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A previous derivation of an integral equation, which gives the complete off-energy-shell ¢
matrix for two-body scattering via local potentials with singular core interactions, is general-
ized to include the effects of tensor and Coulomb forces. The core interaction is described by
the boundary-condition model (specified energy-independent logarithmic derivative of the radi-
al wave function at the core radius). The formalism is now being applied to the calculation of
trinucleon bound-state and scattering parameters using the Faddeev formalism and realistic

nucleon-nucleon forces.
I. INTRODUCTION

In a previous analysis (referred to hereafter as
KTI)', we have derived and numerically studied an
explicit integral equation which gives the complete
off-shell ¢ matrix for two-body elastic scattering
via a local potential with a singular core interac-
tion. The boundary-condition model® (specified
energy-independent logarithmic derivative of the
radial wave function at the core radius) was used
to describe the core interaction. The hard-core
interaction is, of course, a special case of the
boundary-condition model (BCM).

For simplicity, we restricted the treatment in
KTI to the case of no coupling between states of
different orbital angular momentum (i.e., no ten-
sor coupling) and no long-range Coulomb forces.

In response to a number of inquiries concerning
our method, we generalize, in this paper, our pre-
vious results to the case of tensor and Coulomb
forces.

In Sec. II, we give a simple representation for
the BCM core interaction containing tensor contri-
butions, which facilitates the derivation of the inte-
gral equation for the off-shell ¢ matrix. In Sec. III,
we derive the integral equation for the off-shell ¢
matrix for the case of tensor forces inside and out-
side the core region. In Sec. IV, the effects of
long-range Coulomb forces are incorporated into
the integral equation for the off-shell ¢ matrix.
Section V contains a brief summary and discus-
sion. The formalism of this paper and KTI is now
being applied to the calculation of trinucleon bound-
state and scattering parameters using the Faddeev
formalism? and realistic nucleon-nucleon forces.*

II. REPRESENTATION OF THE TENSOR CORE
INTERACTION IN THE BCM

It will be convenient to work with two sets of
basis states in the center-of-mass system

oo

Irisij.) , 2.1)

Iplsij.) . (2.2)
The states (2.1) are simultaneous eigenstates of »
= |F|, where T is the relative displacement of the
two particles; (1)?= (¥ xp)?, where { is the relative
momentum of the two particles; (8)2= (8, +8,)?,
where §, and §, are the particle spin operators;
(3)?=(1+8)% andj,, with associated quantum num-
bers 7, 1(I+1), s(s+1), j(j+1), and j,, respec-
tively. We use natural units (7=c =1) and, for sim-
plicity, use the same symbol for an operator and
its corresponding quantum number. The states
(2.2) are simultaneous eigenstates of H,= (p)*/2y,
the free-particle kinetic energy, where p is the
reduced mass; (1) 8)% (J)% andj,. The phases
of the states (2.1) and (2.2) are chosen so that the
time-reversal operation T acts according to
TI' . -j’jz>= (")j+jz I -Js _jx>-

The closure relations for the states (2.1) and
(2.2) are

> f dr v*|rlsjj, )rlsij, | =1, (2.3)
1sjiz Y0

and
DY LPZdPIPlSJ'J'.XPlSﬁzl:l- (2.4)
Isiig

The transformation from one basis to the other is
given by
l’s''5L | plsij) =j,(p’r)6,,,63,35j,j615 - (2.9

Since we are mainly interested in applications to
nucleon systems, we will assume that (T)z, j., and
(8)? are conserved in two-body scattering and will
usually suppress the quantum-number labels j, j,,
and s.

Irlsjjz)—~rl), (2.6)
|plsjj )~ pl), 2.7
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(Tl'|Pl>=51';j(P7’), (2.8)
(sjj . fixed) .

