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The Beliaev-Zelevinsky method, which represents fermion-pair operators by infinite ex-
pansions in exact bosons, is applied to the problem of nuclear rotation. In the harmonic order,
which is essentially the random-phase approximation (RPA), the rotation, viewed as infinites-
imal, is decoupled from the collective vibrations. The higher orders, however, give rise to
various band-mixing terms, which may be interpreted as rotation-vibration and higher-order
Coriolis interactions, as well as to vibrational anharmonicities and renormalization of the
moment of inertia. A systematic approach is given for extracting these higher-order correc-
tions for the idealized case of a two-dimensional system of interacting particles. Both the
Hamiltonian and transition operators are treated. The self-consistent-field approximation is
then formulated in the boson picture and applied to the cranking model. The advantage of this
formulation is that it allows one to establish the correctness of the higher-order cranking
model, which is shown to provide the ground-state-band rotational energies with an error of
the order of the small boson-expansion parameter (or the square of this parameter, depending
on its definition). The usefulness of the cranking model for obtaining the angular momentum
dependence of transition operators is also demonstrated. The Appendix illustrates some of
the ideas by way of application to a system of particles interacting through a two-dimensional
analog of the quadrupole-quadrupole force.

I. INTRODUCTION

A recent paper by the authors was concerned with
the solution of some problems which had remained
in the random-phase approximation (RPA) theory
of nuclear rotation. ' The context of the discussion
was provided by the interpretation of the RPA as
the harmonic order in a boson expansion of fermi-
on-pair operators. In particular, it was shown that
although nuclear rotations are not small oscilla-
tions, expansion of all the degrees of freedom, vi-
brations and rotations inclusive, on an equal foot-
ing can still be a very useful technique, not only
for obtaining the rotational energy, but also for cal-
culating transition matrix elements. It was also
shown that the lowest-order self-consistent crank-
ing prescription, which identifies the moment of in-
ertia, can be directly derived from the RPA Hamil-
tonian. The present paper is a direct extension of
this work to include higher orders of the boson ex-
pansion for deformed systems with an even number
of particles. The notation and background are pro-
vided by Ref. 1, while the notion of boson expan-
sions as applied to spherical nuclei has been dis-
cussed in several papers, ' ' beginning with the
work of Beliaev and Zelevinsky (BZ).' For didactic
simplicity, the discussion will be limited to the ro-
tation of a two-dimensional system of particles, as
was done in Ref. 1.

We begin in Sec. II, not with a specific boson ex-
pansion, but with the construction of the most gen-
eral form of the Hamiltonian through quartic boson
terms, subject to the usual invariance laws, in par-
ticular, rotational invariance. The bosons used
are assumed to correspond to particle-hole or
quasiparticle pairs of a deformed potential well and
are conveniently expressed as linear combinations
of the normal-mode bosons. It is then shown how
the large conglomeration of higher-order terms
can be grouped together into meaningful combina-
tions which may be interpreted as rotation-vibra-
tion and other types of band interactions, as well
as vibrational anharmonicities. Transition opera-
tors are also treated similarly. The deviations
from the perfect rotational spectrum, and the ef-
fects of band mixing on transition probabilities are
then easily calculated.

In Sec. III, the BZ-type expansion for nonsuper-
conducting systems is introduced. This is an ex-
pansion about a Hartree rather than Hartree-Fock
minimum. A simple formulation of the Hartree
ground-state problem is found in the boson repre-
sentation and then applied to the cranking model.
The ground-state rotational-energy spacings are
given by the expansion

z(m) = (2e) 'u'+ms'+ eM'+ ~ -~ ~,
in powers of the angular momentum quantum num-
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II. BOSON HAMILTONIAN AND TRANSITION
OPERATORS

A. Form of the Hamiltonian

In order to identify J4 terms, where J is the angu-
lar momentum, the Hamiltonian must be expanded
through quartic boson terms:

H Ha+Her»+Hiv+ ' ' '
~ (IL1)

where Hs (in the notation of Ref. 1) is quadratic,
H», is cubic, and H, v is quartic in bosons. Each
successive term represents a higher order of the
expansion. Throughout the paper, we shall use
Roman-numeral subscripts to indicate the order

ber M, for not-too-large values. With the aid of
the boson picture, it is shown in detail that the
cranking-model values of the coefficients g and
agree with those obtained directly from the boson
expansion in Sec. II up to an error of the order of
the small expansion parameter squared. In other
words, the rotational coefficients are each expan-
sions in powers of this parameter, and the crank-
ing model picks up the leading term in each coeffi-
cient. An argument is sketched to show that this
property of the cranking model holds to all orders.
In this way, support is provided for the higher-
order cranking model, "which is the only available
microscopic model readily applicable to high angu-
lar momentum states, although E(M) must then be
obtained exactly as a function of M, not as an ex-
pansion. Additional support is provided by the fact
that the cranking model to all orders has also been
derived as a first approximation to four other
methods: the generalized Hartree-Pock method
(GHFA), ' a modified GHFA, ' the generator-coordi-
nate method, ' and a Green's function theory. "
However, the starting points of at least three of
the methods are approximate and the corrections
to the cranking model are not as visible as in the
present approach.

