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The contribution of the two-pion-exchange three-nucleon force to the binding energy of nu-
clear matter is evaluated using the modified pion-mass method of Brown and Green and by the
conventional potential approach. Using nonrelativistic formulas, the relation between the two
methods is clarified. It is shown that the Brown-Green prescription, as given in their paper,
is incorrect when a cutoff in the NN distance is applied and the modified pion mass is momen-
tum dependent. When the correct prescription is used, the first-order contribution becomes
sensitive to the pionic form factor chosen. Using the same form factor as used by Brown
and Green, the contribution with an NN cutoff of 1 F is only about 0.1 MeV instead of 1.25-
MeV repulsion per particle as quoted by them. Another form factor leads to about 0.5-MeV
repulsion. The second-order contribution, including the cross terms invo1ving the two-body
one-pion-exchange potential and three-body forces, has been recalculated in the Brown-
Green spirit after correcting for their earlier error. It is attractive, much larger than the
first-order term, and is about the same for the two form factors used. The net effect of the
two-pion-exchange three-body force is rather sensitive to the NN cutoff and is about a 4- to
8-MeV per particle attraction in nuclear matter, depending on the cutoff.

I. INTRODUCTION

Recently, a number of authors have examined
the effect of three-body NNN forces, as well as
the very similar but somewhat simpler ANN forces
on nuclear matter. ' ' Most recently, Brown and
Green' (hereafter referred to as BG) have esti-
mated the effect of the two-pion-exchange (TPE)
three-nucleon force on nuclear matter by modi-
fying the pion mass in the one-pion-exchange two-
nucleon potential (OPEP). In this method they do
not need to derive the three-body potential in the
configuration space and the calculation is simple.
BG have concluded that whereas the effect of the
lowest-order TPE three-nucleon force in nuclear
matter is small, the second-order effects are
larger, with the net result of about 2.5-MeV per
particle additional attraction at the saturation den-
sity. They further claim that the ambiguities in
their calculation are not very large. On the other
hand, Bhaduri, Loiseau, and Nogami' (referred to
as BLN) have calculated the first-order effect of
the TPE ANN force in nuclear matter by explicitly
deriving the three-body potential in the configura-
tion space. BLN find that the calculation is beset
with considerable ambiguities because the final
contribution is very sensitive to the NN correla-
tions and also to the short-range part of the force.
Loiseau and Nogami' have considered the problem
of the NNN potential in a similar way. They also
find considerable ambiguities in this problem,
although the effect of the NNN potential in nuclear
matter is much smaller than the corresponding
ANN case.

First, we mention the important differences be-

tween the approaches of BG and BLN. BG consider
relativistic corrections while BLN work in the non-
relativistic static limit. BG do not derive the NNN

potential in the configuration space, but, by examin-
ing its expression in the momentum space, show
that its effect can be incorporated by modifying
the pion mass in the OPEP. BLN use the TPE
three-body potential, which is obtained explicitly
in the coordinate space, ' and estimate its effect in
the first order only. BG have pointed out quite
rightly that the second-order effect is substantial.

The purpose of the present paper is to clarify
the relation between the two methods in detail,
concentrating initially on the first-order effects.
For simplicity we use the nonrelativistic formula
for the pion-baryon interaction throughout, but in-
clude the pionic form factor. The nonrelativistic
approximation should not be unreasonable, because
the important range of the momentum transfer in-
volved is around 1.3 F ' for the first-order and
around 2 F ' for the second-order effect at the
equilibrium density. We further concentrate on
the single-exchange term of the expectation value
of the TPE NNN force, which alone was considered
by BG. This term has exactly the same form as
the expectation value of the ANN force, which was
investigated by BLN. We then go on to show the
following:
(i) The connection between the modified pion-mass
method of BG and the conventional potential ap-
proach of BNL. When there is no NN cutoff applied,
the two methods are equivalent except that the BG
approach includes some spurious contributions
from 6-function-like contact interactions. Only for
some specific forms of pionic form factor do the
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two methods give identical results.
(ii) The BG prescription, as given in their paper,
is incorrect when an NN cutoff is applied, and the
modified pion mass is momentum dependent. It is
shown how this mistake can be corrected. When
this is done, the two methods of BG and BLN give
practically identical results for the pionic form
factors used. Using the same form factor as used
by BG, the contribution is found to be only about
0.1 MeV for the NÃ cutoff of 1 F instead of 1.25-
MeV repulsion per particle as quoted by BG.
(iii) When the corrected BG prescription is used,
the first-order contribution, contrary to their
claim, becomes quite sensitive to the pionic form
chosen. This ambiguity is large, but we still find
that the first-order contribution of the TPE three-
body force is likely to be less than or about 0.5-
MeV repulsion per particle.
(iv) Following the method of BG the second-order

calculation is redone using the corrected proce-
dure. This yields about 5.5-MeV attraction per
particle in nuclear matter for the NN cutoff of 1 F
and is about the same for two form factors chosen.

