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A previous derivation of an integral equation, which gives the complete off-energy-shell t
matrix for two-body scattering via local potentials with singular core interactions, is general-
ized to include the effects of tensor and Coulomb forces. The core interaction is described by
the boundary-condition model (specified energy-independent logarithmic derivative of the radi-
al wave function at the core radius). The formalism is now being applied to the calculation of
trinucleon bound-state and scattering parameters using the Faddeev formalism and realistic
nucleon-nucleon forces.

I. INTRODUCTION Irf sjj,&, (2.1)

In a previous analysis (referred to hereafter as
KTI)', we have derived and numerically studied an
explicit integral equation which gives the complete
off-shell t matrix for two-body elastic scattering
via a local potential with a singular core interac-
tion. The boundary-condition model' (specified
energy-independent logarithmic derivative of the
radial wave function at the core radius) was used
to describe the core interaction. The hard-core
interaction is, of course, a special case of the
boundary-condition model (BCM).

For simplicity, we restricted the treatment in
KTI to the case of no coupling between states of
different orbital angular momentum (i.e., no ten-
sor coupling) and no long-range Coulomb forces.
In response to a number of inquiries concerning
our method, we generalize, in this paper, our pre-
vious results to the case of tensor and Coulomb
forces.

In Sec. II, we give a simple representation for
the BCM core interaction containing tensor contri-
butions, which facilitates the derivation of the inte-
gral equation for the off-shell t matrix. In Sec. III,
we derive the integral equation for the off-shell t
matrix for the case of tensor forces inside and out-
side the core region. In Sec. IV, the effects of
long-range Coulomb forces are incorporated into
the integral equation for the off-shell t matrix.
Section V contains a brief summary and discus-
sion. The formalism of this paper and KTI is now

being applied to the calculation of trinucleon bound-
state and scattering parameters using the Faddeev
formalism' and realistic nucleon-nucleon forces.

II. REPRESENTATION OF THE TENSOR CORE
INTERACTION IN THE BCM

and

Jl dr r' Irlsjj, &(rlsjj, I

= 1,
Ising

(2 2)

p'dp Iplsjj, &(plsjj, I

= 1.
Isj jg

(2.4)

The transformation from one basis to the other is
given by

(rl'sj'j',' Iplsjj, & =j,(pr)5...5...5,,5, , , (2.5)

Since we are mainly interested in applications to
nucleon systems, we will assume that (j)', j„and
(s)' are conserved in two-body scattering and will
usually suppress the quantum-number labels j, j„
and s.

Ipfsjj, & . (2.2)

The states (2.1) are simultaneous eigenstates of r
= Irl, where r is the relative displacement of the
two particles; (1)' = (r xp)', where p is the relative
momentum of the two particles; (s)'= (s, + s,)',
where s, and s, are the particle spin operators;
(j}'=(1+s)', and j„with associated quantum num-
bers r, l(l+1), s(s+1), j(j+1), and j„respec-
tively. We use natural units (a=c = 1) and, for sim-
plicity, use the same symbol for an operator and
its corresponding quantum number. The states
(2.2) are simultaneous eigenstates of H, = (p)'/2p,
the free-particle kinetic energy, where p. is the
reduced mass; (1)'; (s)'; (i)2; andj, . The phases
of the states (2.1) and (2.2} are chosen so that the
time-reversal operation T acts according to
Tl. . .j,j.&=(-)" *I.. .j, -f.&.

The closure relations for the states (2.1) and

(2.2) are

It will be convenient to work with two sets of
basis states in the center-of-mass system

Irl sjj,& I«&

I p«jj, &-
I po

(2.s)

(2.7)
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(«'I pi& = &, ,j(pr),

(sjj, fixed) .

(2.8) V (r)

Furthermore, we will restrict our attention to
scattering involving tensor-coupled states with s
=1, jto, l=j +1, since we have already treated
scattering for the case of uncoupled partial-wave
states in KTI.

In the following analysis, the states lrl, & and

lpl, ) represent the fully designated states lrl=j+1
s=1jj,) and

l p l=j+I s=1jj,), respectively. If the
nucleon-nucleon potential has the form

Vo

V(r, p, s „s,) = V (r)+ 4V, (r)s, s,
+ 4V« (r) [3s, t s, f' -s, s,]
+ V„(r)1 s,

then

Vlrl, ) = V'(r) lrl, )+ Vr(r) lrl, ),
where

(2.8)

(2.10)

f'p

V'(r) = Vo(r) — . Vr(r)+ U, (r) —(j+2)V„(r),2(j+2)

(2.11)

V (r) = Vo(r) — . Vz(r)+ V, (r)+ (j —1)V„(r),2(j —I)
2/+1

(2.12)

FIG. 1. Local potential forms for V, V which give
the BCM in the limit described in the sentence contain-
ing (2.30)-(2.32).

