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The predictions of asymmetric collective models with pure quadrupole, pure octupole, and
mixed quadrupole-plus-octupole shapes are developed for negative-parity states in deformed
even nuclei in an effort to determine the usefulness of the asymmetric model as a tool to dis-
tinguish surface shapes. The Inodels are applied to the data for 2 8Th, U, and U, and the
comparison indicates that the energy and electric quadrupole branching-ratio predictions are
independent of surface-shape multipolarity.

I. INTRODUCTION

One of the problems with the asymmetric collec-
tive model for excited states in even nuclei is the
connection between surface shape and eigenstate
parity. It is assumed that parity is associated with
shape multipolarity, which means that odd-order-
multipole mass moments give rise to negative-
parity states and even-order deformations give
rise to positive-parity states. There is nothing in
the collective Schrodinger equation itself, however,
to fix this association. It is not clear whether a nu-
cleus in an excited negative-parity state should
have a purely odd order equilibrium surface or
whether the shape has small odd-order contribu-
tions superposed on a stable even-order deformed
ground state. Competition between states occurs
in spherical nuclei' and it is probable that some de-
formed even nuclei have pure octupole negative-
parity states, while others have states with mix-
ture. This work is an attempt to see whether the
simple asymmetric model can be used to determine
surface shape on the basis of some available nega-
tive-parity data.

The positive-parity collective levels in deformed
even nuclei are fairly well described by several
models. "Collective rotations and vibrations of a

stable quadrupole-shaped surface describe most
energy levels and E2 transitions (the predominant
collective decay mode) with accuracy. The infor-
mation on shapes is not so extensive for negative-
parity states, however, partly because of the small
number of negative-parity states thus far investi-
gated.

The first asymmetric model for negative-parity
states -assumed the nucleus had a pure octupole
shape" and was developed in a manner directly
parallel to the model of Davydov, Fillippov, and
Chaban (DFC)6 7 for positive-parity deformed
states. The model assumed that basis states (sym-
metric rotor functions) had only even projections
E of angular momentum on the body-fixed z axis.
A similar model was developed by the author, ' but
it made use of contributions from both even- and
odd-K basis states. This model, not surprisingly,
led to twice as many predicted levels. Both the
above models suffer from fundamental difficulties.
The nuclei in the mass regions of interest have
highly stable deformed quadrupole shapes, and
there is still some debate over the stability of pure
octupole deformations in heavy nuclei. ' Further,
electric quadrupole transitions are the dominant
transitions even between negative-parity states,
an('electric quadrupole moments and transition
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probabilities of an octupole-shaped nucleus are ap-
proximately an order of magnitude smaller than
those of a quadrupole-shaped nucleus. " It is also
difficult to show that shape-vibration (P vibration)
levels are of negative parity in such a model.

The nucleus apparently does at least have a dif-
ferent shape for positive- and negative-parity
states, since one finds that the shape parameters
used to fit the positive-parity levels will not direct-
ly fit the negative-parity levels also. " A few sim-
ple possibilities remain. The first and most likely
is that a negative-parity excitation gives rise to a
slight octupole deformation superimposed on the
quadrupole shape. This was examined by Lipas
and Davidson" using a symmetric model, and a
similar model has recently been applied to light
nuclei by Castel and Svenne. " The author has also
applied a similar but asymmetric model to heavy
nuclei. " Another possibility is that a negative-
parity intrinsic excitation changes the quadrupole
shape slightly but the shape can still be described
as quadrupole. In this paper we develop the pure
quadrupole model for negative-parity states and
compare it with the results of Refs. 4 and 11. If
negative-parity data can be described by a pure
quadrupole model, then the simple asymmetric col-
lective model can probably not be used to distin-
guish surface shapes.

The basic formalism of the asymmetric model is
not new, and Sec. II and Sec. III are brief reviews
of what is now a standard development of the model
used and of E2 transition predictions. Section IV
is a comparison of results of the various models,
and Sec. V is the conclusion.

