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A detailed shell-model calculation is carried out to discuss the properties of the low-lying
states of Cu 9 and Ni" nuclei. An inert Ni 6 core is assumed and the three extracore parti-
cles are considered to occupy the 1P3~2, pf&~2, and 1P&y2 orbitals. The effect of including the

og&g2 orbital is studied. The renormalized reaction matrix elements as derived by Kuo and

Brown for this mass region are used. A comparison between the observed and calculated en-
ergy levels is made and the wave functions obtained are used to calculate the spectroscopic
factors for the Ni (He, d)Cu58 and Ni (d, P)¹i~ reactions. The odd-mass Ni isotopes (¹i9,

Nie~, Ni63, Ni 5) are then described by the modified Tamm-Dancoff approximation (MTDA)
method. The MTDA results for odd Ni isotopes are found to be in quite satisfactory agree-
ment with experiment. These results together with the previous results for even Ni isotopes
by Roy, Raj, and Rustgi lead us to believe that the Kuo-Brown matrix elements in conjunction
with the MTDA method give a good description of all the Ni isotopes.

I. INTRODUCTION

In a recent series of publications, Kuo and
Brown' ' have proposed a method for deriving the
effective interactions in finite nuclei from the real-
istic nucleon-nucleon interaction such as the Ham-
ada- Johnston potential. In this method, the excit-
ed configurations of the inert core are used to re-
normalize the matrix elements of the interaction
between the active valence nucleons by second-
and higher-order terms of the double and multiple
scattering type. In the usual shell-model calcula-
tions with phenomenological nucleon-nucleon po-
tentials or with adjustable reduced matrix ele-
ments to be determined from X' fits to selected
pieces of data, the effective forces already include
the core-excitation effects. This is not the case
with the matrix elements of a "bare" realistic nu-
cleon-nucleon potential. Here an appropriate re-
normalization for core polarization has to be
sought in order to justify a truncation of the single-
particle spectrum to allow reasonable maximum
dimensions of the Hilbert space for mixing all the
important configurations of a given shell-model
problem.

Since the publication of the paper by Kuo and
Brown (KB), several papers have appeared
which have employed the renormalized KB matrix
elements to study the level structure of nuclei in
various regions of the Periodic Table. It is found
that these matrix elements not only give satisfac-
tory results for some standard nuclear-structure
calculations but also provide a good description of
nuclei having several nucleons outside a closed
core. In a previous publication by Barman Roy,
Raj, and Rustgi (BRR),7 the KB matrix elements

were employed to study the level structure of even
Ni isotopes within the framework of the modified
Tamm-Dancoff approximation (MTDA) method.
The markedly improved agreement with experi-
mental data has encouraged us to carry out a sim-
ilar calculation to study the nuclear properties of
odd-mass Ni isotopes as we11. A calcu1ation on
Cu" is of importance because this will test the T
=0 matrix elements of KB.

Though the energy levels of Cu" and Cu" have
been the subject of several studies, until recently
relatively little has been known about Cu" and Cu".
The level structure of Cu" has been recently stud-
ied by Pullen and Rosner' by means of the Ni"-
He', d)Cu" reaction. These authors have extended
the measurements on the excited states up to the
analog-state region and have compared their re-
sults with the unified-model predictions of Bouten
and Van Leuven. ' The excitation energies of the
first four excited states of the odd Cu isotopes are
well reproduced by this model. However, no theo-
retical results have been made available for Cu"
on the spectroscopic factors. For other isotopes,
in general, the disagreement between theory and
experiment is such that the theoretical transition
probabilities are larger than the experimental ones;
this indicates perhaps that the wave functions of
this model contain too large admixtures of shell-
model and two-phonon states. Therefore, in this
paper a pure shell-model approach is applied. Un-
like the calculation of Bouten and Van Leuven,
which has three adjustable parameters, the pres-
ent calculation has none.