In Sec. II the basic formulas of the two methods
are developed when there is no NN cutoff, and
their relation clarified. Section III contains the
more realistic case when an NÃ cutoff is applied
and the second-order as well as the first-order
contributions are worked out. Section IV contains
the numerical results along with discussion and
conclusions. Two Appendices are given for some
of the mathematical derivations.

II. METHOD OF CALCULATION

WITHOUT CUTOFF

We consider the TPE diagram of Fig. 1 whose
S matrix element is given by "' (c = g = 1}

~ 4w ~2TS=+ '" ' d d ' ' " ' " ' " '"'"' —K( ')K'( ')K( ')K'( ') ' ' " . (1)(»)'u' ' '
(q '+ v')(q '+ v')

a, g

Here f ' (=0.08) is the &N coupling constant, q„,
are the momenta of the exchanged pions, r, , are
the coordinates of the two nucleons 1 and 2, and p,

is the pion mass. The Pauli matrix 7, denotes
the n component of the isospin operator of the nu-
cleon 1, and likewise for the other nucleons. Simi-
larly, 0'„0,are the Pauli spin matrices for the
nucleons 1 and 2. The functions K and K' are the
vertex and propagator corrections, and defined by

u(p')1', „(p',p)u(p) =ig K(q')u(p')y, r„u(p), (2)

&&(q') =K'(q')(q'+ u') '.
Here g is the pseudoscalar mN coupling constant,
p, p' and q =p'-p are four-momenta, u and u are
Dirac spinors, I" and 4' are the renormalized ver-

I

tex part and propagator, respectively, and K and
K' are normalized by K(-p, ) =K'(-y. ') =1. Let us
consider the form factors of the following form';

K'(q')K'(q'} ~, o.(m')
q'+ p,', q'+m'

with the "spectral function"

(4)

o.(m') = 6(m' —p, ') + p(m') 9(m' —9 p, ') . (5)

Here p(m') is a real function, and 8(x) is unity for
x -0 and zero otherwise. The "threshold" m = 3 p
is there because the lowest-mass intermediate
state that modifies the propagator and the vertex
is the three-pion state.

The rN scattering matrix S„'z for a zero-energy
pion is given by 4'

(n, q, ~ S,'u~
( P, q2) = 2' 6(0)K(q, ')K(q, ')[(Ar~„v»+Br»r, „)(o,~ q,)(fs ~ q, )

+ (ffrsa T3 8 + +'T3 s 1ra)(os '
q&) (c& ' q,) + 2D ~a s]e ' (6)

where & and B are related to the p wave while D is
related to the s-wave &N scattering, and are all
constants in the nonrelativistic approximation. 4

The pionic form factor associated with ~,'& is as-
sumed to be the same as that for the &NN vertex.
The same assumption was made by BG.

Substituting (6) into (1) one gets the form S
=-2vi6(0)W. Then W is interpreted as the TPE
NNN force. ' This W is our starting point. Now
let us describe the two different ways of estimat-
ing the first-order effect of W on the binding ener-

gy of nuclear matter. The first of these corre-
sponds to the BG method, while the second one
follows the more conventional approach of BLN.
For simplicity we consider only the contribution
from the P-wave &1V interaction, ignoring the term
with D in (6).

A. Modified Pion-Mass Method of BG

Here we explain the modified pion-mass method
in a very simplified manner. BG have used this
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gives a factor (2)T)'5(q, —q,}. Also we consider
only the single-exchange term, which is obtained
by taking the diagonal sum in (1) with respect to
the spin and isospin of the third nucleon. Thus we
obtain an effective NN force U~ due to the third nu-
cleon (the subscript ()) denoting that only the P-wave
part of the &N scattering is being considered)

II~= p ", dr, W(r„r„r,)

N N

pf'T, ~. d-(o, q)(o. q)
v2p2 q (q2+ p2}2

[ff2(q2)ff l(q2) ]2 e ( ((

f&t('( 't()( . t(le*(»)
7T P,

u(m')dm' 2
e'~''

q'+m
~

~

(7)