In Sec. III it is seen that the cranking-model ex-
pression for the S coefficient is a sum of many con-
tributions from the interactions of the ground-state
band with excited bands. It is then shown how the
cranked wave function may be used to extract the
coupling with individual bands. A similar technique
is also applied to transition operators in order to
find their angular momentum dependence.

We conclude the paper with an Appendix in which
definite expressions are derived for rotational pa-
rameters of a system of particles interacting via
the two-dimensional analog of the quadrupole-
quadrupole force. The expressions should be of
interest as a basis for comparison with other meth-
ods and are similar to those of axially symmetric
three-dimensional systems.

in the expansion.
It is very important to note that in the method of

BZ, the spirit of which we essentially follow, the
successive terms H», , H», etc., in the expansion
of H, and other operators as well, are not in nor-
mal order when written as homogeneous functions
of boson operators. ' This is in contrast to the pro-
cedure of several other investigators who employ
normal-ordered expansions. ' ' Let us therefore
briefly review the idea of BZ. In this method,
fermion-pair operators are represented by Taylor
series expansions in exact bosons in such a way
that the correct commutation rules for fermion
pairs are fulfilled in each order of the expansion.
The expansions for fermion pairs are so chosen
that the corresponding expansions of physically in-
teresting operators, especially those associated
with collective modes, become expansions in a
small parameter. The basic expansion parameter,
which we denote generally by e, depends on the
nature of the system. It is usually a geometric
parameter like 0 in the two-dimensional case (or
0 'I'in the three-dimensional case), where 0 is
the number of levels available to the active parti-
cles and is of the order of the number of active
particles. More generally, one can introduce dy-
namic small parameters such as the roots of the
zero-point amplitudes of the harmonic approxima-
tion. As discussed in Sec. III, the expansions of
fermion pairs can be arranged such as to maintain
a correlation between the order in z and the number
of boson operators in each term. Of course, the
successive terms are then not in normal order.
The terms Hs, H»„H, ~, etc. , in Eq. (II.1) are ob-
tained by simply inserting the boson expansions for
the fermion pairs and then collecting together all
terms of the same order without contracting any
bosons. It is in this way that the correlation be-
tween the number of boson operators and the order
of the term in the expansion is maintained. Thus,
if HJ, is taken to be of zero order, then H», is of
relative order e and H, v of relative order e'. Now,
for example, H, v may contain terms schematically
of the form B~BB~B, where B~ is an elementary
boson corresponding to the creation of a pair of
quasiparticles. Normal ordering of such a term
would create a quadratic boson term, which, how-
ever, is not included in the definition of H~. In
other words, all terms of the same order are kept
together in Eq. (II.1). This makes it easy to sep-
arate orders in the expansion of various commuta-
tors in the ensuing discussion.

Instead of writing everything in terms of the ele-
mentary bosons, it is convenient to use the set of
normal-mode bosons (8„, 6„~, Zs, Cs), related to
the former by a canonical transformation, in terms
of which H~ takes the diagonal form
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(IL2)
J 2

Hs = constant+ QE„8„t8„+

The set (8„, 8„t) consists of the vibrational pho-
nons, J~ is the leading-order approximation to the

angular momentum J, and 4 ~ is an angle variable
canonically conjugate to J~. The dependence on

other zero-frequency modes, such as the total mo-
mentum and c.m. coordinates, will not be explicit-
ly shown.

It should be noted that J~ is odd under time reversal, 4~ is even, and the 6„, 6&~ can also be taken to be
even with a proper choice of phases (recall, we are dealing with two-dimensional phonons). Then, the most
general Hermitian, time-reversal symmetric form for H», may be written as

Hg() =Js Q[h~ ~(21)8„t+H.c.] + ~k~'&(20)((4 s, Js},js}+i&~ ~(10)[js,4 ~ ]

+ —,'i(4 s, Js}Q [hq l(11)8„t—H c.] + iJsg (h„'„(12)8„t8„+—,'[h„'„' (12)8qt8,"—H c ]}

+ h"&(00)4,'+ —,'4, 'Q [h„"&(01}8„t+H. c.] + 4, Q(h&'&(02) 8„"8„+—,'[h„''„'(02)8„t8„t+H. c.]}
+ cubic phonons . (II.3)

Phonon terms which are not explicitly written out, such as the cubic phonon terms above, are generally not
in normal order Th.e coefficients h~" ~(nm) correspond to a term containing Js to the nth power and a prod-
uct of m phonons, while the superscript k denotes the total number of bosons in the term. The coefficients
may be taken to be real for our two-dimensional problem. It should also be noted that the coefficients of
terms depending on 4~ may be of significantly larger magnitude than the other coefficients. In the final
analysis, however, the Hamiltonian will contain no dependence on an angular degree of freedom.

The form of H» is given by

H(v=5~ ~(40)js + iJs Q [h~p ~(31)8„t—Hc] +h~ ~(20)(js, 4 s }+(J~,(Js, 4 ~}}Q[k~p ~(21)8„t+ Hc]

+ Js' x quadratic Phonons + z (4 s, (4 s, Js}}Q [h~'~ (11)8 „
t —H c ] + (4 s, Js}x quadratic Phonons

+ Js xcubic phonons+h (00)4 s +4s'Q[k„~~(01)8&t+ H. c.] +4 s' xquadratic phonons

+ C ~ &cubic phonons+quartic phonons.