In a simple shell-model discription of nickel iso-
topes it is assumed that Ni" closes the Of», shell
for both protons and neutrons and that the interac-
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tion among the valence neutrons gives rise to the
observed spectra of these nuclei. Employing this
approach and KB renormalized matrix elements
for the Hamada- Johnston potential, the shell-mod-
el results on Ni isotopes have already been report-
ed by Lawson, MacFarlane, and Kuo' and results
for the quasiparticle-approximation have been re-
ported by Gambhir. ' The renormalized matrix
elements used in the present shell-model and quasi-
particle calculations also correspond to the Ham-
ada-Johnston potential but are different, as men-
tioned in BRR.' These matrix elements give mark-
edly improved results in describing the vibrational
characteristics of the even Ni isotopes when the
calculations are performed within the framework
of the quasiparticle method. A theoretical study
of 1' and 3' states in even Ni isotopes has been
carried out by Rustgi, Barman Roy, and Raj."

A major drawback of our calculation, as also of
all other similar ones, is that the single-particle
energies are not determined in a self-consistent
manner. We have taken these energies from the
Ni" spectrum. The unperturbed single-particle
energy for the Og»2 is not well known and is as-
sumed to be 5.0 MeV as used by Kuo. ' It is known

that the results of the core-polarization procedure
are insensitive to the selection of such a choice.
Further, it is found that the results are not very
sensitive to large variations in the single-particle
energy of the Og», orbital.

In Sec. II the results of shell-model calculations
of Cu" are reported. In Sec. III similar calcula-
tions for ¹i'are carried out. In the last section,
the odd ¹iisotopes are described within the frame-
work of the MTDA method. This method developed
earlier' ' ' and extended recently'~ uses a complete
set of orthonormal and nonredundant quasiparticle
basis states and describes the levels of odd nuclei
as a superposition of one- and three-quasiparticle
states.

II. SHELI MODEL CALCULATIONS FOR Cu

As has been mentioned in the Introduction, the
success of the previous calculation by BRR in de-
scribing the even Ni isotopes with the KB effective
interaction between configurations involving the

1p«„0f«„ lp«2, and Og9» single-particle orbitals
has led us to undertake this extensive calculation
for Cu' . The method adopted to carry out the cal-
culation consists of computing the shell-model-
Hamiltonian matrix between the various allowed
configurations for each total spin J and diagonaliz-
ing it to find energy levels and wave functions. The
wave functions are then used to calculate the spec-
troscopic factor for the reaction Ni"(He', d)Cu".

As is usual in shell-model calculations, the two-

body reaction matrix elements are fed into the com-
puter as the input data and the shell-model-Ham-
iltonian matrix employing the expressions listed in
Appendix A, is set up. The dimensions of the com-
plete matrices involving all the possible three-nu-
cleon excitations with 1p«„0f«„and lp«, orbit-
als are, respectively, for J"=—,', 14&&14; —,', 20

&& 5; and ~, 2&& 2. On including the Og», orbital,
the dimensions of the matrices range from 1~1
for spin —", to 34X 34 for spin 2 . The unperturbed
single-particle energies for the orbitals 1P3/2,
Of„„and 1P», were taken to be 0.0, 0.78, and
1.08 MeV, respectively, from the Ni" spectrum.
The unperturbed single-particle energy for Og»,
is taken to be 5.0 MeV, as used by Kuo. The ef-
fect of varying the single-particle energy for Og»,
to 3.5 MeV is also studied.

The T =1 renormalized two-body matrix ele-
ments had been already discussed in connection
with the previous calculations on even Ni isotopes
but the T =0 two-body matrix elements did not oc-
cur there. These matrix elements have also been
calculated by KB and are the sums of three com-
ponents: the bare interaction uncorrected for po-
larization of the Ni" core, corrections due to the
excitation of a single core nucleon to an empty lev-
el, and corrections due to the promotion of a pair
of nucleons. A complete discussion of the calcula-
tion of these HBmada- Johnston matrix elements
can be found in the papers of KB. Though the bare
matrix elements have been estimated by KB to be
within 15% of the real bare matrix elements, it is
difficult to estimate the accuracy of the perturba-
tion corrections or the importance of higher-order
terms which have been not included. In the Ni re-
gion the perturbative corrections are more impor-
tant for T =1 Hamada-Johnston matrix elements
than for those with T =0; the correction being
about 100% for T = 1 but only 15%%for T = 0. This,
therefore, leads us to believe that the T =0 matrix
elements will be reasonably close to reality.