The off-shell t matrix is related to the state
lqp», which satisfies the off-shell Lippmann-
Schwinger equation

(2.13)

lqp» =
I
pl)+

(
. , „Ulqp» (2.14)

Taking the scalar product of (2. 14) with (rl, l
and using the closure relations (2.3) and (2.4), we find

(rl, lkl, &(kl, !U!qp»
(rl, lqP»=j, (Pr)5» + — k'dk

7t +0

""k'dkj, (kr)j, (kr')
=j, 5„— dr'(r')' ', , ' [—U'(r')(r'l, lqkl&+ U (r')(r'l lqkl)]

&0 0

where

U=2p, V,

00

=j, (kr)5» —— dr'G'(rlr')[U'(r')r'(r'l, lqkl)+ Ur(r')r'(r'l' lqkl)],
0

(2.15)

(2.16)

G,'(rlr')= —,, rr'j, (kr)j, (kr').2

m, k —q

Since

(2.17}
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we have

(2.19)

From (2.15) and (2.17), it follows that

lim r{rf, ~qpl) =0, (2.20)

As in KTI, we represent the BCM as an appropriate limit of the local potential given in Fig. 1. Repulsive
square barriers of strength U', U~ extend from particle separation x=0 to r=r„5-function interactions
-V,'5(r —r, ), -Vr5(r -ro) border the square repulsive barriers, and there are local potentials V'(r), Vr(r)
for r &r,. In this section and in Sec. III, we assume that V'(r) and Vr(r) approach zero faster than I/r as

OQ

Since we will eventually have U' (= 2p. V+) and U (= 2p. V ) approach ~, we may assume that

O' U q'

(2.21)

An analysis similar to that in KTI then gives the following behavior for r(rl ~qpl') in the interval
0 &r &r, =r, —e (c = infinitesimal positive number)

x2xl e~l(r-ro) x2xl a2(r-ro)
+ 1.& 2 1x1~2 xi+2 1 2 ~g(F-t ) &2(&-&o))

X2X2je ' o —e 2

1 2
(

CXg(r ro) + -n2(r-&0))

[ .{,Ie»],
2 1 a2(r-ro) X2Xl eel(r-ro)
2 1 1 2

(2.22)

where

[U]= U, (2.23)

2 2 U
2 P2 U+ (2.24)

0

rj, (pr)
(2.25)

[. . . ] denotes matrix inverse and the x,'. (i, j = I, 2) and n, 'are, resp. ectively, the eigenvector components
and corresponding eigenvalues of the matrix [U].

Xl

X2

(2.26)

Xl
[x*„x,*]

X2

(2.27)

det[U —n, ']=0 . . {2.28)

The o; in {2.22) are to be considered as positive numbers, i.e., a,. =+@'n, The explicit expressions for
the n,. in terms of U' and U will not be given here, since they are not necessary for obtaining our final re-
sult. The derivative of lim [r{r~q=p+ie, p)]= [r(r ~pp)] at r= ra =r, +0+ is found by integrating (2. 19) over the
5-function interactions at r = r, .
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d-
d—,'[r(rlq= p, p) Jl„, =

2 1 1 2
X2X1+1 X2X1 ™M2

lx2 2 2 1 0
1 2 1 2

x,'x,'(n, —n, )
x'x' —x'x'

1 2 2 1

1 2x2x2(n1 n2) UT
I 2 1 2

r. r. lq=p, p J .
1 2 2 2 I 1 U+

1 2 1 2

(2.29)

The BCM corresponds to U', U, U,', U, -~ with

+2X1+1 X2+1+2 — ~ 1
x'x' —x'x' —U r —finite constant =—f'.0 j-1

1 2 1 2 0
(2.30)

' —U,'xp- finite constant = —f',.„,
X1 2 1X2 fp

(2.31)

x2x2 (n1 n2) T
U1 Yp finite constant = —f'1

X1X2 p

(2.32)

Note that if UT, UT-O, xj-5... n, ~U', n, ~U, f'-0, and f »2- r(&Ud —r, U,') in agreement with the

result for uncoupled states found in KTI.