II. MODELS

This section is a combined summary of the asym-
metric quadrupole model for positive-parity states
developed for even nuclei by DFC,"the pure octu-
pole model for negative-parity states developed by
Davidson, ' and the mixed quadrupole-plus -octupole
model developed by the author for negative-parity
states. " The first two models are discussed in
more detail in Sec. II of Ref. 10.

In their model for positive-parity states DFC"
separated the collective motion into two parts; ro-
tation of the nucleus relative to a laboratory refer-
ence frame, and a breathing mode or P vibration
of the nuclear shape relative to the rotating coordi-
nate system.

In their asymmetric model the y-vibration band
of the symmetric model (k= 2 band) arose from the
rotation of the asymmetric surface, and asymme-
try vibrations (y vibrations) were not discussed.
They wrote the Schrodinger equation for the rota-
tion part as

2~L~
2 ~ ~ ~LN 4LN

/=1.

where L„ is the kth component of the angular mo-
mentum operator. The quantum numbers L and N
are spin and spin ordinal numbers, respectively.
The corresponding vibration equation was

5' 1 d, d h

2B p& yp I
yp 4Bp2 LN 2 (P Po) LNn LNn

(2a)

where p is the deformation parameter, B and C
are mass and spring parameters, respectively,
for the vibrational motion, and n is the vibration
ordinal number. The kth component of the (diago-
nal) moment-of-inertia tensor is 2, of Eq. (1) mul-
tiplied by 4BP'

The second and third terms of Eq. (2) were treat-
ed as an effective potential and expanded for each
SLN about the root (p») of the first derivative from

~z, N
—Pl, ~ ~0 —2~0 p, SL,„=O. The parameter p.

= P, 'h"'(CB) "'was treated as a free parameter
(0 & p & 1) and appears in the fitting data for various
nuclei. They then defined a new independent vari-
able y = z, (p —pLN)/pLN, where z,'= (pLN/pnp)'+ ', SLN,

—

to finally obtain Weber's equation,

[(d/dy)' -y'+ (2v+ 1)]D2(&2y) = 0, (2b)

020= p2 COSyy

a„,= (p2/v 2 ) siny,

a2„=0.
This choice has the same number of degrees of
freedom (three Euler angles plus two vibration
variables) as before parametrization (2x+ 1 = 5).
The moments of inertia are given by

(4)

where v gives the total energy.
This approach to shape vibrations, common to

all the negative-parity models discussed here, ig-
nores asymmetry (y) vibrations in an effort to
treat deformation (p) vibrations exactly and as-
sumes that such vibrations are sufficiently high in
energy that they do not couple strongly to the lower
collective levels. A perturbation treatment of asym-
metry vibrations was later discussed by Davydov. '

The nuclear shape appears only in the moments
of inertia f, =4BP'i„. The shape can be expanded
in the body-fixed system by writing the radius as
a sum over spherical harmonics

It (e, y) I+ g a,-„r,„(e,y). (2)
X,p

In the quadrupole model (X =2) the coefficients
are written
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i, = sin'(y —-', w},

i, = sin'(y+ 72x), (5)

&~=sin y.
In the octupole model (x = 3) the coefficients are

written analogously:

aso =
p3 cosy,

g3~2 = (p~/W2) Sin'g,

a», = a», =0.
Here the number of variables is still five (three
Euler angles plus two vibration variables) while
the original number of degrees of freedom was
2X+ I = 7. It is alternatively possible to paramet-
rize the coefficients with g~ =g„,= 0, a» 10 W g»»
but this leads to asymmetric shapes for ~ll values
of the parameters. The simultaneous parametriza-
tion of all seven coefficients (neither a„=a»,=0
nor a», = a», =0) was investigated earlier' in an
attempt to explain the complicated spectrum of
"'W, but the nuclear shape could not be uniquely
determined. Soloviev, Vogel, and Kornichuk"
have shown in a quasiparticIe calculation that the
a», and a3p3 degrees of freedom are not in general
collective, and since the extra states do not appear
at low energies to mix with the collective levels in
the nuclei examined here, the octupole model of
Eg. (6) would appear to be the physically reason-
able version to use. The moments of inertia are
given by