Furthermore, we will restrict our attention to
scattering involving tensor-coupled states with s
=1, j#0, [=j+1, since we have already treated
scattering for the case of uncoupled partial-wave
states in KTL

In the following analysis, the states |rl,) and
|pl,) represent the fully designated states |rI=jzl
s=1jj,) and |pl=j+1s=1jj,), respectively. If the
nucleon-nucleon potential has the form

V(Fa 5; gl) gz) = Vc("’) + 4Vs (7)—51‘ §2

+ 4V, (r)[38,-#8,-7 -5, 8,]

+V, 1 8, (2.9)
then
Virl ) =vw) i)+ Vi), (2.10)
where

V)=V ) - 292y )4y () - (G+2)V,,0),

2% +1
(2.11)
v0)=Vel) - B v+ v, 00+ G- 0V,
(2.12)
and
(A 1 1/2
—VT(7)=6L]—(2]].—++1)]— Vilr). (2.13)

]

Vi(r)
A

Vo

ViR 8 (r=r)

FIG. 1. Local potential forms for V*, VT which give
the BCM in the limit described in the sentence contain-
ing (2.30)—(2.32).

The off-shell ¢ matrix is related to the state
|gpl), which satisfies the off-shell Lippmann-
Schwinger equation

lgpl) = Ipl>+m Vigpl) . (2.14)

Taking the scalar product of (2.14) with (I, | and using the closure relations (2.3) and (2.4), we find

o, kL )EL, |V | apl)

=j 2%
(7l1|qpl>_]1*(177’)5111 + - J; kdk (@ -7 /20

. o8 (e Rk, ()
=_71i5u*"J; dr'(r )Z;J; L L

[U*r) L, |kl + UT (')l |grty]

kz _q2
1 o
=j,i(k1f)t'>,,i - J; ar'Gir ) [U* ')l lqkl) + UT (r "Y' r'1* |grl)] , (2.15)
where
U=2uv, (2.16)
and
N2 (" KdR o
Gelrlr) == | g T el (). (2.17)
Since
a 1,2,+1) ,
<d7 - ;2 Glrlr')=-8(r —7"), (2.18)
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we have
& 1,(,+1) ,
(W +q ———%—— vl \apl) = (@ = p*Wj, (p7)6,,, + U (r)r(rl* |gpl) + U (ryr i, |qpl) . (2.19)
From (2.15) and (2.17), it follows that
li_{xg r{rl, |gpl)=0, (2.20)

As in KTI, we represent the BCM as an appropriate limit of the local potential given in Fig. 1. Repulsive
square barriers of strength V*, VT extend from particle separation »=0 to » =7, 6-function interactions
-Vis(r -v,), -Vid(r —»,) border the square repulsive barriers, and there are local potentials Vi), Vi)
for » >7,. Inthis section and in Sec. III, we assume that V*(r) and V7 (r) approach zero faster than 1/ as
¥ o,

Since we will eventually have U* (=2uV*) and UT (=2 VT) approach «, we may assume that
U, UTssq?,

pr, pr s, UEDUELED Ly 2.21)
72

An analysis similar to that in KTI then gives the following behavior for »{I|gpl’) in the interval
0 <¥ <75 =7, — € (e =infinitesimal positive number)

_|rtlaplo) vGrliapl o)) 2 otz sa rlius
[r<r|qp>]—[r<ﬂ_|qpl+> y(rl+lqpl+>]~(q i -p* - U i (p7)]

1 2 1ea1(r-ro) — 2! a,r=74) 1,2 _eczl(r—ro)+ o, (r=74)

+ gy g XX X1%X3 € X1 1( e ) ['ro(ro]qp)] , (222)

12 1X3 xéxg(eocl(r—ro) _ eaz(r—ro)) xgxi euz(r_,o) —xfxé eal("’o)

where
|- Ut
Lv]= [UT U*} ’ (2.23)
F-p*-U- Ut

l¢> -p*-Ul= [ ZT F-pP-Ut|’ (2.24)
. - ¥, (p7) 0 5 35
[7j (p7)] [ o vin (o) | - (2.25)

[... ]‘1 denotes matrix inverse and the x§ (4, §=1,2) and «,® are, respectively, the eigenvector components
and corresponding eigenvalues of the matrix [U].

x8 xi
Wl =a2| |, =1, 2; (2.26)
x5 X,

3
[ ] H =5, 5 2.2)
X2

det[U - a,2]=0 . (2.28)