Again, phonon terms which are not explicitly written out are not in normal order. It may be noted that cer-
tain terms like h~4l(31}[Js', 4 s] ~ Js' have not been explicitly written down. However, the term of the form
Js' x (quadratic phonons) also gives rise to a Js' term when the phonons are written out in normal order.
Therefore, the Js'x(quadratic phonon) term is intended to include Js' terms from all sources. Other simi-
lar simplifications have also been made. Actually, only the J~ term will be used in the later discussion.

In addition to Hermiticity and time reversal, rotational invariance places an essential restriction on H.
In order to take this into account, the expansion of the angular momentum J is needed:

J=Ja+J»+J»r+' (II.5)

where J~ is a linear boson operator, and the Roman numerals indicate the number of bosons in the other
terms. Taking into account that J is odd under time reversal, we obtain for J» the expression

J« = J~g[j~&'~(11)8„t+H.c.] + ~j~'&(10}(j~,4 J +4sig[j~'&(01)8 "—H. c.]
V

+ f Q( j~',~(02)8„"8,+2[j'„~,'~(02)8„"8,"—H. c.]}

and for J„, the expression

J,« =j~ ~(30)js +js i+[j~'~(21)8„t—H. c.] +Js xquadratic phonons+ —,(4 s, Je}g[j~3~(ll) 8„t+H. c.]

+ 2j '&(10)(Cs, (4 s, Js}}+f4s'Q[j&3~(01)8&t —H c.] +i 4 ~+(j„',(02}8„t8,+ 2[ j„'„' (02)8„"8„"-H c.]}

+ cubic phonons.
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The coefficients j ~~~(nrn) may be taken to be real
for our problem.

The condition of rotational invariance, [H, J]=0,
then implies, upon separating ordexs in the boson
expansion parameter, that

[Hs irl+[Hrir~ ~a] = 0
~ (11.8a)

V4~ ~rri]+ [Hire& ~rrl+ [Hiv~ ~a]= 0. (H. 8b)

The condition (II.8b), which restricts H, v, will not
be needed. Equation (H. 8a) implies that

a&'&(00) = o,
a&'~(10) = o,
a&'&(20) = s,-'j "~(10),

a&'&(ll) =E„j&'~(11)+~,-'&&'&(OI),

a&'&(01) = -E„j~„'&(01),

a~„'„(02)= -(E„—E„)j„'„~(02),

a„','~(02) = -(E„+E„)j'„~,' (02).

(IL9a)

(H. Qb)

(H. 9c)

(II.9d)

(II.Qe)

(II.Qf)

(IL9g)

$. Angular Momentum Decomposition
of the Hamiltonian

Now that the general form of the boson expansion
of H has been obtained to the order of interest, we
are. confronted with the problem of making sense
out of the plethora of terms obtained. This can be
done by relating the boson expansion to the angular
momentum decomposition of II given by

to define 4 uniquely. An ostensible difficulty, con-
sequently, which has deterred progress through
the years, has been the fact that a suitable defini-
tion of 4 is not known a pwjozi. By a "suitable"
definition of 4, we mean one which makes the angu-
lar momentum expansion (II.10) also an expansion
in a small parameter so that coupling terms can be
treated by perturbation theory; and the most ideal
definition is one which eliminates all coupling
terms. The purpose of this section is to show that
we need not sit and wait for such a 4 to make its
propitious appearance. Instead, we turn the mat-
ter around: %e begin with an expansion of J and H

in the parameter e —this is a boson expansion of
all degrees of freedom, rotational and intrinsic,
on an equal footing —and then we apply in each or-
der the criterion for a suitable 4 in terms of e as
the small parameter. In this way, we generate a
concomitant expansion of 4. The first crucial step,
described in Ref. 1, is the lowest-order choice
4 =4~, which diagonalizes II~ and thus eliminates
the Coriobs-type coupling term of the form J~
&&phonon. In fact, as we shall see, any expansion
for 4 beginning with 4~ essentially meets the "suit-
ability" criterion and all such possibilities are re-
lated by unitary transformations. As a conse-
quence, the corresponding angular momentum ex-
pansions (II.10) are also related by unitary trans-
formations. This additional arbitrariness in the
expansion of 4 will be exploited to diagonalize vari-
ous J-dependent band-mixing terms.

%e begin by considering the form of the boson ex-
pansion of 4, which starts with 4~:

+nJ
n=0

(II.10) 48 4 II 4 II I (H. 12)

where the 3C„are intrinsic operators, i.e., opera-
tors which commute with both J and an angle vari-
able 4:

[x„,z]=[3c„,c]=o. (II.11)

As pointed out by Villars, any rotationally invari-
ant Hamiltonian can be written in the form (II.10),
with the 3C„ formally expressed in terms of multi-
ple commutators of IJ with 4." Therefore, given
a boson expansion of 4, one ean always obtain the
boson expansions of the intrinsic operators 3C„.
Since the expansion of J is assumed known, the
many terms in II»I and P»could then be classified
as arising from the boson expansion of the form
(II.10). In addition, the expansion of the X„ in
terms of all degrees of freedom, say the set
(J's, C s, 6„,e„t), could be rewritten as an expan-
sion in a new set of intrinsic degrees of freedom
alone.