In order to perform the numerical work, the
computer program employed earlier to generate
the three-particle configurations is rewritten so
that it can set up the matrix for a given set of sin-
gle-particle states, total spin, isospin, and parity
and then diagonalize it. The program is cheeked
for correctness by reproducing the results of the
earlier calculations in which only T =1 matrix ele-
ments were employed. The energy spectrum for
Cu obtained with KB matrix elements is shown in
Fig. 1. In the figure KB3 and KB4 present the re-
sults of calculations carried out with three (1P«„
Of«2, 1p,(3) and four (lpsI2, Of,j„ lp»„0&9), or-
bit3ls. As should be expected, the results of KB4
show slightly better agreement with levels whose
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least on the first two levels. These levels moved
from 0.23 and 0.61 MeV to 0.27 and 0.60 MeV. The
higher levels move up on the average by about 0.25
MeV. The lowest levels withe'=p, g, g, g,
'-,', '-,', and ~ occur at 3.23, 3.83, 11.84, 12.57,
12.09, 12.50, and 11.85 MeV, respectively, in the
KB4 approximation. When g@, orbital is excluded,
the highest possible allowed 4" ='-,' and z~ and

their lowest levels exist at 2.86 and 3.47 MeV, re-
spectively.

As a test of the wave functions (listed in Table 1)

spins are known. The lowest two excited levels
calculated theoretically can be perhaps identified
with the experimental levels at 0.50 MeV (~ ), and
0.92 MeV (f. ). The spins of other levels have not

been measured experimentally. The model pre-
dicts many more levels than have been observed.
The observed levels at 2.33 MeV (~ ) and 2.71 MeV

(& ) can perhaps be identified with the calculated
levels at 2. 50 and 2.79 MeV. The effect of varying
the single-particle energy of the Og», orbital from
5.0 to 3.50 MeV was found to be insignificant at

FIG. 1'. Comparison of the experimental (EXP) and shell-model spectrum for Cus~. The column labels KB3 and KB4 are
explained in Sec. II.
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TABLE I. Lowest energy eigenvalues and eigenfunctions of Cu . Only amplitudes greater than 0.10 are listed.

Approx.
Zigenvalues

(MeV) Eigenfunetions

1
2

1
2

0 68 (p3/2 01P3/2) —0.10 (f5/2 21f5/2) + 0.88(p f/2 0 lp3/2)

-0.11(p,/, ' 10f5/2) -0. 7{p3/,' 10pf/2) -0.19(p,/,
'

2lpf/2)

-0.12(f5/2 21Pi/2) + 0.58{f5/2 01P3/2) + 0.16(f5/2 21P3/2)

-0.17(ge/2 Olp3/2) —0.12(pf/2 P3/2 20f5/2)

0'28{pi/2 Olpi/2) 0'80(P3/2 OP3/2) 0 1 (f5/2 80f5/2)

+0.59(p3/2 Olpi/2) + 0,19(p3/2 10pi/2) + 0.25(p3/2 2lf5/2)

+0~42{f5/2 Olpi/2) 0 ~ 15(f5/2 10pf/2) + 0,22(f5/2 21p3/2)

0'18(ge/2 Olpi/2) 0'16{pi/2 P3/2 20f5/2) 0'80{pi/2 P3/2 21f5/2)

0.52(f5/2 Olf5/2)+ 0,17(pf/2 10P3/2)+ 0.26(pi/2 Olf5/2)

-0.10(pf/2' lof5/2)+ 0.20(p3/2 21pi/2)+ 0.55(p3/2 01f5/2)

+0.15(p3/2 10f5/2) + 0,28{p»2 21f5/2) + 0.14(f5/2 2lpf/2)

-0.12{f5/2 80p f/2) + 0.16{f5/2 10P3/2) + O.1l(f5/2 2lp3/2)

+0.15(f5/2 41P3/2) —0.17(ge/2 Olf5/2) —0.21(pf/2 P3/2 21f5/2)