i, = sin'q +-,' cosg+ —,'~15 sing cosy,

'l2 = sin g + 2 cos"g —2~15 sing/ cosYj,

13=sin g .
If we assume the nucleus is predominantly quadru-

pole in shape, but has some octupole deformation
in addition, then the moments of inertia, again as-
suming a», = 0 = a3y 3p can be written approximately
as 11

i, = sin~(y —2 m}+ D(sinn&+ —, cos'q+ ~~15 sing cosy),

f, = »n'(y+ Vv)+D(sin Vl +2 cos'g ——,'~15 sing cosff),

f3 = sin y+D sin g,

where D = (B,P»'/B, p»'). The subscripts 2 and 3
refer to g = 2 and ~ = 3, respectively, and the sub-
scripts 0 refer to equilibrium values. For small
deformations, B,p,'=B,p, 'D. Here D is treated as
a free parameter. The quadrupole parameters are
obtained from the fit to positive-parity levels, and
two free parameters (g and D) remain to fit the neg-
ative-parity states. The octupole-deformation vi-
brations are assumed coupled di.rectly to the quad-
rupole vibrations, which then give rise to an ex-

cited negative-parity band. This is the negative-
parity analog to the positive-parity P-vibration
band and ean be thought of as arising from a quad-
rupole phonon coupled to a negative-parity state.
This contrasts with the pure octupole description,
which treats this band as the combination of two
octupole exeitations.

The total wave function is the product of the rota-
tion factor g» of Eg. (1) and the vibration factor
4»„of Eq. (2), so the over-all parity depends on
the parities of the two factors. The parity of 4»„
has not been well discussed, but is usually assumed
to be unaffected by deformation vibrations, since
the deformation parameter p is unaffected by the
parity transformation. Qn the other hand, it has
been argued that the parity of a deformation-vibra-
tion phonon should be positive (negative) for even-
(odd-) order deformations, respectively, in which
case the octupole model should predict the one-
phonon band to be of positive parity (i.e., negative
relative to the zero-phonon band). In the present
work, however, when discussing the octupole mod-
el we will follow the original assumptions of that
model' that the parity is unaffected by deformation
vibrations. This allows us to take the parity of the
asymmetric rotor function g~„as the over-all pari-
ty in all the models discussed here. Asymmetric
rotor states can be expanded in sums over symmet-
ric rotor function Dg g as

4LN ~ ~XIII(DAIS + ( 1} Ddt H-
E&0

where M(K) are the projections of angular momen-
tum i. onto the laboratory- (body-) fixed z axes, re-
spectively. Positive- (negative-) parity states are
formed" by assuming the positive (negative) sign,
respectively. The shape of the nucleus does not di-
rectly determine this choice. The sum is over
even or odd K (but not both), since the Hamiltonian
connects basis states with X differing by AX=0, +2
only. For negative-parity states the choice of ei-
ther even or odd K leads to no spin-L = 0 level; one
each of I.= I, 2; two each of I.= 3, 4; etc., as may
be seen by writing out the sum of Eq. (9) in detail.

To construct a quadrupole model for negative-
parity states we simply adopt the quadrupole para-
metrization of Eg. (4) and choose the minus sign in
Eg. (9). We have then three negative-parity models
to compare; the quadrupole (A

= 2) model developed
here, the pure octupole (X = 3) model of Ref. 4, and
the mixed quadrupole-octupole model (g = 2, 3) of
Ref. II.