However, as is well known, the condition of ca-
nonical conjugation with J is insufficient by itself

and we shall solve for 4II~ 4III& ete' as we go
along. Using the known boson expansion of J given

by Eq. (II.5), and the condition of canonical conju-
gation

[~ ~l=f, (II.13a)

[4„,Zs]+[4„„J'„]+~ ~ + [be, 2„]=0.
(II.13b)

Obviously, Eqs. (IL13) cannot determine the parts
of 4 which are independent of 4~. Therein lies the
arbitrariness in the choice of 4. For example,
taking into account the first of Eqs. (H. 13b), and

requiring in addition that 4 be Hermitian and time-
reversal symmetric, one obtains the following suf-
ficiently general form for 4» ..

one obtains upon separating orders the set of equa-
tions

[@II~~B] [@8~~II]
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4'» = —z j~'&(10)@a'—4 a +[j~'&(11)8„t+H. c.]+iJ Q[f'„'&(ll) 8„t—H. c.]+ Qff~'„&(02)8„t8„

+ H fpV(02) 8p"8„t+H. c.]], (II.14)

where the f coefficients are undetermined by Eq.
(H. 13b)." An arbitrary term proportional to Za'
has been omitted, since it can play no role in the
analysis to follow. This is related to the fact that
one can always add to 4 an arbitr3, ry function of J
to obtain a new angle variable satisfying Eq.
(11.13a). Such a, redefinition of 4 cannot alter the
intrinsic operators K„, which are expressible in
terms of multiple commutators of the rotationally
invariant operator H with C. Therefore, terms in
4 interpretable as arising from powers of J may
as well be dropped. Actually, odd powers are al-
ready eliminated by the requirement that 4 be time-
reversal symmetric and Hermitian. The Z~' term
is such a term interpretable as arising from a J'
dependence. The other undetermined terms in Eq.
(II.14) do influence the definition of intrinsic oper-
ators and will thus be retained.

In order to utilize the angular momentum expan-
sion (II.10), it is very convenient to express the in-
trinsic operators $C„as functions of new phonons
(8„,8„t) which commute with the full angular mo-
mentum J and the angle variable 4:

[8„,8„]=0, [8„,8„t]= 6„,;

[J, 8„]=0, [4, 8„]=0.

(Ir..15a)

(II.15b)

The phonons (8„,8„t) are not uniquely determined
by Eqs. (H. 15) once 4 is chosen, since any such
set can be transformed, 6„-e' 6„e ', with $ a
function of the (8„,8„")alone, to give another set
of phonons satisfying Eq. (II.15). Conversely, how-
ever, specification of the intrinsic operators
(8„,8„) is sufficient to define 4. The additional
arbitrariness ean be used to diagonalize anharmon-
ic vibrational terms. We define the new phonons to
have a boson expansion beginning with the normal-
mode phonons:

8„=8„+(8„)» + (8„)», + ~ ~ ~ . (II.16)

The restrictions on (8„)„, which will be of primary
interest, are given by

[Ja (8,)»]+[~» 8,]=0

[4'a (8,)»]+[4'» 8,1=o.

Requiring, in addition, time-reversal symmetry, one may write (8„)» in the form

(8 ) „=-'ij"&(11)(~., 4.) —-'j"'(»)4.'-4, Z[j "&(02)8. j'„'&(02)8.']

+ —', f„'&(ll)Ja' —iJa Q[f„',& (02) 8„+f„'~2&(02)8,t] + quadratic phonons, (II.18)

where the quadratic phonon terms are essentially arbitrary, except for the canonicity restriction imposed
by Eq. (H. 15a).

Our next objective is to rewrite the Hamiltonian H as an expansion in the set (J; 4, 8„,8„). Since H is
rotationally invariant, it must be independent of 4, and we shall thus obtain the form (II.10), with the in-
trinsic operators K„expressed as functions of the new phonons (8&, 8„). A convenient way to achieve this
aim is to relate the two sets of dynamic variables (J~, 4a, 8&, 8„t) and (8, 4, 8„, 8&t) by a unitary transfor-
mation. This is always possible, since the mutual commutation relations within each set are the same.
The advantage of introducing the unitary transformation is the ease of inverting the expansions given by
Eqs. (II.5), (II.12), and (II.16).

It will be convenient to write the unitary transformation as a product of two unitary transformations,
the first, e'~, introducing those terms required by the commutation rules, and the second, e', introduc-
ing the additional arbitrary terms. %'e therefore define the "kinematic" choice of 4, C = 4 ~" ~, as that 4 ob-
tained by setting all arbitrary terms equal to zero. The phonons obtained in the corresponding way are de-
noted by 8„=8~" &. Thus, we have from Eqs. (II.14) and (II.18),

4 =4 &'& =4 a[I ——,'j&'&(10)4 a -Q[j&„'&(11)8„t+H. c.] ] + quadratic and higher orders, (II.19)

8& = 8~~&= 8&+~ijI&2&(11)jZa, 4~] —~ji'&(01)4a' —4ag[j~&'&(02)8„+j&~,&(02)8,t]+cubic and higher orders.