III. INTEGRAL EQUATION FOR THE OFF-SHELL t MATRIX IN THE CASE OF TENSOR FORCES

The integral equation (2.15), in the notation introduced in (2.22)-(2.25), becomes

I & ldd&)=I j&d )I Jd ' -'&G, & I
'))&d& ')ll '& ')ldd&I,

0

where U/2p. is the total interaction and

(3.1)

0
G;(r lr')

(3 2)

(3 3)

where 8 (r, —r) is the Heaviside unit function and

[U] may be written as [U2cM]+ [U], where [U], the "outside" potential, vanishes in the core region (0&r
&r, ), and [U2cM] is the core interaction discussed in Sec. II. From (2.22) —(2.32), we find that

&&.. & ))l & ldd&)=-&d'-d)& j&d )Id& .— ) ~ —
&did& — .) ~ —

&&&
— .)&)1)«. .)le»),

0

fj-1 f'
If]= fj fj (3.4)

In deriving (3.3), we have used the fact that

n'e " "' —n5(r-r )+—6(r-r )d~ 0 (3 5)

for r &~0 and n very large.
Substituting (3.3) into (3.1) and setting r =r„we may solve formally for [r,(r, lqp}]. After substituting the

expression for [r,(r, lqp)] into (3.1), we obtain

~rp &20

[r(rlqp)]= [rj (pr)]+ (q' p') dr'[G, (rlr-')][rj'(pr')] —
l dr'[G, (rlr')][U(r')][r'(r'lqp)],

0 ~r
0

where

(3.6)

11+—G, (r, lr, )f —,G, (r, lr')
d

rp
r'-r-—

0

-1
[r,j (pr, )J,

(3.7)



2122 Y. E. KIM AND A. TU BIS

and

[G,(rlr')]= [G,(rlr')) — —G,(rl~,)f — „G,(rlr") 1 —G,(r, )r,)f — „G,(r, lr")1 d v 1 d

The off-shell t-matrix operator t(q) satisfies the integral equation

t(q) = —U+ U . 2 t(q),
1

g 2pÃ0

and has matrix elements given by

7"=r0-
[G,(~, l~')] .

(3.8)

(3.9)

[&p, l, (q)lp&)
&P't lt(q)lpt & &P't, lt(q)IPt &

(t 't lt(q) IPt, ) (P't, lt(q)lpl, &

= -[(p'IUlqp&) = — [&p'lr&][&r IUle»]~'«
0

dr[rj ( p'r)][ U(r)][r(r Iqp&],
0

where

(3.10)

(3.11}&P't IUlqpt & &P't+IUlqpt &

with similar identifications for [(rlUlqp&] and [(p'Ir&]. On the energy shell [q- q (real and positive)+is, e

-o', p'=p=q],

q[(p'=q lt(q+ ie)
I
p=q)] = (1/2t) [S —1], (3.12)

where [S] is a two-by-two unitary and symmetric matrix in the case of the usual strong-interaction symme-
tries.

Use of the decomposition U= UBcM+ U, and (3.3) in (3.10) yields

[(p'It(q) Ip)] = — dk[rj (p'r)] (p' —q')0(r, —r)[rj (pr}]+ —[f]6(r —ro) +—6(r —r, )[r,(r, lqp&])
1 d

0 0

dr rj p'r Ur' r r qp
Yp

After inserting the previously determined expression for [r,(r, lqp)] into (3.13), we have

[&P'lt(q) Ip)1= [&P'lt„(q) Ip&]+[(P'lt (q) IP&],

where t~cM(q) is the "pure" BCM result (for U=0).

(3.13)

(3.14)

r

[(p'lt~cM(q) Ip&] = (q' -p')
J

dr(rj(p'r)) frj (pr)] —)[r,j(p'r, )] —[r,j(p'r, )]j[G,(r, lr, )] '[rj (pr, )], (3.15)
0

with

[rj (p'r)) = [rj (p'r)] —([r,j(p'r, )] [f]——
, [rj'(p'r')] 1+ — G(r, lr, )f-, G, (r, lr')1 d. . . 1 d

0 r '=r — 00

and t (q) is the contribution to t(q) coming from the "outside" interaction V.

&&»' IF~e&l&~»&=&J»r& t&»' &&-«& )If & ls»&.
tp

Use of (2.17) and (3.6) in (3.17) gives an integral equation for [(p'It (q) Ip)].

