
body px oblem. Martin-Schwinger thermodynamic Green's functions are employed. The n-nu-
cleon Green's functions satisfy a set of coupled equations which is formally identical to those
of the usual potential many-body problem. Here, however, the two-body potential is replaced
by a time-dependent interaction in which the mesons are formally eliminated in favor of high-
er-order nucleon corxelations. A general program of increasing complexity for obtaining ap-
proximate solutions to the equations is discussed. It is necessary to solve the "vacuum" (one-,
two-, etc., nucleon propagator) first. This has been done in the "Hartree-Fock" approxima-
tion which sums all diagrams containing a single continuous nucleon line with all possible un-
crossed n. and ru meson lines. Peaks in the spectral function are identified with masses of
known N* resonances. The appearance of ghost states, which arise in the process of mass
and wave-function renormalization, is discussed. The resultant Green's function is used to
calculate the magnetic moment of the nucleon, yielding a significantly better isovector compo-
nent of the magnetic xnoment than the usual perturbation theory, although the isoscalar compo-
nent is poor in both cases.

I. INTRODUCTION

The impressive accomplishments of two-body
potential theories in the nuclear many-body prob-
lem, initiated by Brueckner, have yielded con-
siderable insight into the structure of nuclear mat-
ter. ' Numerical progress during the last decade,
however, has been uneven. At present, the most
sophisticated calculations employing the best phe-
nomenological potentials still lack several MeV in
the mean binding energy per nucleon. ' The search
for these "final" few MeV has concentrated on im-
provement of the nucleon-nucleon interaction, and
the hunt for important neglected perturbation
terms. '

There are three basic assumptions which define
the starting point for nearly all current nuclear-
matter calculations:

(1}Only nucleon dynamics are considered, usual-
ly nonrelativistically.

(2} Only two-body interactions are considered.
There has been gome investigation of three-body
forces, but the results are inconclusive. '

(3) The two-body interactions are phenomeno-
logical fits to experimental two-body scattering
and bound-state data, with guidance from theory,
There have been moderately successful attempts
to obtain similar potentials from meson theories
directly. The potential matrix elements required
in the many-body theories differ from those in-
volved in scattering in that they are off the energy
shell, and in that the Pauli principle alters the
weights of the various intermediate states. '

The program presented in the present paper
seeks to study the validity of each of these assump-
tions by circumventing them. The approach treats
the relevant mesons and nucleons in a relativistic
field theory without the introduction of two-nucleon
forces explicitly, The problem can be expressed
in a form which has the same formal sh.uctuxe as
the inany-nucleon (potential) problem.

We employ the Martin-Schwinger' Green's-func-
tion formalism in the present development. The
method leads to an infinite set of coupled equations
for successively higher-order Green's functions,
completely equivalent to the field equations. The
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problem can be reduced to tractable form by ap-
proximating the higher-order Green's function in
terms of the lower-order Green's functions. Vari-
ous factorizations which preserve the important
two-body correlations have been investigated, "
the most attractive of which, for the nonrelativist-
ic two-body potential problem, is obtained sche-
matically from the factorization G,- G,G„and is
denoted by A„. A recent study by Fiset' indicates
that preserving three-nucleon correlations results
in a correction to the A„ theory of less than 0.1
MeV per nucleon in the binding energy. This lends
encouragement to a similar factorization in the
present program which would again terminate the
set at a tractable stage. The limitation to two-nu-
cleon correlations does not exclude all the. many-
body force effects, and we anticipate that the effec-
tive two-nucleon potential depends upon properties
of the many-body medium.

A system described by a relativistic field theory
is intrinsically a many-body system; this is, of
course, why field-theoretic methods have been ex-
tensively adopted by many-body theorists. Al-
though the concept of a Dirac sea is of limited util-
ity in a relativistic theory, there is a nice parallel
with the Fermi sea of nuclear matter. One can
view the Fermi sea as filled Fermi and Dirac seas
of positive and negative energy levels. It should
be emphasized, however, that the relativistic vac-
uum is the ground state of the system and that
there is no need to view it as a filled sea of nega-
tive-energy nucleons. Charge-conjugation invari-
ance implies that it would be equally valid to view

it as a filled sea of negative-energy antinucleons.
The program, in stages of increasing complexity,

may be outlined as follows:

A. Hartree-Pock Factorization,
Coupling to Pions

Only pions are included with the Hartree-Fock
factorization because they represent the longest-
range forces and are relatively weak. The more
massive mesons may be included later along with
internucleon correlations. This phase is further
divided:

(i) One nucleon propaga-tor in vacuum At this.
stage, the one-particle Green's -function equation
is derived and renormalization procedures are
utilized to remove divergences in favor of the fol-
lowing finite quantities: nucleon mass, coupling
constant, and wave-function normalization. The
solution of the vacuum equation is required for the
finite-density problem, but one also obtains single-
nucleon properties, such as electromagnetic form
factors and magnetic moments. We include the ~
meson here because it presents no special problem. .

(ii) The finite de-nsity problem T. he off-mass-
shell (energy-shell) one-pa. rticle Green's function
derived in the vacuum is required as input to the
finite-density problem. It is here that many-body
effects first appear, even though Hartree-Pock
factorization is used: roughly speaking, one is in-
cluding one-pion exchange, w'hich involves inter-
mediate-state pion and nucleon propagators which

are, in turn, obtained self-consistently in the
medium.

B. Two-Body Correlations, Various Mesons

The factorization G,-G,G, preserves two-body
correlations and leads to a T-matrix equation.
The heavier (vector) mesons can be included here,
since the resulting strong internucleonic interac-
tions can be handled through the correlations.
Again we can consider two cases:

(i) Tzuo body p-ropagator in vacuum. 6, describes
two-body scattering and the bound state of the
deuteron. The coupling constants and masses of
the various mesons (the only parameters of the

theory) can be adjusted to fit two-body scattering
data and the deuteron binding energy. The deuter-
on magnetic moment, quadrupole moment, and
form factors can then be obtained for comparison
with experiment. Also available at this point
would be improved neutron and proton moments
and form factors.

(ii) The finite density prob-lem This is. the ulti-
mate goal of the program, which includes the cal-
culation of binding energy, density, symmetry en-

ergy, compressibility, etc. A comparison will be
made with a similar Green's-function factoriza-
tion theory which utilizes a nucleon-nucleon poten-
tial, in order to exhibit the effects of meson-nu-
cleon dynamics.

The present paper, which is the first in a series,
presents the general formulation of the program
and the implementation of that program through
(A.i), that is, the Hartree-Fock one-body problem.

A nonrelativistic approach to the same problem
has been presented by Dover and Lemmer. " The
philosophy is similar in that they also obtain time-
dependent interactions to replace meson dynamics.

II. GENERAL FORMULATION

We consider a system of nucleons and, for ex-
ample, ~ mesons described by the Hamiltonian

H=B~+0 +8',
where

II~=p dx tt)( x y ~ p+Mo (~.g~. x

-[(y p+M, )„,q ~,(x)]&~(x)j,
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q-, , ( x)(~,y 5)„,y, (x)y'(x)]. (4)

At this point we note tha. t the above equations
may be generalized to include a wide class of
mesons interacting through nonderivative nucle-
on-meson coupling. In a compact notation, the
field equations become

The following notation is used: g, g', etc., refer to
both Dirac spin and isospin indices of the nucleons.
Where they are required separately, we wiQ use
n, o.', etc. , for spin and P, P', etc. , for isospin,

The j index refers to the three (Hermitian) com-
ponents of the meson field [the neutral pion field

P, = g5 and the charged pion fields P, = 2 '"(g'
+ iy')].

We use the summation convention for repeated
indices. g is the operator canonically conjugate
to the field operator P'.