III. E2 BRANCHING RATIOS

The electric quadrupole transition branching ra-
tios are calculated by methods described by David-
son and the author'0 which wiQ be briefly summar-
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ized here. The reduced tran ' '
p o

B,(IPn- L 'N'n')

= 2L+ 1}-IQ ((L'X'n'I'(q "b[LXnM) ['

(ZeR„' 3 'I' g C(233 p, , p ' —p, p, ')

XaQ3pQ3pi (13)

&b«& 3Z~Z.' i&4~ '&'

2P 4& ~& 5

for the uq adrupole case, while f
case we have

, w x e for the octupole

(12)

80—

where ~"bQ» is the quadrupole o er
(10

op o M

oor enate system. If w.t .t 1 r c rge densit r
mass densit

'
y proportional to the

sx y, we can write the u

tor in the bod -f
quadrupole opera-

y- wed system as
the nuclear volume

an integral over

b, d
4m"' "

q, '„&'= — " r'r (,„(e,y)p, (r)d7. ,

where p, (r) is the charge densit and

1 escribed by E . 5 .q. ' '.

The operator for the mixed quadru ole-"--.- M. ~u e the sum ove
u since the octu ole

by a factor a
po e part is smaller

a,„, we ignore that cont '

Th of th
warrant keep th

o e experimental
xng ese terms.

data does not
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Since thehe quadrupole model has not
i dt ilto t,

'
ga ave-parity states in

nuclei before the
xn deformed even

th
e variation of ener 1

p g.parameter is r
ness parameter p, =0

of the levels with
, and the variation

= 11 888' d to f'
wx p, is shown in Fi . 2

e quadrupole-model predictions
it 1 1 of ' Th

with experiment"
U are compared

The negative-parit f'
n in Table I for ccompleteness.

-par& y fits are shown in
mo el ~=2 octu

po e-plus-octupole model (y = 2 3

228Th

70- In the fit to the ne ativ-e negative-parity levels of this nu-

60—

50-
C4

Kl 40-
LLI

30-

20—

10— 2
3

7-
LLI

I 6-
UJ

UJ

UJ 3

5
4
5
3
2

I

10
I

15

y()

I

20
I

25
I

30

0.2
I I I I I

04 0.6
I

0.8
I

I.O

FIG. 1. Thee negative-par it enee '
y energy eigenvalue

relative to the s in-
es ln

rigid asymmetr'c t '
qic op with a quadru

of th
hdod ic moments of inertia
used and the st'ff ness paramet

ia of Eq. (7) have b
e er set to p, =0.

FIG. 2. TT e negative-par t en gy g
o spacing for a g y
e surface (A, =2) as ' e

stiffness parameter
as a function of the

sete to the value y =11 88
me r p. The asymmetr y parameter is

.888 used to fit ~Th



1818 ME L VIN G. DA VIDSON

TABLE I. The quadrupole-model fits to the positive-parity energy levels of Th, U, and U. The parameter A, is
the asymmetry parameter, p, is the stiffness parameter, and rms is the rms deviation of all the predicted levels for
which there are experimental equivalents.

228Th
Exp.

(Refs. a, b) Theory

232U
Exp.

(Bef. c) Theory

234U
Exp.

(Befs. d, e) Theory

7
p

rms (keV)

Energies
(keV)
I =0

2
4
6
8
2
3
4
5
6
7
0
2
4
2
8
4

0.
57.5

186.6
878.

969.
1028.
1092.

830.

1488.
1620.
1650.
1690.

9.828'
0.221

279.

0.
57.5

188.6
387.
644.
$70.

1018.
1083.
1162.
1258.
1364.
1045.
1110.
1258.
2118.2
2171.
2241.

0.
47.6

156.6
821.

876.
912.
971.

693.
735.
832.

8.678'
0.249
9.8

0.
47.6

154.9
315.
518.
877.
913.
962.

1021.
1092.
1172.
676.
732.
855.

1658.
1697.
1749.