(8)

FIG. 1. The diagram for the two-pion-exchange three-
body force.

method with a cutoff in the NN distance, while here
we do not apply any cutoff. When no cutoff is ap-
plied the equations are simpler and it is easy to
see its relation with the BLN approach. When
there is no constraint on the coordinate r„one
can integrate (6} with respect to r, at once. This

Here r=r, —r„and p is the density of nuclear
matter. We have used (4) to go from (7} to (8).
Note that the q integration in (8} is divergent, and
hence U~ contains 6-function-like contact inter-
actions with respect to r, —r, in the coordinate
space, unless'

r dmaa(m') =0.
0

We now compare (7) with the two-nucleon OPEP,

'7 ~ 7
V = —f ' ' d ' q ' q If'( )ff'(q')e'&''. (10)

We can rewrite U~ as

where

6u'(q') = —2p(A +B)ff'(q')ff '(q') q'.

If I
5p'I « p'+q', Eq. (11) can be further simplified as

U, 2,.'„. J~q&*(v*)&'*=(e-)(, q)( . t() "' ((q P) (s* ~ ~'') '), '-

(12)

with p'= p'+5p. '. BG used Eq. (13) with a further
modification as follows: They use the OPEP with-
out the factor K'K' in (10) together with

6p'=-2p(A+B)H (q')q', H(q') =K'(q')EC'(q }.

I

utes and a simple calculation yields

( VopEp) 8pf' q'F (q)
q q2+~2

where & is the nucleon number and

(15)

(14)
The effect of the factor H(q') in (10) which modi-

fies the short-range part of the OPEP is taken
care of by introducing an NN cutoff. Let us now
calculate the first-order contribution of V'opp p as
given in (10), but omitting the form factors, to
nuclear matter. Only the exchange term contrib-

F F F
(16)

The factor q'(q'+ p2} ' in (15) can be separated into
two terms, 1 —p'(q'+ p') ', which correspond to
the potentials of the form f)(r) and e ""/r, respec-
tively. F(q) can also be written as
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T(e) =f d D'(3 x)e'

whereD(kyar)

= 3j,
(krr)/(kyar),

(17)

(18)

j, being the spherical Bessel function of order 1.
To get the contribution of U~ as defined in (7), all
that one has to do is to replace

~
—ss (3 ), ~ ., *)

in (15) inside the integral with 5p' given by (14).
This yields

dq q'E(q)(q'+ p') ',
0

(24)

I]——p. ,
D k&z 3cos 8 —1 Yx Y T T dxdy

where z =
i x —yi, T(x}Y(x} h=, (i px}= [1+3(px}

+3(px) ']Y(x), and cose=x y/xy. The first term
in the square brackets in (23), unity, is the contri-
bution of the "central" part of W~, while the second
term is the "tensor" contribution. After some
manipulations (see Appendix A) one can express
the integrals in (23) as

D kzz Yx Y y dxdy

dex(e)e ss (e'),'„.'..„.)

, u(m')=6C~p'g ' dq q'E(q) dm'
0 0

(19)
=16 dqq'E(q)(q'+ p, ') '.

0

Now if we include the factors K and K', the func-
tions Y and T in (22)-(25) are replaced as follows:

where C~ is a constant given by'~'

C ~
= pdf '(A +B)/4)T

(20) x'T(*) ——J d '
( ') *3.( *),

ikT( x)Y(x) - dm'(x(m')m'k, (imx) .
0

(26)

(27)

, dp =0.46 MeV,
9n Jo P»+ p»

(21)

where @33 is the P-wave rN cross section in the
(I, J) =(2, z) state. The contribution from the con-
tact interaction in (20) can be separated in the
same manner as for (15}.