%'e further employ the following conventions:

Aa =At'a„=A„a,g~' = A 8 -A,a„
-1 0 0 0
0+1 00,
0 0+1 0
0 0 0+1

8
x=(f~r)g s = 5+~ ~

Y5 ~0~1~2~3 y

6 „y.)= -2g„,

3y 4 2+ 4

Notice that we have assumed nucleon-meson
coupling, but no direct meson-meson coupling.
Meson-meson coupling can appear through nucle-
on antinucleon channels.

The fields satisfy the equal-time commutation
relations

[.g&(r f) Pt; (r' t)]=(y5) 558 5'(r —r')

[v'(r, f), yr'(r ', f)]= -if,; 55(r —r '),

(yp+M, )„.g, .(x) = -Q~~. y, .(x)y'(x),

(-s'+ ~„')yj(x) = ,'[-q-, (x)„n,~, ,q, ,(x)] . (9)

(Note that for vector mesons there is also a mod-
ification of the commutation relations and a subsid-
iary condition. ) Here, the index j refers not only
to the field component of a meson family but also
to the family itself. We list in Table I the forms
of 0 for the various mesons which are supposed to
contribute to nuclear forces. In what follows, we
will use the 0 notation wherever the equations
are of sufficient generality to warrant it.

Nucleon Green's functions are defined by

G (1 "s 1'"n')
D

= s (TQ(1) ~

q (n)y(n') ~ ~

y (1')')

where T is the Wick time-ordering symbol, which
includes a factor (-)r, where P is the number of
perrnutations in going from the time-ordered se-
quence to that shown above, The index (n) refers
to (r„f„, g ), and the expectation value of some
operator X is

-8(+-v&-&~) Xl e
-e&H-vu- r)tre

in the usual thermodynamic limit (N) =A-~, (fj
= —,'A-Z- ~, with the volume V- ~ in such a way
that the total particle density A/V and proton den-
sity Z/V are finite. We will eventually take the
(zero-temperature) limit p-~, so as to obtain
ground-state averages for a system with fixed A/V
and Z/V. The quantities p, and v play the roles of
the chemical potentials or Lagrange multipliers
related to the average densities. The number and
isospin operators are defined by

TABLE I. Forms of 0 for various mesons.

with other combinations commuting or anticommut-
1ng as usual.

The field equations follow from the above rela, -
tions and i8= [8,H].

(yp+M. )ggv& (x)= Zo. (~jy5)gg eg-(x)4'(x),

(-&'+ re,.') 0'(x) = -~5m,.[g~(x), (~, y,),~ g~ (x)],
+2= yJ (8)

«~h'5) n,n, & &,~ a, g,

S()qh 5)n„n,&a, g,

Sgtd~7p~n~n2~ 8~ 82

8'() @~'Yp)n )n2~ g) g2

«h'u~"p2~ ~~8~~2

0 1

0 0

1 0

1 0
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.(=.'-) ;((.„f&',rl (, (*),(, ( )),

.=)(.)..(.) J&' ((, (*),(, (*)]

+ d'ri~jx && j'&. 12

The vacuum problem is defined by A/V= Z/V= 0,
or p, = v=0.

Since N and I commute with the Hamiltonian, we

may choose to employ the operator X=H-p. N-vI
in the dynamical equation i&= [6,R]. This intro-
duces a phase factor in the field operators and
produces a trivial change in the field equations

(8) or (9):

yP+M, -yP +M -y p, -2y T,v

and

-8'+ m, j'- -8'+ mo' jv'(5 j+ 5J,) =-8'+ rn, j '.
The function G, then satisfies

1
(&Pi -roe ——.ro 3 +Ma)g, (;, Gi(xa 4'xi &r)

= 8(11')—tn J, &T(q, (x,)y'(x, )T), ,(x,.)}&

(-8', + m„') gJ' (x„' x, ') = 6,; 8 (xg —x) ) —t IIt, (;,

g'J (r, t —i P; r', t') = g'~ (r, t; r', t'), (18)

as can be demonstrated directly from its definition.
If we introduce the space Fourier transform"

g"'(x,x„)= e')'(' -' 'g JJ'(p, t, t;), —(19)
p 3

then the explicit solution which satisfies the bound-

ary condition (18) is

el wpj (
t- t '

(
—i wp j (

t- t '
(

go(» «)
2 8, -a~ . ,Oj

Oo -iw(t- t ')e

&T(-'[0,,(x,), 4g, (x,)]e'(x )}&

[No sum over j is implied on the left-hand side
of (14).] In order to invert (16), we introduce the
noninteracting meson function 5JJig, (x,x,i), which
satisfies the equation

(-8', + m„') g', (x,x,,) = 5(x„x,,),
subject to the same boundary conditions as the gen-
eral g jj, namely periodicity in the time variable,

=5((1)-(fdx, , (((*,—((.,.)

x&1((l), (x,)y'(x )T()q„(x, )}& (»)

The meson field equation then produces a similar
expression for the quantity on the right-hand side
of (1S),

(-8', + m„') &T((l),,(x,)p'(x, )g,„(x,)})

= ——,'gj, &z'Q)~ (x,)[q, (x,), )l)~ (x,)](t~ (x,,)})

= d'x, d'x, n,',, 5(x, -x,)5(x, -x,)G, (S4; 2'1'),

(14)

where

G, (S4; 2'1') = —,'[G, (S4; 2'1')+ G, (84; 2 1')],

(20)
where w, = (p'+m„')'". We define the Fourier
transform

goJ(p, t,) = [p'-P'. + moj'- te]-',

which is valid for scalar or pseudoscalar mesons.
If we return now to the space-time function, utiliz-
ing the final form in (20), we find

]
-2iIf, (mo I (r' —t ')"'), r &

l t l,
[.ff")(m (t'-")'") «lt[

with

r= lr —r'l and t=t —t'.

We see that g Jp is an even function of I; —t', and is
thus symmetric advanced-retarded.

It is a simple matter to show that the function

n'= (r„, t, +0', —g, ).

We also define the one-meson Green's function

g" '(x; x ) = t &TI y'(x)yj'(x )}&, (15)

and note that for Bose fields the Wick time-order-
ing symbol does not include the factor (-)~. The
equation of motion for 8 is

&T4„(x.)0'(x, )q,„(x,)}),

satisfies the periodic boundary condition in the
index t, exhibited by (18). Therefore, the inver-
sion of (14) yields

&Tf g, (x,)eJ(x,)q,,,(x,,)}&

= n~&, 8(x, -x,)g J (x, -x,)G, (S4; 2'1'),

(22)
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where integrations over repeated space-time in-
dices, as well as summations over repeated sub-
scripts, are implied. The integrations over the
time index t4 may run between any surfaces on
which the boundary conditions may be imposed;
in particular, we choose the range 0 to -iP. The
same limits can be assigned to all repeated time
index integrations, since those not related to the
boundary conditions involve 6 functions. Substitu-
tion of (22) into (13) now gives

Go '(12)G, (21') = 6 (11')+ i(12
~
v

~
34)G, (34; 2'1'),

(23)

with

G, '(12) = (yp, —yap, —2yow, v+ M ) q q 6(x, —x2),

(24)

and

(12
~
v

~
34) =- —Z Q~J, ~

Q~J @6(x, —x,) BJ (x, —x,)6 (x, —x,) .
J

(25)
We note at this point that the meson field has been
eliminated formally from the problem. The one-
nucleon Green's function is coupled directly to the
two-nucleon Green's function by an explicit time-
dependent "potential" (12~ v

~
34). If (12~ v

~

34) con-
tained a 6(t, —t,) instead of the (t, —t, ) dependence
given by (20) or (21), (23) would correspond to the
first equation in the Green's-function hierarchy
for particles interacting through an ordinary two-
body potential. The higher-order equations of this
hierarchy are familiar in the static potential prob-
lem, and our notation in (23)-(25) is such that the
same equations appear here. Thus, we find, by
an analysis similar to that above, the result