0.65(P3/2' 01P3/2) —0 11(f5/2' 21f5/2) + 0 84(pf/2' 01P3/2)

p»2 10f5/, ) —0 19{p3/2'10pf/2) —0 22(P3/2 21pf/2)

-0.12(f5/2 2lpf/2) + 0.51(f5/2 Olp3/2) + 0.10(f5/2 10p3/2)

+0.17(f5/2 21P3/2) —0.18(pi/2 p3/2 20f5/2)

0.22(pf/2 Olpf/2) + 0.88(p3/2 10p3/2) -0.15(f5/2 80f5/2)

+0.60(p3/2 Olpi/2) + 0.21(p3/2 10pi/2) + 0.27(p3/2 21f5/2)

+0.88{f5/2 Olpf/2) —0.15(f5/2 10pf/2) + 0.22(f5/2 21p3/2)

+0.16{Pi/2 P»2 20P5/2) -0.8 {P»2P3/2 2 P5/2)

0 47(f5/2' Olf5/2)+ 0 19(pf/2' 10P3/2)+ 0 26{pi/2' Olf5/2)

0.10(pf/2' 10f5/2) + 0.24(P3/2' 21p»2)+ 0.56(p,/,
' Ol f5/2)

+0.17(P3/2 10f5/2)+ 0.27{p3/2 21f5/2)+ 0.15(f5/2 2lpi/2)

/2 80P i/2 + 0'17(f5/2 10P3/2) + 0.11(f5/2 21P3/2)

+0 16{f5/2' 41P3/2) —0 28(Pi/2 P3/2 21f5/2)

obtained in the calculation, the spectroscopic fac-
tors for the reaction Ni' (Hes, d)Cu'9 are also cal-
culated and are listed in Table II. It is found that
the calculated spectroscopic factors are in reason-
ably good agreement with the experimental values.
The differences may be partly due to the unreliabil-
ity of the wave functions, as the agreement for the
level spectrum is not complete. The core-excita-
tion model of I awson and Uretsky" also predicts a
low-lying quadruplet of states in Cu' with 4"=

~

, and —,
' formed by coupling the odd 1PS»

proton to the first excited one-phonon 2+ state in
Ni". In the simplest form of this model these
states are not expected to be strongly populated by
the (He', d) stripping reaction. Bouten and Van

I euven9 have not calculated the spectroscopic fac-
tors for the reaction under consideration.

Pullen and Rosner have identified the levels at
3.904 (l~=l), 4.316 (1~=3), and 4.364 MeV (l~=1)
as the T =2 analogs to the ground (4" =2 ), 0.341
(~ ), and 0.466-MeV (2 ) states in¹'. In the
present calculation these states make their appear-
ances at 2.83 (2 ), 3.74 (—,

'
), and 4.00 MeV (~ ),

respectively. Their spectroscopic factors will be
discussed in the next section.

III. SHELL-MODEL CALCULATIONS FOR Ni

The same procedure as discussed in the previous
section is followed to calculate the energy level
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TABLE II. Spectroscopic factors for Ni (He, d)Cu TABLE III. Spectroscopic factors for Ni (d,P)Ni~ .
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FIG. 2. Comparison of the experimental (EXP) and
shell-model spectrum for Ni 9. The column labels KB3
and KB4 are explained in Sec. III. KB2 refers to calcula-
tions carried out with two orbitals {1P3/2, Ofp2).

spectrum of ¹i".For other shell-model calcula-
tions, the reader is referred to the papers of
Cohen et al."and Auerbach. " The present calcu-
lation is carried out in two approximations. In one
approximation the three neutrons outside the Ni"
core populate the single-particle orbitals 1P»„
0f„„lP, ~,. In the second approximation the Og,~,
orbit is also included. For J"=&, &»,
and ~ the dimensions of the matrices to be diag-
onalized are 5&& 5, 10&&10, 10~10, 6&&6, 5~ 5, and
1&& 1. When Og»2 is included, the dimensions of
the matrices range from 1&& 1 to 16& 16 and the
maximum J"= ~ . The results of the calculations
are shown in Fig. 2. It is found that like the pre-
vious calculation of Lawson, MacFarlane, and
Kuo, ' and the BRR' calculation for Ni", this cal-
culation also does not reproduce the correct or-
dering of the observed levels, though it gives a
slightly improved fit to the date over the calcula-
tion of Lawson, MacFarlane, and Kuo. ' The low-
est levels with J'=~, ~, ~, ~, ~, and ~
occur at 3.65, 10.95, 11.72, 11.37, 12.29, and
11.46 MeV, respectively, in the KB4 approxima-
tion. When the go&2 orbital is excluded the highest
allowed spin is i~~ and its lowest level exists at
3.37 MeV. The variation of the single-particle en-
ergy of the g,~2 orbital from 5.0 to 3.5 MeV prac-
tically has no effect on the lowest levels 4' =