B. Potential Method of BLN

~=-8'.[ (&3'&3}(rk' .}+3(&. &.)(&, T,)]8p,4

x(o, V, )(o, V, )(o, .V, )(o, V„)Y(x)Y(y)

+(1=2,x--y), (22)

where x=r, —r„y=r, —r„and Y(x) =-h()(ip, x)
=e ""/(px). Note that the contact interactions
with respect to x and y have been discarded in de-
riving (22). The single-exchange term of the ex-
pectation value of W~ in nuclear matter is given by'

„' =-:D,e' fD'(k.*)((.(keos'3 —()T(x)T(S)]

x Y(x)Y(y)dx dy, (23)

We again start with (1) and (6), but instead of
integrating (6}with respect to r, we do the q, and

q, integrations first, obtaining an NNN potential
explicitly in the coordinate space. '4 This potential
will be denoted by W~ and should be distinguished
from the effective NN potential U~ as defined in
(7). If we temporarily drop the factors K and K',
W& is given by

The expectation value of W~ then becomes

' =2C~p'p ' dqq'E(q)
0

, m'n(m') ', (x(m')dm» + 2q dm',
0 Q' +m g +m

(28)

The two terms in the curly brackets correspond to
the central and tensor contributions, respectively.

Now it is clear that the two methods give dif-
ferent answers in general. (U~) of (20) and (W~)
of (28) agree only if (9) is satisfied. The differ-
ence is due to the contact interactions with respect
to r, —r, and r, —r, included in U~. Note that U~,
which is an effective two-body interaction between
the nucleons 1 and 2, was derived from W by in-
tegrating it over all r, [see (7)]. This results in
the inclusion in U~ of some singular contact inter-
actions with respect to r, —r, and r, —r,. In W~,
however, such contact terms are discarded to
start with. These contact interactions with respect
to r, —r, and r, —r, should be clearly distinguished
from those with respect to r, —r, which appear in

U~ and W~. The latter disappear when an NN cut-
off for r, —r, is introduced, whereas the former
still remain in U~.

III. METHODS OF CALCULATION WITH A

CUTOFF IN NN DISTANCE

A. First-Order Contribution

The first-order exchange contribution of an NN



2086 BHADURI, NOGAMI, AND ROSS

potential V(r) to nuclear matter is proportional to
the integral

t=(2 )'f 1 V( )D (k ')=f dil V(9)V(9), (29)

where the functions F(q) and D(kyar) have been de-
fined by (17) and (18). Here V(q) = J dr V(r)e'"'2.
If now an NN cutoff is introduced, I in (29) should
be replaced by

( U,)se, , „, q'F(q)H'(q')
q+

x 1 ———» g(q, d}+2p.djD(qd)
p,d

where

g(q, d) = (p. sinqd+q cosqd)/q.

(36)

(37)

i (2 )f.d=V( )D (9,.)9( —d) . (30)

I= dqVq F q,

V(9) = f d V( )9( —d)e "' .

(31)

The alternative way is to introduce the 0 function
in D'(kzr), and define

F(q) = dr D'(kyar)B(r —d)e'~' ' . (32)

Then, if one takes care to throw out all singular
contact terms from V explicitly, one can also
write

There are two ways of writing (30) in the q space.
One can write

The subscript BG denotes that we have used their
prescription (35). Using (36) and the form factors
that they have used, we shall reproduce, approxi-
mately, the numbers they have given for the first-
order effect in their paper. ' However, this pro-
cedure is incorrect when &p.' is q dependent, and
this is the realistic case. In general, the calcula-
tion of V(q) from (34) is cumbersome, since the
q dependence of 6p.' is complicated by the form
factor H(q'). If, however, we ignore the form fac-
tors temporarily and use the fact that nonrelativ-
istically 5 p, '~ q', then we can easily calculate V(q).
Using this approach we give the expression for
{U~)/N just to show that it is very different from
(36). We get

{U.) ~ . , „, „qF(q)
N 6Cpp I

-'e- dq 2 2
q +p,

I= dqVqFq . (33) x -2+—+, g(q d} —j (qdf)
p,d

2 q +jtj.2 ' 2

Following the latter prescription it is seen that
{U~) and {W~) can be calculated in the presence of
a, cutoff by simply replacing E by E in (20) and (28).
The difference between {U~) and {W~) persists un-
less (9) for the pionic form factor is satisfied.

Alternatively, one can calculate I from (31) by
using V(q). By inspecting (19) we see that (apart
from a constant multiplicative factor)

+6C~p' p.
' E q q'dq,

0
(38)

where the last term is the contribution from the
contact interaction with respect to r, —r2 and
should be added only if d =0. Equation (38) should
be compared with (36) after putting H(q') = 1 in (36).
The two are very different and coincide only when
d=0.

V(9 9*99'(dl, *(.,„.). (s4} B. Second-Order Contribution

What one should do is to find the corresponding
V(r} from (34), cut it off at d, and then calculate
V(q). Once V(q) is obtained (31) can be used to
calculate {U~). What BG did instead is to simply
replace (q'+ p') ' by the Fourier transform of the
cutoff Yukawa potential;

j 1 e-&~ p sinqd+q cosqd
+jL( q +p (s5)

in (34} to get V(q). This procedure turns out to be
correct only if DjL(.