0.
43.4

148.1
295.5
496.1
927.1
969.1

1028.5
1092.7
1172.2
1261.9
810.0
851.4
947.3

8.125'
0.221

10.1

0.
43 4

142.5
292.9
488.8
949.4
984.8

1081.8
1089.5
1159.5
1237.6
801.7
851.0
962.7

1845.5
1883.6
1934.0

~See Bef. 16,
See Bef. 17.

See Bef. 18.
See Ref. 19.

See Ref. 20.

cleus (Table II) the 3 level at 1123 keV is taken to
be a member of the one-phonon P-vibration band.
In the quadrupole-plus-octupole model this level is
fit at the cost of fitting the 0' level tentatively
placed at 830 keV as shown in Table I. For com-
parison the last column (x =2,p') of Table II shows
the negative-parity fit predicted by the quandrupole
model using the positive-parity parameters (ex-
cept for an over-all scale factor) from Table I.
This fit is not appreciably different from those of
the other models for" Th. The only significantly
better fit is obtained by using the same quadrupole
model with different shape parameters (X = 2, v ).
The model predictions for three E2 branching ra-
tios are shown in Table III. All three models make
the same prediction.

For interest we have plotted the approximate
shapes of the three models for "'Th in Fig. 3.
They are, of course, quite different for the three
models; however, it is the moment of inertia rath-
er than the shape that appears in the Hamiltonian.
Even the magnitudes of the moments are unimpor-
tant; only the ratios of the three principal moments
determine the structure of the state functions and
consequently the energy-level predictions (within a
scale factor) and the E2 branching ratios. As can

be seen in Table IV all three models predict simi-
lar ratios of the moments of inertia for "'Th.
Therefore only knowledge of static moments of
negative-parity states and absolute transition prob-
abilities will enable us to use the above information
to determine the shape multipolarity for these
levels.

232U 234U

The number of levels available for these nuclei
is not sufficient to yield much information about
shapes except that it is clear from Table II that the
positive-parity parameters do not give a good fit
to negative-parity states. In fitting these nuclei
the value of the stiffness parameter p, from the
positive-parity fits was also used in fitting the neg-
ative-parity levels, since there are no data avail-
able for negative-parity p-vibration levels. The
actual value for p. is expected to be within 15 or
20% of this value. In the quadrupole (octupole) mod-
els the free parameters are the over-all scale fac-
tor and y(g), respectively, while in the quadrupole-
plus-octupole model the free parameters are the
octupole asymmetry parameter (q} and B, a mea-
sure of the relative octupole content. So there are
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TABLE II, A comparison of theory with experiment for the negative-parity states of Th, U, and ~ U. The first
column gives the experimental data, and the next three columns give the prediction of the pure quadrupole (A, =2) model
proposed here, the pure octupole model (X = 3) of Ref. 4, and the mixed quadrupole-octupole model (X=2, 3) of Ref. 11,
respectively. To show the difference in quadrupole nuclear shape between positive- and negative-parity states, the last
column gives the quadrupole predictions using the fitting parameters taken directly from Table I for the fit to positive-
parity levels. In the quadrupole model the spacing of the lowest two levels is taken directly from experiment, and the
asymmetry parameter y and stiffness parameter p are adjusted to fit the spacing of the remaining levels. Similarly in
the octupole model the spacing of the lowest two levels is taken directly from experiment and p and the asymmetry pa-
rameter p are adjusted. In the mixed model, however, the octupole asymmetry parameter p and mixing parameter D
are adjusted to fit the spacing of all levels. The rms deviations are for all predicted levels having experimental equiva-
lents.

Exp.
{Refs. a-e) Theory (A, = 2) Theory (A, = 3) Theory Q. = 2, 3) Theory (A, = 2, 7t.+)

p,

n
D

rms (keV)

Energies
(1 ev)

I =1
3
5
7
2
8
4
5
6
1
3
5

7
p
Yl

D
rms (keV)

Energies
(keV)

I=1
3
5
7
2

3
4
5
6
1
3
5

7
p
71

D
rms (keV)

327.5
396.0
514.

1123.
1169.
1227.

1451.

564.
630.