G, '(11")G,(1"2 ~ ~ n; 1' ~~ ~ n') = 2 (-I)'"6(I/')G, (2 n; 1' ~ ~ ~ omit I' ~ ~ n')

+i(1,n+ 1
~
v~n 2+, n+3)G, +,[23 n, n+2, n+3; (n+1)'1' ~ n']. (26)

It is this set of nuclear Green's-functions equations which we must solve in some approximation scheme.
Although we have formally eliminated the meson field to find the nucleon propagators, it will be neces-

sary to calculate the one-meson propagator g JJ in order to evaluate the meson contribution to the energy.
We may do this in terms of nucleon propagators alone. The quantity appearing on the right-hand side of
Eq. (16) satisfies

(-a'„+~„,')-,'(r][g„(x,), q„(x,)]yj'(x„)])= -nj; —,'(r([q, (x,), y, (x,)][q, (x,,), g (x,,)]]). (27

It can be shown that the boundary conditions on the time t, , are exactly those of (18) (i.e., periodic), so
that the inversion of (27) can be carried out immediately. There is no inhomogeneous term in this inver-
sion as a result of the fact that the P and g fields commute at equal times. Inserting the result of this in-
version into (16), and further inverting the resulting expression, we obtain

b ( I 1') 5 '' b0 (xl x1') 80 (xl x2)~g Q g g 2(x2(2»xs~4»x2 fy»x 0 ) g (x —x») (28)

III. EXPRESSIONS FOR THE ENERGY AND DENSITY

~e can now express the energy and particle densities in terms of nucleon Green's functions. From (12)
the nucleon number is given by

(lv), . ~
y 2 f ~ (Y ) 6 a 8 [Gl(xlrl x1 K2) Gl( I tl ll2)] ~ (29)

In this section we consider the energy for the special case of v mesons only and Z=N(v=0). The energy
is conveniently broken into two parts. The first of these involves the nucleon and interaction terms. Utiliz-
ing the equations of motion, these can be shown to be given by

(a)+(a'), . a,
y & ~ (ro)a 6 8 8 f sf / (7Q(+lf2)4$ (xlfl) 4g (+lfl)7$ (rlt2))~ g

1 2

—X2- Xy 1 ~ X2= Xy

(30)

The meson energy, according to (3), is given by

(»»„)= .Z»fd'»(»»» ~ vy»y'»mq—»y D. ,„*

J



Using the expression gj= QJ, together with the time- and space-translation invariance of the expectation
value, we may rewrite this energy in the form

2
= -!iT (-r ' I„*- 3 —gii (r - ', i - i')

Bt X'=X+
J

Utilizing (28) to eliminate the unknown meson Green's function, we arrive at

82 82
(H)=ifd, 'r—,,di(x, -x, ,) g d'r, -, 3,(x, —x,) —-', 5(x, —x,)

1 Xg -Xj

(32)Q»» Q»» CT {2x$22) x3$4 )x2 g yr x{3i)3g () (x3 x)i)
Xgd= Xg+

The first term on the right-hand side of (32) is just the zero-point (vacuum) energy for the noninteracting

meson field. Using (20), this can be shown to be

Since we are concerned only with energies relative to the vacuum, this (infinite) term may be ignored im-
mediately.

Combining (30) and (32), we obtain

=-', iY(r,)„,„dr i i —x, i(xi xi, ), „,,+ ri x)d, (x,x,;x,(,)
x'2= Xy+

1 2

8() (x) x2) 20(x] x2) Q»»2Q»3»4 G2(x252) x354) x2 ky x3)53)»x)()(x3 xyi)

All of the terms on the right-hand side of (33) are, in fact, infinite in the vacuum limit. These infinities
are associated with the occupation of the negative-energy nucleon states, and with the renormalization of
the meson masses. In the calculations on finite-density systems, we will subtract out the vacuum (i( =)i=0)
energy, and will deal only with ({H)&,—{H),3}/V, which, after sufficient renormalization, should be finite

in a consistent theory.

IV. SPECTRAL REPRESENTATION OF t",

A. General Properties

G, may be decomposed into components G' and
G' according to

G,{x x') = e(i i')G—'(x x')+-e(f' —i)G—'(x —x'),

where

G,', ,(x —x') = iQ)» (x)y( »)x),

G' and G' in terms of a single function,

&'((i, () if, f.(-=)&.((i, x)x "',

d'((i i)= —if 3—f,(x)G. ((i x)x '", (3'I)

where the spatial coordinate has also been Fourier
transformed, although the equations are of identi-
cal form in (r, i) space. The Fermi function is
given by

G», , (x -x') = -i(f), ,(x')&» (x)&. f, ((d) = [e'"+I] ' - +8(-ru) . (38}

G'(r, —iP —i') = —G'(r, 0 —f'). {36)

This immediately permits a Fourier analysis of

From the definition of the thermodynamic average

( ), it can be shown that G' and G' satisfy the

boundary condition

Since f,{(())+f,(-(d)) = I, it follows that G, (p, &()) is
the Fourier transform of {(()(x),T))(x')j). We use
the identity

dc' e
g(i) =i

2'p {d + ZC
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and (34) and (37) to obtain G, in terms of G, (P-~)

(';(p,p) f, =(:,((()e i, 'd'(

Thus we can write

(,— ) —(,' ),
)(wp + is)' —~'

" d(d 8(-(d) 8((u)
~ ~

2v (() -Po+ ge (d -Po —KE

" d(o G, (p, (o)
21)' (d -P()(1+XF)

(39)
( ~+(r) ~ —(M~+(e))

d~ A(K) ~ ~

This suggests introducing a function which analyti-
cally continues G, in p, where

=P G(-w, —ie)+P, G(wp+i&),

-(-
)

" d(i) G, {p,(i))Gpz =

Gq (p, (())= -i [G(p, (d+ ie) —G(p) (() —iE')] )

Gi(p, P.) = G(p, P.(1+ie)).

(40)

(41)

G()f ~, ()

It follows from the commutation relations that

dKA(K) = 1.

(49)

(5o)

From the anticommutation relations, it follows
that

The projection operators permit a ready inversion
of G, (P) in terms of G:

G, (r —r ', f = f ') = r,5 (r —r '),

J~ 4(d
Ga (pi (()) ra ~ (43)

G, '(P)=P, G '{wp+ie)+P G '(-wp —ie).
In the noninteracting case,

G (z)=M, -~,

(51)

(52)

B. Special Vacuum Representation

and it follows from the Lehmann-KKllen form for
G, (49), that

Because of the Lorentz and time-reversal invar-
iance of the vacuum, the Dirac matrices can enter
into 6, only in the combination yp and 1. As an
alternative to (40), we can write"

G(p) z) = dK
A()()

y 'p y'OS+K

G-'{z)=I, -a+Z(s),
where

Z(z) = — d~ T(~)
K —8

We know that G(s) must have a pole at z =M

T(~)
O=M, -M- e-M

(53)

or

d~ A(~) ~2 p2 ~2 (44)
Subtracting (55) from (54)„we obtain

G-'(z) = (ill - z) 1+ d~ . (55)
T(K)

G, (P) = G(p, P, (1+ ie) )

dzA x (45)

These equations essentially represent the Green's
functions as a sum over all intermediate states;
the states with g &0 have normal parity, those
with x &0 have abnormal parity. At this point it is
convenient to introduce the projection operators

P ( )
~ 1 lP rP=(P- -P,)w),

zvp 1 =P +P

The sign of (-P')'" is defined by convention to be

Until this point we have not discussed the neces-
sity of introducing a cutoff in order to insure con-
vergence of the quantities with which we are deal-
ing. %e anticipate here the possibility that, for
certain approximations at least, A and G may
vanish as the cutoff recedes to infinity. In that
case, the unrenormalized quantities will not exist,
but the renormalized quantities may. Then, the
above discussion goes through as before, except
that the Lehmann-Kallen form may need subtrac-
tions; however, the dispersion relation for Z can-
not possibly need a subtraction unless

i l(P')"'I -P' &0
(47)

Hut A(~) is supposed to be positive definite; thus,
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a. second subtract1on for Z 1Qlpl1es that the suDl

over states is not positive definite, i.e., we have
a ghost.