' is q independent, as can be
checked explicitly. When the prescription (35) is
used, we get

So far we have considered only the first-order
effects. As was shown in Sec. II the effect of the
three-body force can be simulated by an effective
two-body potential, which consists of central and
tensor parts. Only the central part contributes in
the first order, but the tensor part will play a
dominant role in the second order. If we follow
the BG method the effective 1VÃ potential is given
by U~ of (8). To obtain the NN potential due to
W~ of (22) is more complicated. In Sec. II we
took the spin and isospin summation of W~ before
doing the r, integration, thus picking up only the
central part of the effective 1VÃ potential. To ob-
tain the 1VÃ potential including its tensor part we
have to first integrate W~ with respect to r,. For
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simplicity we follow the BG approach. We also
assume, following BG that - o

e N force in the absence of three-body forces
is given by the OPEP although th

y
xs zs true onl at

very large distances (r& 2 F) The second-order
contribution to the potential ener
then g ben given by

en ia energy per nucleon is

2 Vppgp —Up + Up
—

Up

~(2) + ~(2)
1 2 (39}

where the bracketeded superscript denotes that these
are second-order terms

d
s, Q xs the Pauli operator

an e is an ener gy denominator to be specified
later. The e ecxp tation value is to be taken with
respect to plane-wave determinantal sta

erms in ~39) consists of direct and ex-
change terms
tral a

, which can be further spl t ' tzn o cen-
al and tensor components. Then s. e potentials Vp

n ~ are cut off at a distance d. BG's rescr'-
y ear Eq. (38) is valid only when

p qq g is q independent or d =0.
It is now necessar to

~ ~

y o get the expression for U

o xs explicitly letxn the coordinate space. To do th
us assume the form factors of the form

ff(q'}=& (1-&)", ~, ,q'+ g'

which is obtained from the spectral function

a(m') = 6lm' —p') —(1 —$) 5(m' —q') . 40

Different pairs of ($ ) iv, q) gave rise to different form
actors. The case (=1 corresponds to no form
actor, or 8 =1, while =0 iv

w en ( ) is satisfie
a, =, ( = gxves the special case

ied. The form factors which we
use are displayed in Table I. the f
and III

e; e form factors II
an II have been taken from R f 1 ""e. . ' BGgave
their numerical values for the form
though this for

or e orm factor II, al-
g zs orm factor is not compatible

requirement g & 3 p,

i e with the

Substituting (40} in (8}, we get

U ,,„'. '(&+&) ~q "'(, q)(. q)q'

1 1
q2+ p,

' q'+ rf'
(41)

TABLELE I. The parameters of the form fa
d f db (88). Th foe orm factor II was used b BG
their numerical calculation.

y in

5.0

3.0

1.0

—I.O

-3.0

—50
0.4 I.6

I

2.8 4.0
r (F)

FIG. 2. The central part of U, A. (r of
form factors I II

o &, Af, (r) of (42), for the

"OPEP" shows
o s, , and III res pectively. The curve

of (43).
shows the central part of the OPe EP, 3f pg (r)

10.0

80

6.0

We use the stann~ard procedure of replacin & ~

x(o, q)b -g
acing 0, q

y -'u, V)(o, V} and taking it out of the
integral. This ets ridg ri of contact interactions be-
tween the nucleons 1 and 2. Th Uen ~ becomes

U~(r) =X%,.r,[( u (x,)f,(r)+S„f,(r)), 42

where A. =vvC~PP, '=0.980 MeV, and S»-—3(o r1

Form factor

1.0
0.28

0.

5.78

10.