(H. 20)
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The first unitary transformation is defined by

iGJ g-fC
B

@,(a) - &fGC, &-fG
B

6(f ) ZfG6 &-fG
P

(II.21a)

(II.21b)

(II.21c)

In order to leave J invariant, the second unitary transformation must be generated by a scalar I' such that

~fF@,(I )~-iF

&fF6(a)-fF
P

for a general 4 and 6„. The desired inverse transformation is then given by

J =e ' e ' Jef e'B

—~-iF~ -fC@,~fC~iF
B 7

—g-fFg-fG6 gfGgfF
P II

The generator G has a boson expansion beginning with cubic terms:

G=GIII + GIV+
' ' '

~

The Eq. (II.21a) leads to the following equations upon separation of orders:

r[JBt Grrr] —-Jrr

i[Jrr, Grv] = -Jrrr + i[Grr-r, Jrr], etc. ,

(II.22)

(II.23a)

(II.23b)

(II.23c)

(II.24)

(II.25a)

(II.25b)

where G is Hermitian and required to be odd under time reversal in order to preserve the time-reversal
symmetry of transformed quantities. Actually, we shall only need GIII explicitly in what follows. Of
course, Eqs. (II.25) leave undetermined terms of G which do not depend on 4 e, but Eqs. (II.21a) and
(II.21b) require that these vanish. The solution X of the equation

i[Jrr, X'] =A,

can be developed in a series proceeding as follows:

X= —,'(e„A}+ —,
' i(e„(ee, [A, Je]}}—~r8 (e„(es,(ee, [[A,Je],Je]}}}+~ ~ ~ .

(H. 26)

(II.27)

The series terminates when a multiple commutator of A with JB vanishes, and this will always occur as
long as A contains finite powers of CB. In this way, one obtains the explicit expression

G», = ',(ee, Je}g—[—jr„'l(11)8„t+H.c.] —&j
'

r( F01)(( Jrerrr}, err} —24rr'iQ[j r„'r(01)8„t—H. c.]
P

i4 g{jr„'„r(-02)8„t8„+-,'[j„'&„'&(02)8„t8„t—H. c.]}.
pv

The boson expansion of I likewise begins with cubic boson terms:

+III +IV

(II.28)

(II.29)

where E»I is found to be

F» r
= 2i Je g [f r&

r (11)8 „t —H c.] +Jz Q (fr&'r (02) 8 „t 8„+~[f 'r„r (02)8 „"8„t+H c]}+ cubic phonons .
(II.30)

The cubic phonon terms in Eq. (II.30) produce the arbitrary quadratic phonon terms in Eq. (II.18).
We can now write out the inverse transformations (II.23). Qf the higher-order terms, we shall be pri-

marily concerned with those which provide the main contribution to the 0 coefficient in the rotational ener-
gy (I.1). The only quartic term providing such a contribution is proportional to J . For this reason, the
only cubic term in the expansion of Je in the set (J, 4, 8„,8„)explicitly needed is that proportional to J .
The expansions of 4 B and 6„are only needed through quadratic terms. In the following equations, we use
the notationA=e'"e'~Ae 'ee '" for the transform of an operator A. From Eqs. (II.25), we have that

i[J~ Grrr]= Jrr ~

i[J~ Grv] = Jrrr+ ~i[Grrr~ Jrr] ~

(11.31)
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Using Eq, (II.31) and the fact that [J, P] = 0, we can evaluate the transformation (II.23a) as follows:

~s =~+I[&) I rrr]+{IV) ~rv] ~[[~j Grrr] j Grrr] [[~jGrrrl) +rrr]}+ ' ' '

(~lrr +I[J'rrj &rrr+ +rrr])+ ' ' '

=Jap'-['jr„'}(ll)8„t+H. c.]——,
' jr'}(Io){J',4} I-e g [j('}(01)8„I—H.c.] —I'g {jr„',}(02}8„I8,

P P p p

+-,'[j„'I„'}(02)8„t8„t—H. c.]}+[+fr„'}(ll)jr„'}(ll)-jr'}(30)]J'+ other cubic terms + higher orders.

(IL32)

The remaining Eqs. (II.23) are

IP'rrr+ Grrr) 8) l+

= 8„-—,'If &'}(II){c,z}+-,' jr„'r(01)e'+ e g [f('&(02)8„+j „r,'&(02)8 „t]——,'f r„'&(lip'

+I'/+[fr'}(02)8 +f'r'r(02)8 t]+quadratic phonons+cubic and higher orders, (II.33)

@s=C' —I'[+lrr+&lrr C']+'

=@{1+&[j'„'(II)8„t+H.c.]+-,'j&'&(10}e}-Imp[fr„'}(II)8„t—H. c.] -Q{f„'„}(02)8„I8„
P P pp

+2[fr',~„'}(02)8„t8„t+H.c ]}+Cub.ic and higher orders.