1017.
1031.

8.758'
0.189

827.5
396.0
517.
688.

1132,
1169.
1228.
1280.
1352.
1376.
1452.
1585.

11.126'
0.249

0.

564.
630.
741.
894 '

1017.
1031.
1094.
1149.
1211.
1119.
1195.
1324.

16.165'
0 ~ 220

15.2

232U

234U

0.259
11.888'

6.7

327.5
896.0
515.
679.

1136.
1171.
1215.
1273.
1337.
1372.
1452.
1591.

0.249
15 619

564.
630.
743.
895.

1016.
1082.
1099.
1162.
1226.
1588.
1665.
1796.

0.220
22.351'

15.4

9.328'
0.221
94'
0.19
5.7

827.5
396.5
518.
687.

1134.
1171.
1217.
1277.
1347.
1378.
1451.
1588.

8.678'
0.249

34 6'
0.06
0.

564.
630.
743.
896.

1017.
1032.
1095.
1151.
1214.
1187.
1263.
1893.

8 125
0.220

67'
0.09

13.8

9.328'
0.221

6.3

827.5
896.0
516.
684.

1128.
1164.
1211.
1271.
1340.
1366.
1443.
1579.

8.678'
0.249

199.

564.
630.
744.
898.

1291.
1321.
1362.
1412.
1471.
1137.
1213.
1844.

8.125'
0.220

474.3
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TABLE H (Continued)

Energies
(keV)
I=1

3
5
7
2
3
4
5
6
1
3
5

Exp.
(Refs. a-e)

849.8
962.4

989.8
1064.2
1069.4
1127.6
1194.7

Theory (X=2)

786.9
849.8
944.5

1105.1
993.0

1030.6
1077.0
1143.9
1203.7
1428.6
1498.6
1617.0

Theory Q, = 3)

U~ (Continued)

786.9
849.8
949.4

1073.8
986.4

1028.0
1075.0
1156.6
1208.2
1924.5
1995.7
2107.9

Theory (A, =2, 3)

786.9
849.8
957.0

1104.2
gg3. 2

1030.0
1077.1
1139.8
1205.2
1572.3
1643.4
1764.9

Theory (X= 2, m+)

786.9
849.8
959.8

1112.3
1107.0
1638.1
1679.1
1730.4
1790.3
1491.9
1563.1
1686.5

See Hef. ]6 for 228

b See Ref. 17 for 228Th.
'See Ref. 18 for U.
See Ref. lg for

See ref. 20 for 84U.

X =2, xz PLANE X=2, yz PLANE, X = 2, xy PLANE

X=3, xz PLANE X =3, yz PLANE X=3, xy PLANE

X =2, 3, xz PLANE X = 2,3, yz PLANE X = 2,3, xy PLANE

FIG. 3. A comparison of shapes predicted for Th by the quadrupole (A, = 2), octupole (A. =3), and mixed quadrupole-
octupole (A, =2, 3) models. The deformation parameter was arbitrarily set at P = 0.25 for the quadrupole, and mixed
quadrupole-octupole models, and at P = 0.15 for the octupole model.
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TABLE III. A comparison of moments of inertia in the
quadrupole, octupole, and mixed quadrupole-octupole
models for Th.

Moment A. =2 model X=3 model A, =2, 8 model

2ii/{i)+ i,)
2i2/(i)+ i,)
2i3/{i)+ i2)

1.176
0.824
0.031

1.266
0.784
0.029

1.194
0.806
0.031

two free parameters in each of the three models.
The predictions for one branching ratio of '"U are
shown in Table III, and once again the three mod-
els make similar predictions.

V. CONCLUSION

We have compared experimental data for negative-
parity states in '"Th, '"U, and '"U with the pre-
dictions of three possible asymmetric rotor models;
pure quadrupole, pure octupole, and mixed quadru-
pole plus octupole. There seems to be little differ-
ence between pure quadrupole and pure octupole
model predictions, so it is not surprising that mix-
ing the two together does not offer different predic-
tions either. The significant point here is that from
the available data, the collective model appears in-
capable of determining whether the nucleus has any
octupole-shape content at all when in an excited
negative-parity state.