It is convenient, in any case, to use renormal-
ized quantities such that Gz has a, pole with unit
residue at z =M W.e have demanded that G(z)
have a pole at z =M. The residue of the pole is

with s given by (25).
%6 restrict ourselves in the remainder of the

paper to g mesons except in Secs. V.l3 and VI.E,
where the meson 1s 1ncluded, The direct term
in the potential gives no contribution (because of
the pseudoscalar nature of the pions), and we find,
by Fourier transformation

r(x)
G '(z) g=~ „(x-M)'

%'6 define a renormalized 6

GPV(&) =-Z.G '(z)

(5'I) [G, '(p)]...,,
= [G', '(p)], , + i2 0,' t Otj t,

bo (p-q)[Gl(q)]&, t, cos(q.o').
qg

(64)

=(M-z) I-{M-z)
(v —M)'(x —z) '

(58)

where T~(~) = Z, T(~). The spectral form for G~ is

G(z)
"

A~(x)
Z2 - oo Ic —z

where A~(~) =A(~)/Z, . It follows from the canoni-
cal commutation relations and (48) that

(60)

We llote that [Gl]t t 18 dlagollal ill 'tile isosplll
indices and independent of the P index (G&,t,
=G,„6q,s, ). The combination of 0'8 appearing
in (64) then becomes

~ Ii),t, fljt, t,P 8, g,
= 3go.'(&5), ,(r5),n, ~s, a,, (65)

1

The matrix equation in spin indices now becomes

G, '(p) = Gl '(P)+»g..' Sl (A"
q4

&«1(p —q)r, «8(q. —p.)o'.

V. HARTREE-POCK IN VACUO

A. Appl OXjM8tLOA

Equation (23) for G, in terms of G, can be written

G '(ll') = G' '(ll')+ '(12I T
I
1'3)G (32') (61)

where 7 ls defined by

(12InI34)G, (34; 56) —= (12I TI 3)4G( 3)5G( 4)6.

(62)

In the Hartree-Pock approximation, we replace T
by v —v~

(12
I THF I

34& = (12I1 I
34& —(12 IU I 43), (63

Equation (66) can be expressed in terms of G,
which is free of Dirac algebra, by noting the fol-
lowing relationships:

&5&.&5

trP „(p)P,(p —q) = 1 +
Kpvp q

trP (p)P, (p —q) =1+
'Np'Np q

We expl'ess Gl ill tel'1118 of G~ opel'ate oil (66) with

P, (p), and then take the trace to obtain

G '(wp+ie) =M, - pw--,
' ig„', "," . 1+ G(wp +is)+ 1- 6(-wp -ie),

p p-q

(68)

and a similar expression for G (-w~ —ie). This expression can be simplified somewhat if we select the
Lorentz frame in which three vector p=O. This yields the equation

G '(p (1+i'))=M -p ——ig, I "," . 1- " "
G(wz q+ie)+ 1+ " 0(-wz q

—ie)
p-q

(69)
which is valid for p, &&0.

We can now utilize (49) to express G in terms of the spectral function A and (58) to express G ' in terms
of its renormalized spectral function T&
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2 ~ OO

(70)

where the kernel on the right-hand side is given by

2i "
d "d cos(q, -P )0' 1 —(P„—q„)/24 1+(P„-q„)/u

(71)

where, here 2() = [(P, —q,)' —q 2]'12. The integral in-
volving the real part of K on the right-hand side of
(70) is infinite (in the absence of a cutoff), but the
imaginary part is finite. We take the imaginary
part of (70) and multiply through by -n' 'Z, sgn(P, )
to obtain

T„(p,) =2 (4"')f & K(p &) (4a)Z„,

2

4
dKE PQ~K A~K (72)

—
[P

4 2P 2(K2+m 2) 4 (K2 m 2)2]1/2

™"
0

(73)

The complete set of equations now reads (with a
change of variable)":

2

&~(~)=&(4" 4 ' (~K)KAYAK(» ), ''
G~ '(K(1+is)}=(M-K) 1 —(M-K)

Tu(K ')
(K'-M)'[K' —K(1+ ie)]

(74b)

A~(K) =
i Gp(K(1+ ie))

~

'T„(K)+5(K -M). (74c)

The integral in (74a) is finite, for fixed K, be-
cause the kernel has a cutoff at

~

K'i= (K'-m„')"'.
Specifically, for large K or K', the kernel has the
asymptotic form

where g~„=g,„Z2 is the renormalized coupling con-
stant, and

&(P„K)=-, ' 1m'(P„K)sgn(P())

where

Then (74b) yields

(77)G~ (K(1+ ie)} — 2CK' ln i K i.
jib j

From (74c), (76), and (77) we find immediately that

( )
(4C)

i
K

i
(ln

J
K i

)' ' (78)

The integral of A~ is thus finite, consistent with
the original assumption; however, the asymptotic
behavior of G~ is inconsistent with the spectral
form (59) for G~ together with the asymptotic
form (78) for A~. There must be a ghost, and the
integral equations (74) for T must be modified to
include the corresponding complex poles in G~.

B. Numerical Results

C. Comments on Ghost States

Equations (74a)-(74c) were solved self-consis-
tently for the spectral functions A~(K) and T~(K)
on an IBM-7094 computer. m„was replaced by
the physical mass m, (this represents an addition-
al renormalization of the meson propagator which
is not formally contained in Hartree-Fock theory).
The pion-nucleon coupling constant was taken to
be g„2/4w= 14.6. Figure 1 displays the spectral
function A~(K); the 6 function of unit weight at the
physical nucleon mass is indicated. Z2 ', as cal-
culated from (60), has the value Z, '= 1.44. The
peak in A~(K) for positive K occurs at 1.43 nucleon
mass units (nmu). This peak is suggestive of the
1470 MeV (1.555 nmu) A* resonance, which has
the same quantum numbers as the nucleon.

K(K~ K ) 2(K —K )(K —K ) 0 (K —K ) . (75)
1

We observe that JdK A~(K) is finite by the follow-
ing consistency argument. Assuming that this is
the case, it follows from (74a) and (75) that

(76)

In this section we exhibit inconsistencies which
are present in the solutions for G~ '(z} [Eq. (58)]
and G~(z) [Eq. (59)]. Such inconsistencies, which
generally plague relativistic field theories (see,
however, Ref. 13) are manifest here by the pres-
ence of ghost states.

In order to understand the nature of the inconsis-
tency, let us first observe that the theory demands
certain formal properties of the solution. Since
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FIG ~ 1. SpectlR1 function
for the renormalized sin-
gle-nucleon Green's func-
tion. Pion-nucleon cou-
pling only.
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A(K) is non-negative, it follows that G(z) can have

no poles oy zeros off the real axis (Herglotz prop-
erty). The absence of zeros follows by noting that

G(
.

) d (K —x+ iy)A(K)
(K —x)'+ y'

or

ImG(x+fy)=y dK»10 for y40. '

A(K)
K —x +y

T(K) =
~

G '(K)
(
'A(K), (8o)

T(K) is also non-negative,
The renormalized quantities should possess all

of the above properties, since they differ from the
unrenormalized quantities by Z, or Z, ', where Z,
is tbe weight of the 5 function in A(K), and since
fA(K)dK = l, it follows that

0 «Z2 «1.