and ~, but the levels above 1.5 MeV are moved up
on the average by 0.1 MeV.

Table III lists our calculated spectroscopic fac-
tors for the reaction Ni' (d, P)Ni' together with the
experimental data'" "and one other calculation. "
The calculated spectroscopic factors are in reason-
able agreement with the experimental values. This
is quite unexpected in view of the fact that the pres-
ent calculation does not even reproduce the correct
ordering and position of the energy levels. This,
however, does tell us that the wave functions (list-
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TABLE IV. Lowest energy eigenvalues and eigenfunctions on Ni59. Only amplitudes greater than 0.10 are listed.

Approx.
Eigenvalue s

{MeV) Zigenfunctions

-1.921 0.77 (p 3/2' Op 3/2) + 0.28 (p, /2 Op 3/2)

+0.53 (f5/2 OP 3/2)
—0.17(ge/2 OP 3/2)

-1.009 0'83(P3/2 P1/2) +0-17(P3/2 2f5/2)

+0.44(f5/2 Op 1/2) 0'16(f5/2 2P 3/2)

0 16(f9/2 P1/2) 0'17 (P1/2P 3/2 2f5/2)

-0.753 0.47(f5/2 Of5/2) +0.27(P1/2 Of5/2)

+0.12(p3/2 2p1/2) +0.80(p3/2 Of5/2)

-0.18(g9/2 Of5/2)

3»
2 -1.603 .. 0e84 (p 3/2 Op 3/2) + 0.26 (p 1/2 Op 3/2)

+0.46 (f5/2 Op 3/2)

1-
2 -0.725 0.86(p3/2 OP1/2)+0. 23(P3/2 2f5/2)

+0.35(f5/2 Opf/2) —0.21(f5/2 2p3/2)

-0.22 (p1/2 p 3/2 2f5/2)

5»
2 -0.422 o as&a of@2)+o 2s(&w ofs~2)

+0.28(p3/2 2p1/2) +0.83(p3/2 Of5/2)

ed in Table IV) in the present calculation have al-
most the right type of admixtures of the various
configurations.

IV. QUASIPARTICLE CALCULATIONS FOR ODD Ni

ISOTOPES

In order to predict the detailed spectra of odd

nickel isotopes, Ni" is assumed to be an inert
core and the active neutrons are distributed among
the single-particle orbitals lP,I„OfM„and 1P,I„
the unperturbed energies of which are listed in Sec.
II. The energy spectra of the low-lying states of
odd Ni isotopes are described as a superposition
of one- and three-guasiparticle states. The de-
tailed method of calculation and all working for-
mulas are given in Ref. 13. Only some of the work-
ing formulas are given below. All the notation
used here is defined in Ref. 13.

The chemical potential A. and the energy-gap pa-
rameter ~, are obtained by solving the BCS equa-
tions,

Here, N is the number of neutrons present in the
unfilled major shell, &, is the single-particle en-
ergy corrected for self-energy, and G(aabbJ) is
the antisymmetric two-body matrix element for to-
tal angular momentum Z. The quasiparticle ener-
gy E, is given by

E.= [(~.—X)'+ ~,']"'.
The probability of occupancy V,' and nonoccupan-

cy V, of a given state a are determined from

U, =)[1+(e,—X)/E, ],
and

V,'=-,'[1 —(8, —X)/E, ] .