The expansions (11 32)-(11.34) maV now be inserted into the Hamiltonian defined blr Eqs. (11.1) (11.4) to ob
tain II as a function of 4, 6„, and 6& . Vfe shall exylicitly exhibit the cancellation of 4 -dependent cubic
terms. Qf the quartic terms, only the coefficient of the J term will be obtained explicitly. First, consider
the transformation of the terms in H~. The rotational term transforms as follows:

jzI (jr )(O2)() )() + }j r )(02)() )())-H (: }})+)(.-'rI f)(')((()j())()()-jr')()o)}g'

The vibrational term is transformed as follows:

+ other quartic terms+ higher orders, (11.35)

QZ„8„I8„=pZ„8„t8„+-.'e'QZ„[j&'}(01)8„t+H.c.] --,'I{a,Z}QZ„[j&'&(11)8„t—H. c.]

+ C p{(Z„-Z„)j,"„}(02)8„'8„+—,'(Z„+Z„)[j'„&„'}(02)8„'8,'+ H.c.]}——,'Z'QZ„[f &'&(ll)8„t+H. c.]

+ I++{(+))—E)))f )( p(02) 8 )j 8„+k(+}j+E„)[f~ p (02)8 ~ 8„—H. c.]}+clrbic PholloIls

+ ,'a'QE„~ f'„'&(—ll)~'+ other quartic terms + higher orders. (11.36)

transforming HIcr and IIrv, ~e need only to note that

H,» =H,» -Qhr„'}(2l)f'„'}(11)I+other quartic ternis + higher orders,

(H. 38)H» = jrrr'&(40@'+ other quartic terms + higher orders .
Of course) Hrrr is ob'tallied fr'0111 Hrrr [Eqs. (II.3) arid (II.9)] bi) the I'eplacelrlellt(ls eT) C)s C)j 8p ~ 8j

P P

Adding together Eqs. (H.35)-(11.38), and taking into account the rotational invariance restrictions, Eqs.
(IL9}, one explicitly sees the cancellation of all C -dependent terms of H», against those arising from the
transformation of H~. Of course, the 4-dependent terms of Ir, v must be cancelled by those arising from
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the transformation of II~ and H», . It therefore follows that H may be rewritten as the following expansion
in (J, 8„,8„t):

IIa+ H»r +Hrv+

where

H~ = constant+ I.„6„~6„+

HI&&
=J' Q(I'„8„~+H. c.) + iZQ[r„'„8„"8„+—'(I'„' „' 8 „"8,~ —H. c.)]+cubic phonons,

tj' pv

a»= r(' J + J'&& linear phonons+ J'&& quadratic phonons+ J && cubic phonons+quartic phonons.

The phonon terms not fully specified are not in normal order. The coefficients of the terms in
Eq. (II.39) are:

I' =h (21) —
&& 'j (11)—2E f (11),

r&'& =h&„'&(12) - s -'j&'&(02)+(E„-E )f&'&(02),

I &»=h &»(12) « -~j &»(02)+(E ~E )f &2&(02)

r& & =h& &(40) —
&&0

'j& &(30}+4+E& ~ f& (11)~' —Qf& (11}[h„'(21) —80 'j„' (11)] .

(II.39b)

(II.39c)

(II.39d)

(II.40a)

(II.40b)

(II.40c)

(II.40d)

It is understood that the Hamiltonian (IL39) is
nothing more than a regrouping of the terms of the
original boson expansion (II.1), which can be re-
trieved with the insertion of the definitions of J;
8„, and 8„"in terms of the set (J's, 4e, 8„,8„).
We have thus accomplished our aim of writing H
in the form of the angular momentum decomposi-
tion (IL10), with the intrinsic operators K„expan-
sions in the phonons (8„, 8„&). We have therefore
shown that boson expansions of all degrees of free-
dom may be utilized in a straightforward manner
to identify coefficients of band-mixing and anhar-
monic vibrational terms. Of course, in order to
obtain numerical values for the coefficients, a defi-
nite boson expansion must be invoked. A specific
example is treated in the Appendix.

The angular momentum expansion of H given by
Eq. (II.39) holds for any 4 of the form (II.12) and
corresponding phonons (8„,8„~), as shown by the
dependence of the coefficients (II.40) on the f coef-
ficients, which define the generator E, Eq. (II.29).
If a particular choice of F is replaced by another,
I', so that C is replaced correspondingly by 4 ',
the angular momentum expansion of H is modified
by the unitary transformation H- e ' ~ He'
Other operators are also modified by this transfor-
mation. Therefore, we just have an automorphism
of the whole space, so that the energy and all ma-
trix elements must be independent of the f coeffi-
cients, the choice of which is dictated by conveni-
ence.

Suppose, first of all, that all the f coefficients
are taken to be zero, corresponding to the kine-
matic choice 4 =4'"&, 8„=8„'"& [Eqs. (II.19) and

I

(IL20)]. Then we have

r&'& = h&'&(21} —« -'j&'&(11),

I &~) = h&~&(12) && -»&»(02)

r'&'&=h'&'&(12) —« -'j' '&(02),

r"& = h&'&(40) —«, -'j&'&(30) .

(II.41a)

(II.41b)

(II.41c)

(II.41d)

f„(11)= 2[h„'&(21) —
&&0 'j„' (ll)] /E„, (II.42a)

f&„'„&(02)= -[h&'&(12) —
&&0 'j& „(02)]/(E„—E ),

(II.42b)

The expansion (II.39a) is then governed by the same
parameter as the original expansion (II.1). If this
parameter is indeed small, as one expects it to be
for large systems, then one can hope for conver-
gence, barring unforeseen coherences in higher
orders. The kinematic choice is at least a very
reasonable one. It has the obvious disadvantage of
providing many off-diagonal terms which must be
treated by perturbation theory.