The «; in (2.22) are to be considered as positive numbers, i.e., a,-=+x/§?. The explicit expressions for
the «; in terms of U* and UT will not be given here, since they are not necessary for obtaining our final re-
sult. The derivative of %i_ﬁr}l)f[r('r|q=p+ie,p)] =lr@r|pp)] at =72 =v,+0* is found by integrating (2.19) over the
&-function interactions at » =,
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X2x} = X3Xa - xax2(ay = ay) r
k2 B0 103 - U 4 22l 2l L[
i dg-xig 0 wd-dg
dr [1’<T|q—P,P>]|,3 - i (a, - a,) _ 2 —x o e [Vo<"o|q_PyP>] . (2.29)
- U TRRETAL U
The BCM corresponds to U*, UT, Ui, UT—~« with
xrQ,y — XaXo 1.
XXy Qy = XpX1 0y pp-n e Y
e e Uir,— finite constant ”e fiy, (2.30)
2,1 1
xxa—xxza_J,_’.. I
J-l—z-—Ll—lx}xg x] Ufr,— finite constant . S, (2.31)
1 —
00y~ ap) _ UTy,~ finite constant=— f7 . (2.32)

1
x}xg - %3%; Yo

Note that it U7, UT=0, x}~8,;, a,~VU, a,~ VU, f!~0, and fi,,~ »,(VU* =7,U}) in agreement with the
result for uncoupled states found in KTL

II. INTEGRAL EQUATION FOR THE OFF-SHELL : MATRIX IN THE CASE OF TENSOR FORCES

The integral equation (2.15), in the notation introduced in (2.22)-(2.25), becomes

brérlapd =i (o)) = [ ar'r’1G, ) [0l ' lap)] (3.1)
where U/2p is the total interaction and
N |G lr") 0 )
[G,rlr)]= [ 0 GMW)] (3.2)

[U] may be written as [Uycy]+ (U], where [], the “outside” potential, vanishes in the core region (0 <7
<7?), and [Uycy,] is the core interaction discussed in Sec. II. From (2.22)-(2.32), we find that

[Usen@®)]lrr|ap)]= —(a? = p?) i (p7) )0 (7, -7)+<7l Lrlo@r -»7) +d%6(r —75)[1])[%(7016112)] , (3.3)

where 0(r, —7) is the Heaviside unit function and

[f;'-, 7 } _
[f] - fj ::+1 (3.4)

In deriving (3.3), we have used the fact that

-a( -
(126 r=74)

—-ozﬁ(r—ro')+a% 5(r -7y) (3.5)

for » <7, and « very large.
Substituting (3.3) into (3.1) and setting » =»,, we may solve formally for [roolap)]. After substituting the
expression for [7{,|qp)] into (3.1), we obtain

brtrlap= 7o)+ @ -89 [ “ar (G, bl (o) - [ 16 b L0 o)l ] 6.6)
where

[7 (p7)]=rj(p7)] —Ll G, (r|ro)f 'Zz% G, (rlr") ) ]—1[1’01' (pr)l,

0

1 d ,
} |:1+1’—0 Gq(rolro)f—a—, G, rolr’)

ri=r

3.7
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and
(6= (6, b)) = | 2 Gtrlryr = 2 e ] (14 Gutrabras = 355 G RO
(3.8)
The off-shell ¢t-matrix operator #(q) satisfies the integral equation
Ha)= -0+ U g ) (3.9)
and has matrix elements given by
, _ @ @112 <p'l+lt(q)|pl_>}
L i@} [<z>'z-|t(q)|pz+> BN P
=l 1Vla)=- | [’ ller Vg ar
--f “arlri (o0 i lap)] (3.10)
where
, _|<pri-|Ulgpl)  (p'l.|Ulapl.)
K’ 1lap)] [(p'l-lUlqpm <p'l+|Ulqpl+>} ’ (31D

with similar identifications for [(»|U|gp)] and [(p’[r)]. On the energy shell [g— g (real and positive) + e, €
- 0+’ p'=p:q],
ql(p'=qlt(g+ie€)|p=)]= (1/2d)[S - 1], (3.12)

where [S] is a two-by-two unitary and symmetric matrix in the case of the usual strong-interaction symme-
tries.
Use of the decomposition U= Uyqy + U, and (3.3) in (3.10) yields

(e le@p)]= = [ “arlri ()1 {(6* - 0o =)l (4] (. LBt =7 80 =rlrotrofap])}

- f “arlri p O i 1ap)] - (3.13)

After inserting the previously determined expression for [»,(,|gp)] into (3.13), we have

(o' 1t@) [p)]= [p" Itsem@ | )]+ Ko’ IE (@ p)] (3.14)
where t,.,,(q) is the “pure” BCM result (for U=0).