&&» IF&a&l»&&=&&» I«e&I»&& I » &&» IU&e&l»&&&&&I«s&l»&&

r'=r
0

(3.16)

(3.17)

(3.18)



OFF -ENERGY-SHELL T MATRIX FOR LOCAL POTENTIALS. . . 2123

where

~ (&0 ro
[(p'~U, (q) ~ p)] = — dr[rj(p'r)][U(r)]{[rj(pr))+ (q' -p')

~

dr'[G, (r ~r')][r'j(pr')]),
0 0

and

(3.19)

[(P '
~U, (q) ~P)] = — dr[rj (P'r)][U(r)][rj (Pr)] .

o

(3.20)

For the case f'=0, [(p'(t(q) )p)] becomes a diagonal matrix whose elements (p'I, (t(q) ~pl, ) are given in
KTI.

In the hard-core limit of the BCM, [f]-~, we have

((('It~ ts)l &])-(( I) (te')lp&I=(s* )f)-d (()()' )I —i.)()' .)I(G (.I~)I 'IG (.I~)D(jt) )I
0

—[r,j (P'r, )][G,(r, ~r,)] '[r,j(Pr,)], (3.21)

[(p')U, (q) [p)]- -J dr{[rj (p'r)] —[r,j(p'r, )][G,(r, )r,)] '[G,(r, )r)]) [U(r)]
ro

&&{[rj(pr)]—[G,(r(r, )][G,(r, ~ro)] '[r,j(pr, )D, (3.22)

[(p'(U, (q)(p)]= —
Jr dr{[rj(p'r)] —[r,j(p'r, )][G,(r, )r,)] '[G,(r, (r)]][U(r)][rj(pr)] .

ro

IV. MODIFICATIONS OF THE INTEGRAL EQUATION FOR THE OFF-SHELL t MATRIX,
DUE TO LONG-RANGE COULOMB FORCES

(3.23)

The analysis of the previous sections of this paper and of KTI must be modified if the interaction V has a
long-range Coulomb contribution. In order to avoid the complications arising from the infinite range of an
unscreened Coulomb force, ' we make the assumption (which is usually physically justified) that for particle
separations r &R (where R»&range of the nuclear force} the Coulomb force is totally screened

Specifically, we assume that

V=V. +Vc

where V~ is a repulsive screened Coulomb interaction with

Vc(0 &r &R) = Z,Z,e'/r (e = electron charge),

V, (r&R)=0,

(4.1)

(4.2)

and 7„ is a short-range nuclear interaction with a singular core behavior described by the BCM.
Let ~plsjj, )c' be a simultaneous eigenstate of Hc (=—p'/2p. + Vc), (I)', (s)2, (j)', and j, with associated

eigenvalues p /2p, l(l+I}, s(s+1), j(j+1},and j„respectively. The s superscript denotes the outgoing-
(incoming-} wave asymptotic character of the state in coordinate space. The tra, nsformation matrix be-
tween these states and the states )rtsjj, ) is

C
(rl's'j'j, ' ~Plsjj, )c= 5...t&. .J&, ,,t&~, , e"&) (~) F, (q, Pr)/Pr,

)7
= t(Z, Z,e'/p, (4.3)

where

F, (q, pr)/pr = cosyc)(p)j, (pr) —sinyc)(p)n, (pr) for r &R,

E, ()l, pr)=N, (p)F, ( t, pr7) for 0&r &R,

(4.4)

(4 5)
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d—InF, (q, pr) ——= —In[cosyc(p)j, (pr) —sinyci(p)n, (p)]
1-d {4.6)

and

N( F, (q, pR)/pR = cosyci(p)j, (PR) —siny, (p)n, (pR) .

F, (q, p} is the regular Coulomb radial wave function which satisfies the equations

d' I (I + 1) 2q+1-
dp2 p2 p

$ 7F(q p)=0

F, (q, p) =0,
F~(q p) -sin[p,'lx q ln2p+oi (q)] p )) [l(I+ 1)+q~]~i~

with

o, (q) =argr(I+1+i') .

If (PR)'»I(I+1)+q'(p), it is easily seen that

y, (p}= a', (q) q ln2—pR + 0(q/2PR),

M(p) = 1+ O(q/2PR) .

The closure relation for the states lplsjj, &c' is

2 oo

P'dP
I pfsii. &c c&p«ii. I

= 1 .
lsjj O8

(4 7)

(4.6)

(4.9)

(4.10)

(4.11)

(4. 12}

(4.13)

{4.14)

The use of a screened Coulomb potential allows us to employ the usual relations of formal scattering the-
ory. The off-shell Lippmann-Schwinger equation, with V given by (4.1), is

le»=lp& .. .„„(v.v.)le»
0

1= le», +,/2, R v„le»,

where lqp&c, the off-shell "pure" Coulomb scattering state, satisfies the equation

1
lqP&c= IP&+ ./2„H Vclqp&c

2p, —Ho

1= Ip&+, /2 R v, lp) .