However, one can eliminate off-diagonal terms
by a suitable choice of the f coefficients. In par-
ticular, we shall be concerned with eliminating all
couplings of the ground-state rotational band with
excited bands. The angle variable corresponding
to the option of diagonalization is denoted by 4
=C ~, the phonons by 6„=6„', and Eby E=E'
The diagonalization of the kinematic expansion is
thus effected by the transformation H- e-&~'"

x He'~ "~. As an example, to eliminate the cubic
terms, H»„we must take
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f'"(02)=-[I 'u" (12) —&. 'j'"(02)]/(E +& ) .
(II.42c)

We shall not explicitly consider the elimination of
cubic phonon terms. The generator F= F + to the
given order may be found from Eqs. (II.42) and
(II.30).

Since the choice I' = I "& corresponds to the per-
turbative diagonalization of the kinematic expan-
sion, the convergence must be as good. Suppose,
however, that one were to choose the f coefficients
to be of very large magnitude. Then the boson ex-
pansion (II.39) would no longer be characterized by
a small parameter. Nevertheless, all physical
quantities are independent of the f coefficients,
which must therefore cancel out, and the cancella-
tion must occur. order by order. As an example of
how this happens, let us consider the coefficient
in the ground-state-band rotational energy. The
leading-order contributions to this coefficient
come from two sources: the vibration-rotation-
interaction-type term 8' x (phonon), which couples
the ground-state band to one-phonon bands, and
thus contributes in second-order perturbation theo-
ry, and the diagonal J' term. Together, the two
terms give

~i (s) [2e=e =- " +r~'~.0 (II.43a}

Using the general expressions (II.40a) for I'~„'~, and
(II.40d) for I'"&, one sees that the f dependences of
the two terms of Eq. (II.43a) exactly cancel, leaving

of them may improve the convergence, certainly
others can make matters worse.

Let us go on to discuss briefly the qualitative ef-
fects of the remaining terms in H», . First of all,
there are anharmonic phonon terms, which, in low-
est-order perturbation theory, cannot contribute
to the ground-state-band rotational energy, but do

affect intrinsic energy spacings. In higher-order
perturbation theory, these can interfere with J-de-
pendent terms to contribute to the ground-state-
band rotational energy. Then there is a term of
the form J'x(quadratic phonons), a sort of general-
ized Coriolis term. The J8 ~8 terms do not con-
tribute to the ground-state-band rotational energy
in lowest order, but do renormalize the effective
moment of inertia of excited-state bands. The
J6~6 ~ term, which couples the ground-state band
to two-phonon bands, renormalizes the moment of
inertia of the ground-state band in lowest order.
However, a possible J'66 ~ term in II» provides a
diagonal contribution of the same order of magni-
tude, and must thus be taken into account at the
same time-. The dependence of the two types of
terms on the f„'&2&(02) coefficients must be such as
to guarantee independence for the moment of in-
ertia. The choice (II.42c) for f„'~,'~(02) eliminates
the cubic term and shifts the full renormalization
of (2s) ' to the J'86 term. This renormalization,
of course, is down by a factor of c' compared with
the leading-order coefficient (2e,) '. In general,
the coefficients in the rotational energy (I.l) are
each expansions in the small parameter E'.

~ I&,"(21)- &0 'i'„"(ll) I'
$0 —z C. Treatment of Transition Operators

and Matrix Elements

+ h'"(40) —~, 'j'"(30) . (II.43b)

Elimination of the vibration-rotation coupling
term of H', » with the choice (11.42a) of f~„'~(11) then
shoves the full burden of the correction on the di-
agonal J4 term, which becomes $+4, as can be
seen by substituting Eq. (II.42a) into (II.40d). In
general, no matter what the choice of the f coeffi-
cients, one can still treat the expansion (II.39a) by
perturbation theory. The point is, however, that
one must formally label the successive terms Il,'»,
H,'~, etc. , by an order parameter and keep togeth-
er all terms of the same order. Then the depen-
dence on the f coefficients will cancel in each order
of perturbation theory, and the expansions of physi-
cal quantities will still be governed by the kine-
matic expansion parameter. This fortunate state
of affairs can be traced back to the fact that the ex-
pansions of 4 and e„were assumed to begin with
4~ and 6„, respectively. More general definitions
of 4 and 6& can, of course, be introduced; some

[J, Q~ "&]= MQ "&, M = integer.

The Hermitian adjoint then satisfies

[z, Q&"»] = -~Q& "&'.