The energy matrix to be diagonalized may be
written as

2b + 1 '~' G (aabb0)
~ ~ 2a+1 E b )

b b

&=2+(2a+I) 1 — ' + (2)

8 L+E'

where E and E' are the unperturbed energies of
one- and three-quasiparticle states, L is the ma-
trix connecting the three-quasiparticle subspaces,
while S connects one- and three-quasiparticle sub-
spaces. The explicit expression for the matrices
S and L are contained in Ref. 13.
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The basic input data required for setting up the
energy matrix, beside the two-body matrix ele-
ments which in our case are for the Hamada-John-
ston nucleon-nucleon interaction, are the quasi-
particle energy (E, ), and the occupation probabil-
ity (V,'), which in turn determines the nonoccupa-
tion probability U, =1 —V, , for the single-particle
state a. These data are obtained by solving the
usual gap and number equations, listed above as
(l) and (2), by supplying the pairing matrix ele-
ments of the Hamada-Johnston potential. The val-
ues of E and V for various single-particle states
are listed in Table V. It should be mentioned here
that in obtaining the quantities of Table V, the con-
tribution of the extra term arising due to the ex-
pectation value of the number operator for a sin-
gle-quasiparticle state is also included in the num-
ber equation.

The effect of the spurious 0' pair state from the
three-quasiparticle states is eliminated by using
a complete set of orthonormal basis states while
setting up the energy matrix. Table VI presents
the results of such matrix diagonalization for all
the odd Ni isotopes and the quasiparticle and ex-
perimental spectra are compared in Fig. 3. All
the energy eigenvalues up to the first ~ state are
included. The rom MTDA presents results ob-
tained by diagonalizing the energy matrix in the
complete space of one- and three-quasiparticle
states and the resulting admixture of one-quasi-
particle state is represented in row labeled 1'.
The experimental (Expt. ) values are shown for the
purpose of comparison. It is to be noticed from
this table that for Ni" the shell-model results,
presented in the row SM, are not very different
from the MTDA results except for the —,

' states

TABLE V. For each odd ¹inucleus the first row
gives the single-quasiparticle energy (E) in MeV and the
second row gives the transformation coefficient (V).
These are obtained by using the pairing matrix elements
of the Hamada-Johnston potential with the extra term in
the number equation (mentioned in Sec. IV).

1
2

3
2

59

61

65

1.81
0.307
1.58
0.456
1.82
0.614
1.11
0.805

1,02
0.612
1.25
0.807
1.54
0.905
1.83
0.961

1.59
0.371
1.47
0.552
1.39
0.719
1.84
0.868

and do not even reproduce the ordering of the
known experimental levels. On the other hand the
MTDA results do reproduce at least the ordering
of the know experimental levels, although their en-
ergies are relatively higher. For Ni" the ordering
of the first three experimental levels is repro-
duced within reasonable limits, but our calculation
also predicts two more levels below the second ~
state, for which experimental information is not
known. There is very good agreement for Ni" be-
tween the known experimental and MTDA values.
In the case of Ni", the ordering of the first two
states is not in agreement, but the next two known
levels are reasonably well reproduced.

One can also notice from Table VI that the first
state of any given angular momentum is always
predominantly of the one-quasiparticle type with
the admixture of three-quasiparticle state varying
from about 7 to 20%%, while the second state is very

TABLE VI. Calculated (MTDA) and experimental (Expt. ) energy levels (in MeV) of odd Ni isotopes. All the levels of
a given nucleus have been calculated with respect to the lowest of them. The numbers labelled 1qp denote the percent-
age of the one-quasiparticle state. The row SM is the shell-model result for Ni~s and is included for the purpose of
comparison.