[(pltsem(@) |P2]= (¢ —pz)fr(’ arlvj (pIlri (pr)] ~{lrej (7)) = 7] (b7 ) G (rolr o) M roi(pr)],  (3.15)

with
-1

| leron,

(o)1= 0 ()] = (Irai (67 - L1 = 325 ')

1 d
N > l:l + ;’—0- Gq(’rﬁI?’o)f—dy—, Gq(’rolw)

and £ (q) is the contribution to #(g) coming from the “outside” interaction V. @10
(o @|p)= = arlrf (oD lirrlap) (3.17)
Use of (2.17) and (3.60) in (3.17) gives an integral equation for [{p’|f(q)|p)].
Ko @)1= (70 @p)] -2 [ "2 @ k1 @) )] 3.18)
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where

el @I )= | arloF (o 003 ()] + a2 =) [ ar 16,6 b (e} (3.19)
and

[p'|0a(0) | 9] = —fdv[ﬁ(ﬂ)l[ﬁ(ﬂ][ﬁ(pr)] : (3.20)

For the case f7=0, [(p’|t(g)|p)] becomes a diagonal matrix whose elements {p'l, |t(q)|pl,) are given in
KTI.

In the hard-core limit of the BCM, [f]— =, we have

[p ltsem(@) D21~ [P |tuc(@) | p2]= (¢* = p?) f; Todr{[m' (P )] = roj (P v LG o lr )7 (G (o |7) I} 7 (p7)]

= [roi (b )G, rolro)]  roi (b7 )], (3.21)

Kp'|U(9) | p)]~ -f wd?’{[rj (0] = [rod ("7 1IC o lr )| MG 7o ) TH UG)]

{[1j (p7)] = [G 0 r JIG o lr )] i (7 )]} (3.22)

and

o' |U(@) | p)]= - f wdr{[rj(p'r)] = [0 (p7) G o lr )] G 7o V) I LU@) Nl (p7)] . (3.23)

IV. MODIFICATIONS OF THE INTEGRAL EQUATION FOR THE OFF-SHELL ¢ MATRIX,
DUE TO LONG-RANGE COULOMB FORCES

The analysis of the previous sections of this paper and of KTI must be modified if the interaction V has a
long-range Coulomb contribution. In order to avoid the complications arising from the infinite range of an
unscreened Coulomb force,® we make the assumption (which is usually physically justified) that for particle
separations » >R (where R >>>range of the nuclear force) the Coulomb force is totally screened.®™®

Specifically, we assume that

V=V, +V., (4.1)
where V. is a repulsive screened Coulomb interaction with

Vo(0<r <R)=Z,Z,e*/v (e=electron charge),
(4.2)
Vclr>R)=0,

and V, is a short-range nuclear interaction with a singular core behavior described by the BCM.

Let |plsjj,)% be a simultaneous eigenstate of Hy (=p?/2u+ V), (1%, ()%, (§)? andj, with associated
eigenvalues p?/2y, 1(I+1), s(s+1), j(j+1), andj,, respectively. The = superscript denotes the outgoing-
(incoming-) wave asymptotic character of the state in coordinate space. The transformation matrix be-
tween these states and the states |rlsjj,) is

c —
@'s'i') |pLsij 6= 011051851055 €™V ) Foyln, pr)/pr

n=uZ,Ze*/p , 4.3)
where
Fy @, pr)/pr=cosy{(p)i,(pr) —siny{(p)n,(pr) for >R, “.4)

F,(n,pr)= NS (p) F,(n, pr) for 0<7 <R, (4.5)
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;g: nFym, pr)| _ _}c}_ = ad—ln[cosvf(p)j,(pr) -simy{(p)my(P))| (4.6)
=R 4 r=R
and
N{Fin,pR)/pR = cosy{(p)j;(pR) - siny{(p)n,(pR) . .7
F,(n, p) is the regular Coulomb radial wave function® which satisfies the equations
<Eijz+1_l(;+1)_?£> Fyn,p)=0, (4.8)
F,0,p)=0, (4.9)
F,n,p)~sin[p - 3lm=n1n2p+0,Mm)], p>>[10+1)+n2]2 (4.10)
with
0,()=argl(+1+in). (4.11)
If (pR)?>>>1(I+1)+n2(p), it is easily seen that
yi(p)=0,0) =1 In2pR + Ot /2pR) , (4.12)
N7 (p)=1+0(/2pR) . (4.13)
The closure relation for the states |plsjj,)? is
2 [ aplprsiog s, =1 (4.14)

isji,

The use of a screened Coulomb potential allows us to employ the usual relations of formal scattering the-
ory. The off-shell Lippmann-Schwinger equation, with V given by (4.1), is