We can evaluate Z, either from (60),

Z2 = dKA~ K

which is finite in our calculations, or from a re-
grouping of (57),

This is a necessary condition for writing a spec-
tral representation for G '(z), which also posses-
ses the Herglotz property, as can be demonstrated
from (54) or (M). Since tbe spectral functions are
related by

(82)

But from the asymptotic form of Tz(K) as given by
(76), this last expression is divergent and gives
Z, = -~. Clearly, we have an inconsistency.

Since Z, is negative, at least according to (82),
we can expect further violations of the formal prop-
erties we assumed. For example, even though 7.'„
is non-negative, T is not, and we cannot estab-
lish the Herglotz property for 6 ' or 6„', In fact,
G~ '(z) evaluated according to (58) does have com-
plex zeros. This means that C'& is not the in-
verse of what we have denoted by Gz '. [We have
been careful not to write G„ for (G~ ') '. ] The
inverse of G~ ' can be written

A K(K) g R J

where z, is the location of the jth zero in G~
' and

8,. is the corresponding residue. These complex
poles are referred to as ghost states, and they ap-
peax' ln conjugate palx's. Oul' pl escl lptlon ln this
papex, which follows that of Redmond, "is to simp-
ly drop the poles when they occur in G~.

The location and (minus) the residue of the upper
member of a conjugate paix of ghosts is shown in
Fig. 2. (There may be further pairs but we did not
locate them. ) The "trajectory" of the ghost is
given as a function of the coupling constant, with
unity corresponding to the physical value.

It is worth noting that the introduction of a cut-
off does not automatically remove the ghost prob-
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theory), but we do not know how to interpret them.
(c) Ghost states are a manifestation of the intrin-

sic inconsistency of local, renormalizable field
theories.

There is a fairly long history of attempts to in-
corporate ghost states in quantum mechanics. " "
Until recently, such theories have suffered from
the apparent defect that the ghost states had to be
included in the unitarity sum over states, so that
the physical particles alone would not satisfy uni-
tarity. Lee and Wick" have recently shown that,
at least in some diagrams, if the ghost mass is
complex, the Feynman rules can be modified so
that unitarity holds among the physical particles
alone. The price that is paid for this is acausal
properties of the theory; however, it is not known
if such acausality can be manifested on a macro-
scopic level.

D. Inclusion of the u Meson

5w

FIG. 2. Trajectory of the ghost state as a function of
pion-nucleon coupling constant. The location (in nucleon
mass units) of the ghost in the upper half complex z
plane is shown. The vertical dashed line occurs at (1
+m~) nucleon mass units. The arrow lengths and angles
with the horizontal indicate the magnitudes and phase
angles plus 180', respectively, of the residues. The
number at each arrow refers to the ratio of the chosen
coupling constant to the physical value used in Sec. VB.
The single point, together with its arrow, indicates the
location and residue of the upper-half-plane ghost state,
for the physical values of the coupling constants, when

the w meson is included.

lem. The origin of the problem lies in the nega-
tive value of Z, [according to (82)], not in the di-
vergence of Z, . We found that the cutoff necessary
to keep Z, positive was undesirably small.

We paraphrase here three frequently expressed
view points on ghost states (see, e.g. , Ford"):

(a) The appearance of ghost states is caused by
the inadequancy of the approximations. Improve-
ment of the approximations would cause the ghosts
to recede or weaken. An exact solution would be
devoid of ghosts.

(b) Ghost states exist in nature (i.e., in a proper

The vector meson co was also included in the
vacuum Hartree-Fock problem, along with the pi-
ons, and the resulting equations were solved nu-
merically. The coupling is given in Table I. The
direct term in the Hartree-Fock factorization (83)
also vanishes for the co meson.

The propagator for vector mesons is given by

»+ vu'~m
Dpp (k)

g i 0BJ —g5+ pI5+V (k)
k +ma~' —ie

2 2

3 ~ K, z, w' +2 E„z,w'

where K, is given by (73) and the v kernel is

(84a,)

As is well known, "the longitudinal term krak'/
m0„'(k'+m0 ' —ic) can be removed by a canonical
transformation in the case of neutral vector me-
sons (the u) coupled to a conserved current, and
therefore, except for a change in the y algebra,
the derivations for ~ coupling proceed in the same
manner as those for pions in Part A of this section.

The inclusion of the up meson generalizes (74a)
as follows:

K (P0, y) = [ P
~ —2P0'(y'+m0 ') + (Z' —m0 ')']'~'[(P0 —Z)' —2ZP0 —m0 ],9[ P0 —() V i+m0~) ] .

0
(84b)
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Equations (84), (V4b), and (Nc) were so»ed self-
consistently on an IBM-7094 computer. m, was
replaced by the physical u mass, and the coupbng
constant was assumed to have the value

resulting ln

8. (xix.)ljl'(x. ) = -g,.t,,(xi)(~Jy,)~, ~,g,,(xi), (85)