TABLE IV. A comparison of model predictions with experimental data for E2 branching ratios of the negative-parity
states of Th and 3 U, for the quadrupole, octupole, and mixed quadrupole/octupole models.

Transition

228Th

211-311
211-111

321-111
321-311

411-511
411-311
2S2U

211-311
211-111

~See Ref. 16.

Exp.

(0.3

0.86 + 0.02

0.75+ 0.02

4.00+1 b

Theory (A. = 2)

0.22

0.49

0.39

0.20

Theory (A, = 8)

0.22

0.49

0.89

0.19

bSee Ref 18

Theory (A, =2, 8)

0.22

0.49

0.38

0.18
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Differential cross sections for elastic and inelastic proton scattering on Zr were measured
between 6.0- and 8.5-MeV bombarding energy. The decay of analogs of states in Zr to the
ground state and the 0.92 MeV (2+), 1.30 MeV (0 ), 1.66 MeV (2+), and 2.06 MeV (3 ) states
in Zr was investigated. In the analysis of the inelastic proton groups, the enhancement of
the Hauser-Feshbach background, as well as the interference of the resonance amplitude with
direct nuclear excitation were taken into account. Spins, spectroscopic factors, and possible
weak-coupling configurations in the parent system are derived and compared with results pre-
viously obtained for Zl and Zr.

1. INTRODUCTION

Since the pioneering work of Jones, Lane, and
Morrison, ' inelastic proton scattering through iso-
baric analog resonances (1AR) has become an effi-
cient tool in nuclear spectroscopy for determining,
in a qualitative way, correlations between low-ly-
ing core states ~c) of the target and the states (nc)
of the parent system. Conclusive analyses, howev-
er, resulting in numerical values for partial widths
and spectroscopic factors, have been performed
only for two categories of resonances; namely,
single-partic1e analog resonances (1) built upon the
ground state of a target with magic neutron number
and decaying to excited neutron-particle-neutron-
hole states, and (2) built upon excited core sta'tes
(weak-coup1ing modei). ~'~

The partial widths and angular momenta of the
outgoing proton partial waves manifest themselves
in the shapes of the on-resonance angular distribu-
tions. So far, only resonances above a very small
background2 or superimposed on a Hauser-Fesh-
bach background' ~ have been studied in detail, as
those angular distributions feature near symmetry
about 90 . However, IAR occur in general at pro-
ton energies where Coulomb and direct excitation
compete with the resonance process, particularly

in exciting collective states. The interferenee be-
tween different modes of excitation can affect an
angular distribution to such an extent that details
of the resonant part (like the coefficients of the I'~
and higher terms in a Legendre polynomial expan-
sion) are masked. 1t thus seemed worthwhile to in-
vestigate a reaction where the effects of direct
scattering have to be taken into account. We chose
~Zr as target and measured the decay of analogs
of parent states in "Zr to target states below 3.0-
MeV excitation. From inelastic proton scattering
at 12.7 MeV, these states are known to be weakly
"deformed, "except for the lowest quadrupole and
octupole vibrations at 0.92 and 2.06 MeV, respec-
tively, which indeed will show a pronounced non-
resonant excitation above 7-MeV proton energy.
Because of the very low (P,n) threshold at 1.69
MeV and the high level density in ~Nb, Hauser-
Feshbach contributions in the (P,P') cross section
from T, compound states are expected to be small.

Tile seeol1d okgect of this experiment was to mea-
sure spins of IAR and partial widths for the decay
to low-lying target states. As was pointed out pre-
viously, ' the differential cross section of the pro-
tons leaving ~Zr in its excited 0' state at 1.30 MeV
is most appropriate for thi.s task, since the on-
resonance angular distributions depend very sensi-