9= 190+ g Va* VOlap)

1
q°/2p+ He

where |gp)., the off-shell “pure” Coulomb scattering state, satisfies the equation

=|gp)c+ Volap) , (4.15)

lgp)c=1p>+ m Velap)e
=|p)+ 212—/2;11——12 Velp) - (4.16)

The quantum-number labels [sjj, are omitted in (4.15), (4.16), and will be omitted hereafter.
The off-shell Coulomb ¢ matrix {p’|t.(q)|p) is given by

(p'|t(@) | py=—(p"|Uclap)c

=={g*p'|Uc|p) , 4.17)
where g* is the complex conjugate of gq.
Note that
lim [g=p +i€, p)c= |P)¢ » (4.18)
€0

=(p'|Uc|p)e= lim (p’|tc(g=p +i€)| p)
€0

=(p'ltc(D) D) » (4.19)
~op’Uclp)= lim (p’ltclg=p’ +ie)|p)

=p'ltc(p))|D) (4.20)
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| Do

and
=KplUclp)Y==p|Us|p) & =<pltc(p) D)
iy (D) gim, €
_e' V" Psim(p)
= s 4.21
» (4.21)
where |p)% and y©(p) are given by (4.3)-(4.11). In order to obtain the general off-shell Coulomb state |gp),
we subtract the Lippmann-Schwinger equation for |p)¢,
. 1
D)e=1p)+ lim o e, Vel?) (4.22)

from (4.15) and insert the closure sum (4.14) over incoming-wave states in front of V.

e tim 2 [ sl - L
lq‘b>c_|p>c+elle+1r . kdk|k) ¢ c<k|Vc|P><qz/2“_kz/2“ p2/2u+ie—k2/2u>

IR Y L 1t
=1+ tim 2 [ Teaning Gleop (7 - ree) - (4.23)

After taking the scalar product of (4.15) with the states ¢| and using the closure relations (2.3) and (4.14),
we find

[r@riap)]= [r@rigp)c] +J-D mdr'% _ro m;l-zk,:—f/%—u rr' [ Rl ER PV, )]0 lap)]
=r@rlap)c] —fo “ar (G, o) o lap)) (4.24)
where
GS~(rlr’) 0
[cf(r|r')]=[ ] , (4.25)
0 GS*(rlr”)

with

GC 4 ) =% mkzd_qu Fy,n, k)F, (o, ') (4.26)
for », »'(R and R large enough to make N°(p) in (4.5) very nearly unity. For g— g(real and positive)+i0",

GSHrlr) = (V/QHY) v, @) Fy @0, q7) (4.27)

H{“(@, p) is given by
HV 0, p)=G,m,p) +iF,@n,p) ,

where G,@, p) is the irregular Coulomb radial wave function, which satisfies (4.8) and behaves asymptoti-
cally as

Gy, p)

— 2)]llzcos[p--171n2p—%l1r+0,(n)] . (4.28)
p>>[1(+1+1n

For nonphysical values of g, we must use the more general expression

GS i |r') =22 (qr,) * X (qr ) * e - r(l+lfi2i?%1;)(l|}-zl -in) ei">ei"<1F1(l+ 1+in; 20 +2; —2iqr.)

X2iW, (1 +1+in; 21 +2; -2igv,), =1, , (4.29)

where , F, and W, are defined, e.g., in the book by Mott and Massey.
Using the first form of (4.15), it is easy to see that
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(rr-veo)[s 3)-5[%" oy lreian-@ om0, 0ol
B (4.30)

lim [r(r|gp)]=0 .

If we express U, as U, yop* U,, an analysis similar to that of Sec. II and III leads to (3.3) with Ugcn TE-
placed by U, gcy, and to (3.6)—(3.8) with I replaced by U,, [rj(pr)] replaced by

T ol=brtrlap) 1= GErbror - 525 65| | 5 st -5 et e,

(4.31)

and [G (r|r")] replaced by [GE(r|r")].
We now use (4.15) to decompose the off-shell {-matrix element into “nuclear” and “Coulomb” parts.