Figure 3 displays A„(g) for the case where the nu-
cleons interact via the exchange of p and + mesons.
There is a very narrow peak in the spectral func-
tion close to the mass of the N* resonance at 1785
MeV= 1.901 nmu. The earlier, less pronounced
peak near the A~ resonance at 1460 MeV= 1.555
nmu remains. The two N* resonances referred to
are the only ones known which have the same quan-
tum numbers as the nucleon. It is dangerous to
interpret the peaks with the physical resonances
until we have examined N-g scattering in the mod-
el. The second peak in particular, however, is
too narrow to be attributed to kinematical effects.

~~~ il - ~+ total

I SOSCQklf

(gj $~= ~+ '~+i / ~ Isovectof

(d) g~=t +', ISOSCQIQ f,
first itefotion

where

8, '(x,x,)"= [-e', + ref, (&,",A„(x,)}f+m„']"6(x,—x,),

(p'I $~ —~ y ~+(~ lsovectof ~

first itefotion
In this section the formalism ls used to descl lbe

electromagnetic properties of the nucleon. The re-
normalized equations are solved to obtain the mag-
netic moments.

A. Integral Equations for the Vertex Function

We make the gauge invariant replacement P&-P&
—qA„, for all momenta in the field equations (8),

FIG. 4, Diagrams representing the integral equations
for the photon-nucleon vertex function. (a) Diagram rep-
resenting integr al equation for the entire vertex function.
(b) Integral equation for the isoscalar component. (c) In-
tegral equation for the isovector component. (d) First
iteration of the integral equation for the isoscalar com-
ponent. (e) First interation of the integral equation for
the isovector component.
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G' '(12)

—y("s —e- 'y"A (x))+Mo «5(x~I
(I lp 2 p 1

The term quadratic in eA„has been dropped, t, is
the third component of the isovector operator
which describes the three charge states of the pion.
Proceeding as in the derivation of (23}-(25), one
obtains from (85)-(88) and the Hartree-Fock fac-
torizat1on of G2~

G' '(12}G(21')= 5(11')+f(12
~
v ( 34)G(32')G(41'),

where (89)

(12~ V~34&= -g,„'(y,~, ), , &(x, -x.)(y' i}g,g,

x5(x, —x,) g,'J(x„x,) .

Equation (89) can be written as

Substituting into (91) the definition of the vertex
function for the nucleon-photon interaction

eI""(11'; 2) =- 6G '(ll')
(92)

together with several algebraic manipulations, re-
sults in the following integral equation for the ver-
tex function in the limit A„-0:

G-'(ll ) = G'-'(ll )+ f (14
~

r
~

31'}G(34'). (9O)

Taking the functional derivative of (90) with re-
spect to A„(x,) yields

5G-'(ll ) 5G'-'(ll ), 6G(34')
5A„(2) 5A„(2) 5A„(2)

. 5(14 i
V

i
31'}—34,

5A„(2)

(91)

I'" (11' 2) =
2 (1+v3)y" 6(12)5(21')+ f (14

~
v

~

31')G(35)1'"(56; 2)G(64+)

+ 2g„'v,[g,(x, -x,)s, g, (x, —x,,) —g, (x, —x,,)s," g, (x, —x,)]y,G(11')y, . (93)

Equation (93) is represented by the diagram in Fig. 4(a).
Decomposing the vertex function into its isoscalar and isovector components,

l.~ = —,'[r~+ T, I ~],

we find that (93) decouples into isoscalar and isovector integral equations represented by Figs. 4(b) and
4(c). The vertex function I'"(ll'; 2) depends only on the differences x, —x, and x, —x, . Therefore, the
Fourier transform is a function of two four-momenta,

I'(), q) fd'xd'ye '~ +71'(((', 2), (95)

p = X2 —Xg~.

The integral equations in momentum space for the isoscalar and isovector components are (i = s, e)

I'";(p, q)= y" +i ergo,
' g, (k)y, G(p —k)I"P(p -k)I'~" (p —0, q —k)G(q —k)y,

-4i6;„g„' g, (P —0) g, (q —k)(p+ q —2k) y,G(k)y„

where e, =-3 and ~, =+I.

8. N'ard Identity, Renormahzation,

and Subtraction

The Ward identity'o in momentum space is

(P-q)„I'i(P, q)=G '(P) -G '(q). (97)

also sat1sfy the Ward ldentlty 1f Hartree-Foe/
Green's functions are used on the right-hand side
of (97).

Taking the gradient of (97) with respect to P and
going to the limit P -q results in

It can be readily verified that both the isoscalar
and tsovector vertex functions which satisfy (96) I'"-(q q)=s" G '(q)
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Lehmann, Symanzik, and Zimmermann" have
shown that the unrenorma1. ized inverse Green's
function is of the form

the mass shell at zero momentum transfer must
equal y", which, together with (100), implies that
the renormalized and unrenormalized vertex func-
tions are related by

G i(q) = Z~ (rq+M)+ (yq+M)'6'(q) . (99)

r~i(q, q)
q2 =-M

(100)

However, the renormalized vertex functions on

Comparing the gradient of (99) evaluated on the

mass shell with (98) yields the following condition

which must be satisfied by the unrenormalized ver-
tex functions on the mass shell

rl. (~, q) =~.r,"(~, q). (lol)

In order that (100) be satisfied, we perform a
subtraction on the mass shell at zero momentum

transfer for both the isoscalar and isovector inte-
gral equations, and renormalize the resulting equa-
tions by multiplying by Z2.

This yields

rI'~(p~ q)=r" +ie,g, g, (k)y, G~(p —k)r;~(p —k, q —k)G„(q —k) —, , 'L

y2 I
P=q

( &=q t-4i6;,g, ' g, (P —k) g, (q —k)(P+ q —2k)" —~, , : y,G&(k)y„ (102)

where

g, =Z, g„and O~=S2 'C

are the renormalized coupling constant and nucleon Green's function.

The renormalized vertex functions are related to the charge and moment form factors by

(103)

r" (P q), .= +1((P-q)']y" ++2((f -q)'] o"'(f -.q)~/2M .-
In the limit of zero momentum transfer,

F'(o) =1

Fi (0) = pI = p, + p,, for i = s,
pp pn for 2' U

(104)

(105)

(106)

where p. and p., are the anomalous magnetic moments of the proton and neutron, respectively, measured

in nuclear Bohr magnetons.

C. Reduction of the Vertex Equations and the Magnetic Moments

It is clear from inspection (96) that the momentum transfer (p —q) is conserved in the integral equations.

Therefore, the integral equations for different values of the momentum transfer are not coupled.

In order to take advantage of the conservation momentum transfer, the change of variables P" —= —,'(p+ q)",
q" =——,(p —q)" is convenient. In terms of these new variables, the integral equations are

( q=o
rJ'(P, q)=yj'+ie;a. g.(k)r5 G(P+q k)r;~(P —k q)G(-P —q-k) —

2 2( r5
14

—Si6;„g„' g (P+q —k)g, (p- q-k)(P —k)" —, , r,G(k)r' (1o7)
I4

All of the quantities in (107) and hereafter are understood to be renormalized; and hence the subscript R
which appears in (102) has been dropped.

If the vertex functions on the mass shell are expanded in a momentum-transfer power series, the mag-

netic moments are given by the coefficients of the linear terms. In order to single out these linear terms,
we take the gradient of (107) with respect to Qe and let Q8-0. Defining

r,"'(P)=-sor,"(P, q), ,
ru (P)=ry(P, q=o),.



MESON DYNAMICS AND NUC LEAR MANY-BODY PROBLEM. . .

&l'(&) =z '1. 9 (p. &)-r I("G(&))&l(a)&(a)'&(a)&l'(&)&(&)—&(&P'l;(&)l'&(&)8r. . (lo

I'„- can be expressed in terms of the gradient of the inverse Green's function by using the Ward identity.
In terms of P and Q, the Ward identity is

2q, f',"(P,q)=G-'(P, q) G'-(P q).-
Taking the gradient with respect to Qs and letting Qs-0 results in

I',"~ (P) =8"G '(P).

(109)

Substituting this into (108) yields some simplification, and the inhomogeneous terms can be written in a
more symmetrical form by using the relations (8~G 'j G = -G '8" G and G 8"G ' = -(8"Gj G '. Thus, we have

I ~ (P) = xs g, ' 8,(P —k)y, [f e'G(k) jG-'(k)]8'G{k)j —] 8'G(k)}G-'(k)(8"G(k)j + G(k)r~'(k)G(k)]~, . (111)
pQ

A second gradient of the Ward identity implies that FI'8 is an antisymmetric tensor. That is, we have

28~rs(P, q)+28sol ~(P, q)+ 2q„8~o8sor j(P, q) =8p~8~8G-'(P+ q) —8~~8) G-'(P —q).

In the limit Q-O, this becomes