Comments

a(q') =1
Eq. (29) of Ref. 1
given in Ref. 11

Eq. (29a) of Ref. 1
given in Ref. 12

00
0.4 1.6 2.8 4.0

r (Fj
FIGIG. 3. The tensor part of U , A, r ofo &, &f&(r) of (42), for the

"OPEP" shows th
c ors, II, and III res pectxvely. The curve

of (43).
s ows the tensor part of the OPEP pg& (r)
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x(o, ~ r)/r' —(o, ~ v,). The functions f,(r) and f,(r)
are defined in Appendix B. The two-nucleon OPEP
is written in the form

V oppp( r) = gf 'Pr, 7,[(o, a,}k,(r) +S» g,(r}],

TABLE II. The values of (U&)BG/N in MeV calculated
by using (36) for various values of the NN cutoff d, and

k& =1.36 F and p =0.6939 F . The numbers in paren-
theses in row II are those given by BG in their Table 8
for k~=1.35 F

(43) Form factor d=0.8 F 1.0 F 1.2 F

where ,f'y —=3.651 MeV, and g,(r) = Y(r}, g,(r)
= T(r)Y(r}. In Fig. 2 we have plotted the central
pa, rt, of U~, A f,(r), as a function of r for various
form factors and compared it with the central part
of OPEP, ,f'pg, (r—). In Fig. 3 the tensor part
A f,(r} of U~ is plotted with the corresponding OPEP
component for the various form factors. It is seen
from these figures that U~ effectively modifies the
long-range part of the two-nucleon potential. It
turns out that the most important second-order
contribution comes from the cross term between
the tensor components of &p~p and U~ in ~,' .

If one chooses the simple Rayleigh-Schrodinger
propagator for e, then for the direct term we
obtain

VopEp U dg gP

x [f.(q)Z.(q} + 2f (q)a(q)],

where m is the nucleon mass, P(q/2kr) is the
standard Euler function, "and

f,(q) = Jt f,(r)j (qr)r dr,

(44)

f,(r) = f,(r)j,(qr)r'dr, (46}

IV. NUMERICAL RESULTS AND DISCUSSION

and likewise for g,(q) and g,(q). In an analogous
way the direct contribution of (U~(Q/e)U~)/N may
be written down. Alternatively, the second-order
terms may be evaluated in the spirit of the ref-
erence-spectrum method by introducing a gap pa-
rameter 4, as was done in Ref. 1. The only change
in Eq. (44) is that the Euler function P(q/2kr) is
replaced by a modified Euler function" P(q/2kr
+0.6kr/q), where we have used the same gap pa, -
rameter ~ as used by BG in Ref. 1. The exchange
second-order terms for potentials of the OPEP
character are expected" to be relatively small
(about 20% of the direct terms for d = 1 F) and are
not evaluated.

3.34
1.37

(1.79)
1.41

2.03
0.90
(1.25)
0.95

1.05
0.54
(0.79)
0.58

TABLE III. The values of (U&)/N and (W&)/N in MeV
calculated by using (20) and (28) with F replaced by F,
for d= 1 F, kz= 1.36 F , and p, = 0.6939 F

only for illustration to demonstrate that the con-
tributions are suppressed by the introduction of
form factors. The bracketed numbers under the
form factors II are those quoted by BG for 4~= 1.35
F ' in their Table 8. These are somewhat larger,
but the trend is well reproduced. The differences
arise from small differences in C~ and also due to
using a nonrelativistic formula for 6 p.'. Note
specially that for the form factors II and III the
results are not very different so that the ambiguity
is rather small.

In Table III we have displayed (U&)/N and (W~)/N
when these a.re correctly calculated by (20) and

(26) with E repla. ced by E. The actual first-order
contribution to nuclear matter is really (W~)/N,
but the difference between (U~)/N and (W~)/N is
very small. All the results in this table are given
for d = 1 F. Comparing Tables II and IG it is ob-
served that BG overestimated (U~)/N by nearly a
factor of 10. Furthermore, the correct results
shown in Table III are now more sensitive to the
particular form factor used, and thereby more
ambiguous. From Table III it is seen that the
first-order contribution of the TPE three-body
force to nuclear matter is small and repulsive,
probably less than 0.5-MeV per particle. Table IV
summarizes the first- and second-order contribu-
tions of U~ to the binding energy per particle of
nuclear matter. In the second order we have not
shown the central and tensor contributions sepa-
rately, but the major part comes from the latter.
The results for the second-order contribution are
nearly the same for the form factors II and III.
This is so, since for d =0.8 F the tensor part of
U~, Xf,(r), is not much changed in going from

In Table II we have given the numerical results
for (U~) a&/N as calculated by using (36) with the
incorrect procedure of BG. We take kz-—1.36 F '
and y. =0.6939 F ' throughout. Case I (no form fac-
tor, or H = 1) is unrealistic and has been given

Form factor

I
II
III

-2.51
0.109
0.540

1037
0.105
0.540

(U,)/N &W,)/N (U, -W,)/N

-1.14
0.04
0.
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TABLE IV. Summary of the results obtained by using U&. AEin = (U&l/N .AE(n and AEp have been defined by (39).
The total contribution is the sum of AEi~&, AE(tl, and AE P .