[p' [t@) | p))= =[{p'|U+ U, |gp)]
= =[ La*p'|U, lap)] = [ La*p’|Uc|p)]
:‘[c<q*P'|Un |@>]"[<P'|Uc|qp>c] . (4.32)

The last term in (4.32) is the off-shell Coulomb scattering amplitude, which may be evaluated by using
(4.23).

[0 hela) 9= =140 Uelap)c] = =[(p 0 poc] ~tim, 2 [ warl o |21kl (s - o)
=1 lteP) |+ 1im 2 [ ka2 el 0] (s — )

=[p'ltc (D) D)1+ [{pltc(p) P *]{p Itc(p)lp>]+% fo wkzdkKkltc(k) [p")*1[¢elt (k) |p)]

1 1
X(qz_kz —P‘bz——kz> . (4.33)

The P in (4.33) denotes that the principal value of the integral is to be calculated. An analysis similar to
that of Sec. III gives
-[&a*p’ 10, lapy]= -[ &a* U, som* 7,1ap)
=[" 1t @15)]= [P Itn @ | 2]+ [ | £, (@) | D] . (4.34)
[Kp't, scm(@) )], the “pure” BCM contribution, is given by

(o't sem(@ D))= (¢ - 1) fo 0[7 La*p Wi (7)) ~ Ao Sa*p” ] - o Sa*p 171} [GSwolr )] rorolap)e] s

(4.35)
where
T\ d
[r La*p’lr)=lr c(q*p’|7’>]~<[r Aq*P’Iro)][f]—Ep[r’aq*p’lr’)] . >
C f d (o] B c
X [1+Gq (’I’olyo),}— = GElrylr") . _] [GEtroIn] (4.36)

0
and [(p’|{,(q)|p)], the contribution due to V, is given by

(o' Via) )= = [ arly & TG, )l rlap)] (&.37)
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In calculating [{p’|%,(q)|p)], we first determine the auxiliary amplitude

(o' 1@ 91= - [ arlr dav=p=i0", p TN G, rlap)]

0

which satisfies the integral equation (3.18) with

[p' U@ | p)]= —f wdr[r X TG, )r ol apdel + (& —pZ)L Odr’[@q orlr)]lripr)],

where

[rérlapycl=lrérapy ] - [Gf(r Iro){—o - di, GSr|r')

and [r (}(p’=|'r)] is given by (4.36) with [» X(p’ )] replacing [r Lg*p’|»)], and

(p'10@) 0= - [ “arlr 6T HIT, e i3]

_ }[ucgmm)yﬁ -L Gt lr)

(4.38)

(4.39)

-1
ar' e, J [7'o<7’o|qp>c] ,
o

(4.40)

(4.41)

[{p’|t,(q)|p)] may then be determined from [{(p’|,(q)|p)] by using (4.23) and (4.38).

(817, 19))= (0|, @131+ 1im 2 [ el @] 1ol iy @1 9) (2

V. SUMMARY AND DISCUSSION

We have extended the analysis of KTI to the case
of tensor and Coulomb forces. The treatment of
the case of tensor forces (without long-range Cou-
lomb effects) in Secs. II and III is a straightfor-
ward generalization of the treatment of uncoupled
states in KTI.

On the other hand, the inclusion of long-range
Coulomb forces in the analysis leads to major
practical complications, even though we use a
screened Coulomb force which allows the use of
the ordinary formal theory of scattering. There
does not appear to be a simple integral equation

1
T k2> : (4.42)

r

which gives the complete off-shell scattering am-
plitude in terms of the off-shell Coulomb scatter-
ing amplitude and eigenstates. One must first de-
termine the auxiliary amplitude {p’|,(¢)|p) and
then evaluate the complete off-shell / matrix by a
one-dimensional quadrature. This procedure must
also be used in the case of nonsingular core inter-
actions.

In view of the complications resulting from the
decomposition of the off-shell amplitude into a
“pure” Coulomb and a “nuclear” part, it may well
be more convenient to simply include the screened
Coulomb potential in ¥ and to use the formalism
of Sec. IIL."
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