rP'(P)+ r,. '(P) =0.
The most general second-rank antisymmetric tensor which can be constructed from the two foUr vectors
P" and y" is

r '{P)=g,[q P' r'P ]-+g,o ',
where the g~'s are functions of the invariants p' and yp. Since (~p)'= -p', &p can occur only linearly

r"s(P) = [k,(P')+k, (P')yP][y" Ps —ysPq+(k, (P')+k, (P')yP] —.o"s.1
(112)

It is not difficult to show that invariance under
TCP and Hermiticity of the electromagnetic cur-
rent operator together imply that, in the Majorana
representation, I'"s(P) must satisfy the relation

[1 "'(P)e]'=y, l""'(P)W. .

Substituting (112) into (113) yields

k, (P') = -k, (P').

(113)

Therefore, the most general form of the gradient
of the vertex function consistent with TCP and
Hermiticity is

1.&'(P) = & k, (P') ~,"'(P),

where

fl &'(P) = &P[»P' &'P&],--
n~'(P) -=—.o~'=1

~.'( )=P»"' [~"-P-.' ~'P-" ] = "'"'P-»'I
g

Of course, the form (114) holds for both the iso-
scalar and isovector components. Since the inte-
gral equations for the two components of the gra, -

~ (,) j g, (t)dt

2 (+I —sE
(M+ffy )

(115)

where the spectral functions g,.(t) are real.
Substituting (114) and (115) into (111), and taking

the imaginary part, yields three coupled integral
equations for the spectral functions. We have

4

g (t) = P, (t)+ Z ds K'„(f, s)g, (s) i=2, 3, 4, (116a)j=2

where

(M+ m, ) ~t ~ ~,

dient of the vertex function are very similar, we

shall hereafter write equations only for the iso-
scalar component; the generalization to the iso-
vector component will be obvious.

Substituting (114) into {111)yields three coupled
integral equations for three scalar functions of the
single scalar variable O'. We now make the as-
sumption that these scalar functions k;(P') have no

singularities except for a branch cut beginning at
the lowest multiparticle strong-interaction thresh-
old, i.e., at the threshold for pion production.
Thus, we have,



BROWN, PUFF, AND FILETS

1
I,. (f) =-Imr,'. (-t),

3 2

Zl;(P') n~~(P) = ~
g, (P - h)y, [(s~ c(h)}c-'(h)(s'c(h)} (e-'c(h)}c '(h-)/s&c(h)}]y„

Jf4

(116b)

(116c)

(116d)

3 3g.'Z nI". (P) a~„(P",h)h, (h') = .' g, (P —h)y, c(h)1'~'(h)c(h)y, .
i j=2

'
k4

' ' g 14

%e now investigate the question of how to obtain the magnetic moment after solving the integral equa-
tions (116). Equation (114) evaluated on the mass shell is

I "8(P), = [h, (-M') —Mh, (-M')] —, o"8.

The most general form of the vertex function, without imposing Ward's identity, is'2

I'~(P, 0) = Ey~+-, E.o""0„+-.E,0" + , F [y(P-+ Q)y" -y"y(P —0)]+»,[y(P+ Q)o""0„-o""Q.y(P —0)]

+4EsyW" + F.[y(P+ Q)y" +y"y(P 0)]+—
,. FB[y(P+—0)&"'Q.+&"'Q.y(P —0)]+ , Eg P0"—.

+ F&oy(P+ Q)y" y(P —0)+, Ein'(P. + 0)&"'Q.y(P —@)+,Euy(P+ Q)y(P —0)0" (118)

where F;= E;(p', q', (p —q)') is usually expressed in the original momentum variables. Taking the gradient
of (118) with respect to Q8, letting Q8-0 and going to the mass shell results in

I'" (P)=sq~I'"(P, Q) o 0
= o"~[E,(-M', -M—., o) —E7( M, -M, o) —2M-EB(-M, -M, o)

+ MF„(-M', -M', 0) -M'E„(-m', -M', O)]

A Jh

= —g"8 —ET(-M, -M, 0)+ME,O( M, -M, 0)-

since the magnetic moment is given by

p,
= E(0) = 2M[E(-M', -M', 0) —2MF( M', -M', 0)+M-'F„(-M', -M', 0)].

Comparing (117) and (119), we see that

P, = M[h, (-M') -Mh, (-M')]+ 2M[F,(-M', -M', 0) Mi„( M', -M',-O)]. - (120)

In taking the gradient of the vertex function before going to the mass shell, we have obtained two terms in
(119)which do not contribute to the magnetic moment. Thus, to extra, ct the magnetic moment from the
functions k, and h4, we must calculate I7 and I,o on the mass shell at zero momentum transfer as shown
in (120).

I'&(P, Q) = 8"C '(P) = 2[A'(P')yP+B'(P )]P"
Q=o

since
(121)

I', and E„can be obtained from the %ard identity.
Taking the gradient of (109) with respect to Q& and

letting Q-0 yields

C '(P) =A(P')yP+B(P'),

A (p') = z, +fck

B(P ) = Z2MO —d«
T~(«)
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From (118), we see that left-band side of (121) can
be written

1 "(P, e), = F,(P', P', 0) -2+,(u', P', 0)P"

py equating (121) and (122), taking some traces,
and going to the mass shell, we obtain the desired
result

Equations (116), (115), (120), and (123) provide a
prescription for calculating the magnetic moments
of the nucleon.

D. Magnetic-Moment Results for m-Meson

Coupling

The spectral representations of the Green's func-
tion (59) and of the inverse Green's function (58)
were substituted into (116c) and (116e) and the k'
integrations performed using the standard Feyn-
man methods. The integral equations (116a) were
solved numerically by iteration on an IBM 7094
computer. The equations were first solved in the
"pole approximation, " for which only the pole
term in the Green's function was used. The equa-
tions were then solved again using the entire
Green's function (and entire inverse Green's func-
tion).

The fourth and fifth columns of Table II list the
magnetic moments both in the "pole approxima-
tion" and when using the complete Green's func-
tion. The close agreement between the predicted
isovector moment and the experimental value is
clearly somewhat fortuitious.

At this point, it is of interest to compare our re-
sults with the considerably simpler first-order
iteration of (102). This iteration is completely
equivalent to what is normally called first-order
perturbation theory' if only the pole contribution
of the Green's function is inct.uded. When the en-
tire spectral function A~(z) is included, the first
iteration does not satisfy the Ward identity. If,
however, the first iteration of (102) is linearized
in the spectral function, i.e, , if for terms which
are quadratic in the spectral function, we make
the replacement

A ~(~)A ~(a'') -A ~(~)5 (» —~ '),
the result satisfies the %'ard identity. Column 3
of Table II displays the first iteration results
which satisfy the Ward identity, and column 4 dis-
plays the results which do not. Column 2 repro-
duces the results given in Ref. 23.

The differences between the pole contributions
and the total contrlbutlons ale very close 1Q the
case of the exact solutions, columns 5 and 6, to
what they are for the first-order predictions
which do not satisfy the Ward identity. This is an
example of how, when working in a crude approxi-
mation, a solution which satisfies certain general
condltloQs such as the Ward ldentlty ls Plot Plec88-
sarify closer to the exact solution (which satisfies
these conditions) than is a solution which does not.

The poor agreement between the predictions of
(116) and experiment in the isoscalar case can be
partly understood as follows: Dispersion theory
and G-parity conservation imply that the lowest
mass process which contributes to the isovector
component of the magnetic moment is the one in
which two intermediate-state pions couple the nu-
cleon and photon; whereas for the isoscalar com-
ponent, the lowest mass process is the three-pion
intermediate state coupling the nucleon and photon.
In our theory, however, the three-pion intermedi-
ate state is not possible, and therefore the lowest

TABLE II. Comparison of theoretical predictions and experimental values of the isoscalar
and isovector components of the magnetic moment of the nucleon.

Experi-
mental

Pole
only

First iteration
Full A(I(.') .
Does not
satisfy

the Ward
identity

Full ~(~).
Satisfies
the Ward
identity

Pole
only F uA(~)

Magnetic moment in nuclear magnetons
Full solution to

integral equation

Pole
only Full a(~)

Full solution includ-
ing the (d meson

Isoscalar
~(p~+ p„)
Isovector

2 (pp —p~ )