Form factor

Cutoff d (F)
~d'~ (MeV)
~&» (Me@)
m & (MeV)

Total (MeV)

0.8
303

-24.4
-5.8

1.0
-2.5

-13.9
3 Q2

-19.6

1.2
-1.8
-8.2
-1.8

-11.8

0.8
0.42

-7.30
-0.56
-7.45

1.0
0.11

-5.06
-0.43'
-5.38

1.2
-0.07
-3.52
-0.33
-3.92

0.8
1.13

-6.56
-0.56
-5.99

1.0
0.54

-5.04
-0.47
-4.97

1.2
0.14

-3.78
-0.39
-4.03

form factors II to III, as can be seen from Fig. 3.
It is clear from this Table IV that the effect of the
form factors is to drastically suppress the contri-
bution of the three-body force to the binding ener-
gy. The total contribution is fairly sensitive to
the cutoff, and is in the range 4-8-MeV attraction
per particle. Exchange effects will increase this
by about 20/0.

With the form factor II and k~ = 1.35 F ', BG ob-
tained (BG's Table 9) AEt'~ =-4.11, -3.51, and
-2.87 MeV for d = 0.8, 1.0, and 1.2 F, respective-
ly. Our corresponding numbers are, with k&= 1.36
F ', ~ =-7.86, -5.49, and -3.85 MeV for d
=0.8, 1.0, and 1.2 F, respectively. There are
two sources of the difference between the two re-
sults. Firstly, BG used their Eq. (36), which is
not valid if 5y.'(q') is q dependent. Secondly, for
very large q, their 5p, '(q') is suppressed compared
with ours due to relativistic corrections.

All the above results and all formulas developed
in the previous sections have been obtained by
ignoring NN correlations due to the strong two-
body NN forces. It is natural that the three-body
effect should be sensitive to two-body NN correla-
tions, since three particles are coming close to-
gether when giving the three-body contribution,
and their wave functions are distorted due to the
NN correlations. This is a separate effect from
pionic form factors, although both in effect sup-
press the effect of the short-range part of the
force. BLN as well as Loiseau and Nogami' in
their earlier calculations had ignored the pionic
form factors, but introduced explicit cutoffs be-
tween all pairs of particles to simulate the NN cor-
relation effect. For example, if we use no form
factor but introduce an explicit NN cutoff of 1 F
between pairs (1, 3) and (2, 3) in addition to the cut-
off of I F that was put between nucleons (1, 2), then
(W~)/N changes from -1.37 (Table III) to 0.81 MeV.
This is what we mean by saying that the results
are very sensitive to NN corrections in Refs. 2
and 3. A careful calculation should take into ac-
count the pionic form factors, as well as NN cor-
rections. It is possible to get even larger effects
by using some other form factors, "but it should
be remembered that NN correlations for the pairs
(1, 3) and (2, 3) are likely to suppress the contribu-

tion of the three-body force.
The TPE part of the three-body ANN force has

a very similar structure, but is about five times
as strong as the corresponding NNN force. '0 Pre-
viously we estimated its first-order effect on the
binding energies of A in qH, AHe, and nuclear
matter and pointed out that it might result in a
considerable suppression of the binding energies.
Now the second-order effect will completely
change the situation. The second-order effect on
the TPE ANN force in nuclear matter is given by

for the NNN case multiplied by a factor 5.
Note that there is no contribution of ANN which
corresponds to ~,' . The second-order effect
may therefore be as large as 30-MeV attraction.
This will pose a serious problem in hypernuclear
physics, and the whole problem should be reex-
amined.

Finally an obvious remark: The two-pion-ex-
change is only one of a host of processes that give
rise to three-body forces. One should remember
that in the case of the two-body NN force, the two-
pion-exchange potential is comparable with the
OPEP even at a distance as large as 1p, '= 1.4 F.

We would like to acknowledge the valuable cor-
respondences with Professor Jun-Ichi Fujita and
Dr. Benoit Loiseau.

Note added in proof: The contribution of the TPE
three-body force to the binding energy of nuclear
matter has been reexamined by introducing cutoffs
between all the pair of nucleons. The cutoffs are
meant to simulate the NN correlation at short dis-
tances, and also to separate the effect of the better
known long-range part of the force from that of the
unknown short-range part. The contribution is in-
deed much reduced compared with that obtained in
the present paper. With reasonable cutoffs, how-
ever, it can still easily be as large as 2-MeV at-
traction per particle. The details of this calcula-
tion will be published elsewhere.