59 Expt.
59 SM

59 MTDA
59 lqP

12i

0.47
O.SS
0.75

82.79

22

1.32
1.91
1.78

10.80

32i

0.00
0.00
0.00

90.00

0.89
1.51
1.75
O.GO

1.97
3.79

52i

0.34
1.18
0.59

91.62

5-
22

1.44
1.79
1.09

5
23

2.09
2.08

7—
7'2

9-
2 i

2.04
2.15

61 Kxpt.
61 MTDA
61 1qp

0.28
0.33

83.28
1.28

13.04

0.00
0.00

89.74
1.11
2.19

1.65
1.72

0.07
0.28

93.03

0.91
1.45 1.61
0.88 0.52

1.52 1.87 1.98

63 Expt.
63 MTDA
63 1@5

0.00
0.00

89.55

1.01
1.23
6.52

0.16
0.18

85.56

0.53
0.53
4.10

0.09
1.60 0.08
5.34 91.22

1.23 1.43
3.49 0.03

1.32 1.59 1.81

65 Expt.
65 MTDA
65 1qp

0.06
0.00

92.06
1.84
2.16

0.32
0.66

80.05

0.70
0.87
8.59

2.09
2.31

O.GG

0.26
91.95

1.61
0.72

2.02
G.21

1.69 2.09 2.23
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FIG. 3. Comparison of the experimental (EXP) and quasiparticle (MTDA) spectrum of odd Ni isotopes (59-65). SM

denotes shell-model results.

dominantly a three-quasiparticle type with a one-
quasiparticle component up to about 13%. All of
the third states reported in Table VI are also in-
variably of the three-quasiparticle type with the
one-quasiparticle admixture of about 5%. The in-
termixture of one- and three-quasiparticle states
is not appreciable but it affects the magnetic mo-
ment and transition rates in some cases to a very
large extent and is discussed below.

The calculated magnetic moments are presented
in Table VII. The numbers under the column 1'
give the contribution arising only from the one-
quasiparticle component of the MTDA wave func-
tions, while the quantities under the column p, are
the full contribution from the MTDA wave functions.
Examination of this table shows that the admixture
of three-quasiparticle states does produce a de-
parture from the single-quasiparticle (same as the
one-particle) values p and the lqP values. The
maximum departure arises in the case of the ~

state, otherwise it is within the range of 0.2pN,
which is of the order of the correction to the mag-
netic-moment operator itself due to velocity-de-
pendent forces, meson-exchange currents, etc.

The &(Ml) and B(E2) reduced transition strengths
are shown in Table VIII. Again as before, the num-
bers under the columns 1' and MTDA are the con-
tributions only from the one-quasiparticle com-
ponent of the MTDA wave functions and the full
MTDA wave functions. The admixture of the three-
quasiparticle states is small but it affects the 1+
8(M1.2 2 ) values to roughly between 1 7-23%,
and the Ml transition strength connecting P»2 and

f,i, states, which is strictly forbidden without
three-quasiparticle admixture, is found to be very
small. On the other hand, the E2 transition
strengths display a more sensitive dependence on
this small three-quasiparticle admixture, and
causes a significant change in the 1qp values com-
pared with the changes in M1 transition strengths.

TABLE VII. Magnetic moments of odd Ni isotopes in p~. The column Iqp denotes the contribution from the one-
quasiparticle component of the MTDA wave functions, the column p is the value calculated with the MTDA wave func-
tions having also a three-quasiparticle component, and the column p represents the single-quasiparticle value.

61 65

1
2

3
2

0.688

-1.913

1.366 1.252 1.344

0.528 0.671

-1.722 -1.746

0.581 0.677

1.271 1.378

-l.717 -1.646

0.571 0.662

1.247 1.394

-1.687 -1.566

0.587 0.649

1.256 1.380

-1.531 -1.548
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TABLE VIII. Values of the reduced transition strengths B(M1) and $(E2) for odd ¹ isotopes. The column lqp gives
the value arising only from the one-quasiparticle component of the MTDA wave functions, and the column MTDA rep-
resents the value calculated with the quasiparticle wave functions having also a three-quasiparticle admixture. B(M1)
values are in units of pz and B(E2) values are in units of elf f /A where elf f is the effective charge of the neutron and
0. =Mes/@ is the harmonic-oscillator parameter.