(4.15)

(4.16}

The quantum-number labels Isjj, are omitted in (4.15), (4.16), and will be omitted hereafter.
The off-shell Coulomb t matrix &p'Itc(q}

I p& is given by

&P'lt(q) IP&
= -&p'If', le»,
= -&q*P 'I ft, I p&,

where q* is the complex conjugate of q.
Note that

(4.17)

»m lq=p+i~, p&, = lp&c+,
~o $

-&p'Iftclp&c = »m &p'lt, (q=p + ie)lp&
6~0

= &p'ltc(p) IP&,

c&p'I ftcl p&
= lim &p'ltc(q=p'+i&) lp&

e ~o+

= &p'It. (p')
I p&,

(4.18)

(4.20)
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and

—,&pIU, Ip&=-&plU, Ip&; =&pIf, (p)Ip&

e')'""sinyc (p)
p

(4.21)

where Ip&ck and yc(p) are given by (4.3)-(4.11). In order to obtain the general off-shell Coulomb state Iqp&c,
we subtract the Lippmann-Schwinger e(luation for IP&c,

1
Ip&;= I p&+ Iim

p
—.&2„„., „V.I p&, (4.22)

from (4.15) and insert the closure sum (4. 14) over incoming-wave states in front of Vc.

Ivk& =Id&' ~ (' — 'kdlkk& (klv Ik&,
~k k, ~k

—,
&k k,~k )0+& "0

= Id &;
(' — k*dk lk), (kit, (k) Ik& , k,

— , . k,) .2 2 1 1
(4.23)

After taking the scalar product of (4.15) with the states (r I
and using the closure relations (2.3) and (4.14),

we find

, 2 " k'dk
[r(rIqP&]= [r(rIqP)c]+ dr' —, , rr'[(rIk)c][c(kIr')][V„(r')][(r'IqP&]

d 0 v 0
q'k' 2p.

where

= [r(rIqp&c] — dr'[Gc(rIr')][U„(r')][r'(r'Iqp&],
0

(4.24}

[Gc(r Ir ')] =

with

G,' (rIr')

0 G,"(rIr )

(4.25)

G, '(r Ir') = Jt, , Z—, (q, kr P, (q, kr'')2 I" ~u

0
(4.26)

for r, r'(R and R large enough to make N, (p) in (4.5) very nearly unity. For q- q(real and positive}+i0',

G, '(r Ir') = (I/q)H, '
()7, qr) F, ()!,qr) . (4.27)

H, ')(q, p) is given by

HI" (0, p) = G, (r!, p)+ iZ)()!,p),

where G, ()},p) is the irregular Coulomb radial wave function, which satisfies (4.8) and behaves asymptoti-
cally as

G, (7!,p) = cos[p —)I ln2p ——,'1)[+o,()!)] .
p»[l()+)+ (I )]

(4.28}

For nonphysical values of q, we must use the more general expression

G"(rlr')=2"(qr )'"(qr,)'"e ~
' "" ' '" '"' ""' Z, (i+1+i)I;21+2; 2iqr,)-

(21+I}!'

x2iW, (i+1+i)!;2l+2; 2iqr, ), l=l-, , (4.29)

where, E, and W', are defined, e.g. , in the book by Mott and Massey. "
Using the first form of (4.15), it is easy to see that
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, +q' —U (&)

lim [r(r lqp)] = 0 .

0 1 I (I +1)
0 I

(r(r lqp)] = (q' p')-[rj (pr)]+ [U„(r)][r(rlqp)],
0

+ +
(4.30)

-1
[r.&r. Ie», ],

Ir =r
0

(4.31)
and [G (rlr')] replaced by [G, (rlr')].

We now use (4. 15) to decompose the off-shell t-matrix element into "nuclear" and "Coulomb" parts.