APPENDIX A

We shall indicate here how (25) can be derived.
tO

I, = p,
' D'(k~~x-y()(3cos'& —1)

xh, (i p, x)h, (i py)dx dy,
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where all the symbols have been defined in the
text. Note that

am
S cos'8 —1=—Q Ys„*(x)Y, (y) . (Al)

m

Also, according to (17) of the text,

2

Uq ——p — ra ~ r2 A+B oa ~ V o2 ~ V p, 2' -Ep)

(1 —$)'n(2Y -E,) —4(1- h)
g

D (hz~x —y~) =(2s) e'" "'& F(q)dq

Using the formula

(A2) where Y&=e ""/pr, E&=e "', and likewise for
F„and E„.

We now use the relations
e '"' "= 4s Q i ' Y„+(q)Yg„(x)j,(qx)

1g V

and likewise for e'"' &, we can write

( o~ ' V) (os ' V) Yp = s tt (0't ' os +Sts T~) Yp, (H2)

D'(h I x —
y I ) = 5 f~(x, y) Y&.(x)Y~."(y),

f» V

where

(AS) (o, ~ V)(o, ~ V)Eq

=-,' p'[(o, ~ c, +S„)E„+(S„—2o, ~ o,)Y„]

(HS)
Is 00

f,(x, v) = &(q—)fi(qx)f i(e')q dq (A4)

Substituting (Al) and (A2) in the integrand for 1,
and doing the angular integrations, we get

OQ 2

I, = 16it'
~ E(q) j,(qx)h, (i px)x'dx q'dq.

~o &o

(A5)

Substituting

f,(r) = c,Y& +c,Y„+c,E„+c E„, . (H4)

f,(r) = &,Y&T& +b2Y„T„+c,(E&+Y&) +c,(E„+Y„),

(B5)

where

to derive (42). After some simple algebra we find
that ff~ can be written as in Eq. (42) with

l j,(qx)h, (i ides)x'dx
0 P LP +0) (A6)

2

c, =4 1+(1—g)
7J ~ P,

in (A5) yields (25) of the text Simi. larly (24) can
be proved. c, =4(1- t) — (1—()—

APPENDIX 8

Here we give some details of arriving at Eq. (42).
After replacing (&, q)(o, q) with the differential
operator and doing the q integration, (41) becomes

2 n'
c, =-1, c,=-(1—&)'—

ha=ca 2~ ~a=c, +2c4. (B6)
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The reduced matrix elements for the l-forbidden Ml transitions are calculated in the frame-
work of the pairing model. Three quasiparticle states are admixed to the seniority-one state
by perturbation due to the short range 6 force and the tensor force. It is shown that the mix-
ing of the tensor force is essential to explain the observed values of the reduced matrix ele-
ments.

I. INTRODUCTION

According to the shell model, the l-forbidden
magnetic dipole (M1) transitions between two
states which differ in their orbital angular mo-
menta are strictly prohibited, for the magnetic di-
pole interaction does not change the orbital angular
momentum and parity. Hence, the ~1 transitions
are presumably allowed if the initial and the final
states are assigned the same orbital angular mo-
menta and parities, and vice versa. However,
there have been observed many M1 transitions
whose lifetimes are much longer than those ex-
pected from the shell-model estimate. Therefore,
it has been suggested that either the M1 transition
operator is not adequate, or there is a breakdown
of the l-forbiddenness due to some nuclear effects.
A theoretical explanation attributed the breakdown
of the forbiddenness to the nucleon-nucleon interac-

tion, and a modification of the form of the M1
operator was introduced. ' This effect, however,
is now believed to be too small to explain many of
the large retardations actually observed. Another
approach was made by Arima, Horie, and Sano
(AHS)' by introducing the method of configuration
mixing. Govil and Khurana' have investigated the
systematic trend of the M1 transition matrix ele-
ments and they have found a shell effect in these
matrix elements. They have also indicated that
the calculated values of the matrix elements from
the theory of AHS are sufficient to reproduce quali-
tatively those values deduced from the experiment-
al transition rates.

Recently, the emphasis of the importance of the
short-range residual interaction, which admixes
a small amount of high-seniority configurations
to the basic shell-model configuration, has led to
the application of the pairing theory to this prob-