Reduced
transition
strength

Ni»

lqp MTDA lqP MTDA

¹i63
lqP MTDA

Ni~'

lqP MTDA

a(V1 -' --' )

agirl -' --' )

ag2 -' —-' )

BN2 — — )

1.54 1.SO

0.00 0.0030

0.76 0.34

0.10 0.12

1.39

0.00

0.060

1.67

0,0037

0.022

0.0009 0.025

0.00

0.12

1.72

0.0036

0.83

0.047 0.015

1.51 1.88

0.00 0.0029

0.88 3.03

0.17 0.005

An over-all comparison with other calculations'o'
indicates that the results reported in this paper
show better agreement with experiment. These re-
sults together with the previous results for even
Ni isotopes' indicate that the KB matrix elements
give a consistently better description of all the
nickel isotopes. It may be desirable to make simi-
lar calculations with other realistic potentials such
as the Reid potential because of its structural dif-
ferences from the Hamada- Johnston potential.
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APPENDIX A

For completeness, the matrix elements used in the shell-model calculations of Cu" and Ni" are listed
below. The antisymmetric states for the various three-particle configurations are defined by

Ig '[J T ]v JT& =(-)" i Q(j'(4'T') j JTIIg, '[J,T,]vs&lg, (3);I,'4,'T', ;JT&, (Al)

Ii,i.J»T», i, ;&T&.=~l(( )'3"»"& -' " li, (3), [j,(l) j,(2)J„T»],;~&+o,,„,p(j,j,Z»T»)

Z ~(j,i.Ji.;J„J.,)~(22T ', T, T»)Ii, (3), [-j,(I)j,(2)~, T„],;&T&],
Z~ST~3

(A2)

where

~(i, i,J»T,.)+I —(-)"'" "' ""' (j -i.),
Ii, (l)i, (2)~»T»&. =~2/Ii, (I)i.(2)J»T,,&

—(-)"'" "" *""Ii.(I)i,(2)~»T„&)~,„, (A4)

Here J is the total angular momentum, T, the total isospin; v, the seniority, and the subscripted J and
T denote the intermediate coupled angular momentum and isospin. The superscript on j, denotes the num-
ber of particles present in that particular state and the numbers in the parentheses refer to the particles.
The expansion coefficients (II & are the fractional-parentage coefficients. The operator P(j,—j,) inter-
changes the subscripts 1 and 2. In Eq. (Al), (4,'T,') are the intermediate angular momenta and isospins of
the parent state, and [Z,T,] are the same for the antisymmetric state for three equivalent particles formed
by the above parent state.

With these three-particle basis states, the various matrix elements can be written as
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,&7,'[z, T,]v, ;zrl g v,,I 7,'[z, r, ]v, ;zT).= 3a, , n, „g (7,'p, z;),7., ; zT ) 7., [Z, r, ]v,zT&

x (7,'(z1r,'), 7, ;zT I Il 7,'[z2 7 2]v2zT&(7', 'z,'r, I v12I 7',v'v", &, (A5)

.(7,2[v, r, )v;GATI g v, , I 7,7,z„T„,7,;sr&.
i&A

= ~3(&j.j,&7','(~22 &„),7'„.~~ll7', '[~, ~,lvW(7', '~.,7'„I~„l (7', 7', ~„T„).)+ ~22I'(7'27'2~22T22)&, „,(-)'
&& Z & 7','(~p", ) ~7'» ~~ j7'1'[~1T,)v~) (7(727'2 ~7'4; ~„~,')&(22~2 P'a2 ~l)(7'1'~p'l I T7121 (7'27'4 J1T1)4& 4

1 1

.&717.~18',2, 7'2; ~T'I Z ~2I 747, ~~, 7'42, 7.; ~T'&.

' + J +T -ZT+-'
j2j4 112842 T12r42 &7472112 12I 121 7472 42 42&4 ~11j2 (7172 12 12) j1j4( )

' +J +T - J-T+ —'
&(7172~72'1~12~F2)~(22&2; T,P'4, )4&7272~4, &4.1&2I 7472~42 &42&4+ &j4j2&(747242T42)~j2 j4(-)"""'"'

(7475 74) ~42 ~12) (22 42 ~12) @(7172 12 12 I 12I 7278 12 12)o+ j j j j (7172 12 12)

U(7', 7'2~7'2;~„~„)&22&2',T;,T22&(747'2 ~ .7' J4&2)2&( 2&2'2&„T22.(7'272~~2 &g2I T'1217.7'442 T'22&. ,
23 28

where oj.j, = (1+5j „) 'j2 .

(A7)
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