2.16 2.34 2.25

—1.52

1.86 1.82 1.90
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mass process contributing to the isoscalar mag-
netic moment is the nucleon-antinucleon interme-
diate state. Since we do not take into account the
important three-pion intermediate state, it is per-
haps not surprising that our isoscalar prediction
is in poor agreement with experiment. Other peo-
ple, for example Drell and Pagels, "have found
that in order to obtain a reasonably small value
for the isoscalar magnetic moment, the nucleon-
antinucleon intermediate state must either be
greatly supressed or neglected entirely.

E. Inclusion of the u Meson

The + meson is easily included in the calculation
of electromagnetic properties for the nucleon. In
addition to the field equations (8), we must include
the equation describing the coupling of the ~ me-
sons to the nucleon current,

Substituting (114) and (115) into (126) and taking
the imaginary part yields three coupled integral
equations for the spectral functions g, (t) when the
~ mesons are included:

4

g, (t) =f,(t)+ Z dsK/(t, s)g, (s) i =2, 2, 4,
j=2

where
(127a)

I, (t) = I,.' (.t) + I,."(t)= —1m[i,.' (-t) + S,. {-t)],
(127b)

I',"s(P) = RHS of (111)

g '
f „Bracketed quantity

i (111)

(126)

D. '(x„x,)V" (x2) = -Z. Tt(xi)r" 4(xi)

where

D (x„x,) = ( -s', + m, ')6 (x, -x, ) .

(124)
QI ~(P')0{'s(P)

g
'

( )
„Bracketed quantity

i ~~
' in (116c)

(127c)

-(14~~~81). ,„,e
P

=i (14 (v (31') G(35)I'" (56; 2)G(64'),

where
(125)

The gauge invariant replacement p -p
does not affect (124), since the co meson is un-

charged. The contribution of the & meson to the
variation of the "potential" with respect to the elec-
tromagnetic field must therefore vanish

6(14~~~21)
W „(2)

The only contribution of the co meson to the inte-
gral equation for the vertex function is through the

term

)
Im H j,(-t, k)+H f( t, k)-

(127d)

+ QPs(P) HJ;(P', k)k (k')
i j =2 P4

2

D()(P —k)r G(k)I'"s(k)G(k)r, .

(127e)

I~ and HJ& a.re defined in (116c) and (116e).
Equations (127) were solved in the same manner

as were (116), as described in Sec. D. Columns 7
or 8 of Table II lists the magnetic moments both
in the pole approximation and when using the com-
plete Green's function. We note that inclusion of
(d mesons brings us no closer to the experimental
result.

(121~184).= g, 'rg"...&(xi -x,)(r„)g,q-

&&5(x, -x,)D,(x, -x,).

Since the &u is an isoscalar meson, (v) is diagonal
in isospin spa, ce, and therefore (125) contributes
equally to the isoscalar and isovector integral
equations.

The derivation of the integral equations for the
gradient of the vertex functions proceeds as before.
The result is

VII. ACKNOWLEDGMENTS

The authors are indebted to Professor D. G.
Boulware for extensive comments and suggestions
on all phases of this work. They are also grateful
for valuable discussions with Dr. M. Baker, Dr. L.
Brown, and Dr. J. Uretsky, and for assistance
with the numerical calculations by Mrs. Margaret
Connell and William Nutt.



MESON DVNAMrCS AND XUCZ, EAR MANV-BODV I ROBLEM. . . 349

~Work supported by the U. S.Atomic Energy Commission.
)Present address: Department of Physics and Astron-

omy, and Center for Theoretical Physics, University of
Maryland, College Park, Maryland.

'A review of the theory and a list of references can be
found in the article by B. D. Day, Hev. Mod. Phys. 39,
719 (1967); see also A. G. Petschek, Ann. Bev. Nucl. Sci.
14, 29 (1964), and Bef. 3 below.

See, for example, B. Bajaraman and H. A, Bethe,
Rev. Mod. Phys. 39, 745 (1967).

38. H. Brandow, Bev. Mod. Phys. 39, 771 (1967). This
paper also contains an excellent bibliography.

H. A. Bethe, in Proceedings of the International Con-
gress on Nuclear Physics, Paris, France, 1964, edited
by P. Gugenbeiger (Centre National de la Recherche Sci-
entifique, Paris, France, 1964), Vol. I, pp. 120-122;
G. E. Brown, A. M. Green, and W. J. Gerace, Nucl. Phys.
A115, 435 (1968).

5International Conference on the Nucleon-Nucleon Inter-
action, Bev. Mod. Phys. 39, 495 (1967).

6P. C. Martin and J, Schwinger, Phys. Bev. 115, 1342
(1959).

VB. D. Puff, Ann. Phys. (N.Y.) 13, 317 (1961).
SB. D. Puff, A. S. Beiner, and L. Wilets, Phys. Bev.

149, 778 (1966); and T. C. Foster, Phys. Hev. 149, 784
(i966).

E. Fiset, Ph. D. thesis, University of Washington,
1967 (unpublished}; Phys. Bev. C 2, 85 (1970).

~ C. B. Dover and B. H. Lemmer, Phys. Hev. 165, 1105
(1968}; C. B. Dover, Ann. Phys. (N.Y.) 50, 449 (1968);
Phys. Bev., to be published; see also E. Nyman, to be
published.

Fourier transforms are defined by the convention

d~p
f(~) =

4
e'~ f(P) = e' ~f(P),(2m)'

)"(p}= de e 'I'~f {x).

l26. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Leh-
mann, Nuovo Cimento ll, 342 (1954).

l This is to be contrasted to the approximate equations
obtained by D. S. Falk, Phys. Bev. 115, 1069 (1959).
Falk's approximation for the self-energy sums dia-
grams of nested meson lines. Our equations sum these
and all diagrams which do not contain crossed meson
lines.

l4P. J. Redmond, Phys. Rev. 112, 1404 (1958).
l5K. W. Ford, Phys. Bev. 105, 320 (1957).
~8P. A. M. Dirac, Proc. Boy. Soc. (London) A180, 1

(1942); E. C. G. Sudarshan, inProceedings of the +~r-
teenth Folkway Conference, Brussels, Belgilm, 2967
(John Wiley 5 Sons Inc. , New York), and references
quoted therein.

lvT. D. Lee and G. C. Wick, Nucl. Phys. 89,, 209 (1969).
l

¹ ¹ Bogolyubov, A. A. Logunov, and D. V. Shirkow,
Zh. Eksperim. i Theor. Fiz. 37, 805 (1959) I.transl. :
Soviet Phys. —JETP 10, 574 (1960)l.

~~The renormalizability of vector meson theories is
widely discussed in the literature. Two early references
are E. C. G. Stuckelberg, Helv. Phys. Acta ~ll 225
(1938); P. T. Mathews, Phys. Bev. 26, 1254 (1949).
More recent discussions are found in A. Salam, Phys.
Bev. 127, 331 (1962); Nucl. Phys. 18, 681 (1960); Nucl.
Phys. 21, 624 (1960) (with A. Komar); S. Kamefuchi,
Nucl. Phys. 18, 691 (1960); 23, 399 (1961) (with H. Umez-
awa); P. A. Ionides, Nucl. Phys. 28, 662 (1961};M. Velt-
man, Nucl. Phys. B7, 637 (1968); D. Boulware, Ann.
Ihys. (N.Y.) 56, 140 (1970).
20J. C. Ward, Phys. Bev. 78, 182 (1950).
'H. Lehmann, K. Symanzik, and W. Zimmermann, Nu-

ovo Cimento ~2 425 (1955).
22¹B. Lipshutz, Phys. Bev. 158 1491 (1967).
23B. Fried, Phys. Bev. 88, 1142 (1952).

S. D. Drell and H. B. Pagels, Phys. Bev, 140, 8397
(1965).

PHYSICAL BZVIZW C VOLUME 2, NUMBER 2 AUGUST 1970

Nuclear-Scattering Problem in the Generalized Hartree-Fock Approximation
Louis S. Celenza

Physics Department, Brooklyn College of the City Uni ersity of Nero Fork, Brooklyn, ¹ggYork 11210
(Received 18 February 1970)

The generalized Hartree-Fock approximation of Kerman and Klein is extended to include
continuum states of a collective nature. The equations for scattering in the random-phase
approximation ar e rederived.

I. INTRODUCTION

Theories of nuclear scattering which proceed
from an atomistic viewpoint have recently been
developed. "' These owe their derivations to the
techniques of nuclear many-body perturbation
theory. The equations of the random-phase approx-
imation (RPA) or quasiboson approximation also

have been employed in the context of the nuclear-
scattering problem. ' ' Furthermore, calculations
in the continuum using the RPA have been per-
formed, and the analytic properties of the predict-
ed 8 matrix ha.ve been examined. "The essential
feature of these methods is that a unified picture
is obtained which predicts both the bound and res-
onant states, and allows the calculation of an 9
matrix.