[&p'lt(q)lp&]= (&t 'IU -+U. le)]

If we express U„as U„~cM+ U„, an analysis similar to that of Sec. II and III leads to (3.3) with U,c~ re-
placed by U„]]cM, and to (3.6)—(3.8) with U replaced by U„, [rj(pr)] replaced by

[r( rlqp& ]c= [r(rlqp&c] ——G, (r Ir,)f —,G, (r lr') 1+ —G, (r, lr, ) —,G, (r Ir')c d c 1 c
0 r =rp ' 0

= -[,&q*p'IU. Ie»] —(,&q*p'IU, I p&]

[,&q*p'
I
-U. Ie &l

—(&p'IU, le», ] (4.32)

The last term in (4.32) is the off-shell Coulomb scattering amplitude, which may be evaluated by using
(4.23).

= I(»'li, (»)l»)] )' — k'»kf(kl (»I»t'&*]&&kit, (k)I»&]( . &.
— ., »)g~0+ Q

= I&» li, (»)I»)]'

iaaf('»

Ii.(i ) I»'&']I&» Ii.(») l»I' —f &»)»&»Ii, (&)li"&'ll&&li. (&) I»l
0

1 1
2 Q2 p2 p2 (4.33)

The P in (4.33) denotes that the principal value of the integral is to be calculated. An analysis similar to
that of Sec. III gives

(Aq*p'I U„ lqp&l = I-Aq*P 'I U. ,„-+U. Ie»]
= [&p'lt. «) I p&] = [&p'lt. ,. (q) I

p&]' (&p'I t. (q) I p&]

[(P'It„BcM(q) IP)], the "pure" BCM contribution, is given by
r0

[&p'lt. ,,«(q)lp&]=(q'-p') (r,&q*p'lr&][rj(pr)]-(Ir„&q*p'lr. &]-[r.,&q*p'Ir.&]] [G,'(r. lr.)] '[r,(r, le», ],
0

(4.35)

where

I .(q'»'I I=I .&q'»'I )]-(I &i » l &]If]-,.f ''.&i''».'l '&I
7 7Q

&& 1+G, (r, lr, ) —,G, (r, lr ')f d

r'=r
0

[G,'(r, lr)], (4.36)

and [(p'I t„(q) lp&], the contribution due to V& is given by

[(p'
I t„(q) I p&] = — dr(r c&q*p

'
I r)][U„(r)][r(r lqp)]

rp
(4.37)
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In calculating [(p' ~F„(q) ~p)], we first determine the auxiliary amplitude

00

[(p'~ t„(q)(p)] = — dr[r c(q*=p' i-0', p'tr)][V„(r)][r(r[qp)],
Q

which satisfies the integral equation (3.18) with

&&0 Q

[(p'(U, (q) ~p)] = —, dr(r c(p'tr)][U„(r)][r&r( qp)c]+ (q' -p') dr'[G, (r~r')][r'j(pr')],

(4.38)

(4.39)
4r

Q

where

[r&rle». 1=[r&rlqp). ]- G;(rlr, )+ -d, G;(r[r )
Q

4 Q

1+G, (r, tr&,) —,G, (r, tr ')
r'= r Ch'

Q—
r'=r Q—

[r.(r.Ie»c],

and [r c(p'~r)] is given by (4.36) with [r c(p'~r)] replacing [r (qc*p'~r)], and

[&P'IU, (q)lf)]=-„d [ &P'I )][U.( )][ ( I» ]
Q

[(p'~t„(q) ~p)] may then be determined from [&p'~ t„(q) ~p)] by using (4.23) and (4.38).

e I
&&=&&&'&I&&„S&»&&&u&— &"S»&&14&+&I»&'&«&I&.&e&l&&&( * q

— . . q.)

(4.40)

(4.41)

(4.42)

V. SUMMARY AND DISCUSSION

We have extended the analysis of KTI to the case
of tensor and Coulomb forces. The treatment of
the case of tensor forces (without long-range Cou-
lomb effects) in Secs. II and III is a straightfor-
ward generalization of the treatment of uncoupled
states in KTI.

On the other hand, the inclusion of long-range
Coulomb forces in the analysis leads to major
practical complications, even though we use a
screened Coulomb force which allows the use of
the ordinary formal theory of scattering. There
does not appear to be a simple integral equation

I

which gives the complete off-shell scattering am-
plitude in terms of the off-shell Coulomb scatter-
ing amplitude and eigenstates. One must first de-
termine the auxiliary amplitude (p'

~ t„(q)
~ p) and

then evaluate the complete off-shell t matrix by a
one-dimensional quadrature. This procedure must
also be used in the case of nonsingular core inter-
actions.

In view of the complications resulting from the
decomposition of the off-shell amplitude into a
"pure" Coulomb and a "nuclear" part, it may well
be more convenient to simply include the screened
Coulomb potential in V and to use the formalism
of Sec. III."
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