(11.44)

(II.45)

We shall discuss operators with phases chosen to
satisfy the following time-reversal behavior:

1'Q " 9' '= Q'" t (even operators) (11.46a)

or

i'Q ~& '= -Q ~~t (odd operators). (II.46b)

The procedure is to expand the operators Q&"~ in
the set ( J'~, 4s, 6„,B„t}, the coefficients of the ex-
pansion being limited by Eqs. (II.44) and (II.46).
The terms of the expansion may then be organized
by noting that Q~ "& may be written in the form

The above treatment of the Hamiltonian is readily
extended to transition operators Q "~, which are
the two-dimensional analogs of spherical tensor
operators, obeying the commutation rules
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Q&N& —&[eihfC g&N&}

where g" is a scalar, i.e.,"'
(II.47) mentum expansion analogous to E&I. (II.10}:

~(~) ~(~) + (~) J+ I (~) Ja+. . . (II.49)

(II.48)[J, g& "&]= 0 .
It therefore follows that g(") has an angular mo-

where the g(") are intrinsic operators, i.e., com-
mute with J and 4, and may thus be written as
functions of the phonons e„and 6„~.

The boson expansions of the transition operators are given by

@(e) @(x)+ @(u) +. . .
where the linear boson part for even operators has the form

Qs" = (I+ iMC»)&0~Q "
~0) + Q q&" ' (0)(8„"+8„) (even operators),

(II.50)

(II.51)

and for odd operators the form

(II.52)Q&"&
= q& "&&'&(1)J + p q&"&&'&(0)(8„"—' 8„) (odd operators).

As noted in Ref. I, the coefficient of 4e in E&I. (II.51) follows from the relation [Je, Q&e»] = M&0 IQ'"' IO),
where &O~Q&» ~0) is the average taken with respect to the self-consistent-field ground state.

The quadratic boson part for even operators has the form

Q&"&=-'q&"&&'&(20)J '+J Qq&"&&'&(11)(8 t-,8 )+—'q&"&&'&(00)C '+4 Qq&"&&'&(01)(8 "+8 )

+ &Iuadratic phonons (even operators) .
Upon separating orders, E&I. (II.44) implies that

[J., Q[", ']+ [J», Q'."']=M(Q'."' —&OIQ&"'I»),

giving the following limitations on the coefficients:

q
' (00) = -M[ij (10)+ ]M&O~Q" ~0) -2Q q

" '&(0)j '&(01),

q&&"&&'&(01)= iM[q„s&&'&(0) —
&0~Q& "&~0)j&'&(11)]+Q q'„"&&'&(0)[j&'&(02)-j„'&„'&(02)] (even operators) .

(II.53)

(II.54)

(II.55)

For odd operators we have the form

Q&"& =J g q&„"&&'&(11)(8„t+8 )+—'q&"&&'&(10)(C»Je}+4eg q„" ' (01)(8„~—8„)+&luadratic Phonons
P

(odd operators), (II.56}
with the additional restrictions

(even operators), (II.58a)

q&»&'&(10) = q&»&'&(1)[j&'&(10) + fM] f 2Q q&»&»(0) j&»(11)

q„" ' (01)=iMq„"& ' (0)+iq "»'(1)j ' (01)+g q" &'&(0)[j&'&(02)+j'&'&(02)] (odd operators). (II.5V)
V

We shall not analyze the cubic term Q&P&& here, although it is worthwhile to mention that odd operators may
contain a term proportional to J~', which contributes to a J dependence of the g factor of magnetic opera-
tors.

We can now carry out the transformation of E&I. (II.50} from the set (J~, 4e, 8„,8„~) to the set (J, 4, 8,
8„t). Substitution of the expressions (II.32)-(II.34) gives for even operators

Q
~ = Q&e» + A ~& '& (20}J'+J'g A„" '& (11)(8„t—8„)+ &Iuadratic Phonons ——',M'(0

~

Q& "&
~0) 4 '

+iM@g q'„"&&'&(0}(8„"+8„)+cubic and higher orders

where the coefficients are

&'»"'(20) = -'q'"""(2o) —Z q'"""(0)j"'(ll}
A& "&&'&(11)= q&~&&'&(ll) +M&0 ~Q

"& [0)f '«(ll) -i Q q
"& '&(0)[f&'&(02) —f '&'&(02)],

(II.58b)

(II.58b')
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(II.59a)

and for odd operators,
q(™&=Q("&+gQ A&"&('&((&„t+&)„)+(Iuadratic phonons+ ,'&M-q"' "(I){4,4]. +f&&f4 Q q'„" (' (0)(6„—6„)

P

+ cubic and higher orders (odd operators),

A(+)(2)(II) = q(&)(&}(11) q(&)(&)(I)j(2)(11) f Q [y(2)(02) +f1(2)(02)]q(&)(&)(0)

(II.60)

(II.61)

where A(")('&(ll) is given by Eq. (II.59b).
As an example, we calculate transition matrix elements of even operators within the ground-state band

and between the ground-state band and one-phonon bands. Since the matrix elements must be independent
of the choice of f coefficients, we may as well choose the coefficients given by Eqs. (II.42), corresponding
to the diagonalization of H through cubic boson terms. This is highly convenient, since the unperturbed
wave functions may then be used. These are, of course, given by

Since the operators can be written in the form (II.47), where g( & is a scalar and thus independent of 4,
the C dependence in E(ls. (II.58a) and (IL59a) must arise from the expansion of e'" . This fact allows us to
identify g("&. For even operators, we obtain through quadratic boson terms

g'"' = (0
~

Q("' ~0&+ Q q("""(0)(&) t+ 6 ) + A(")"&(20+'+ Z Q A'„"&('&(11)(6„t—6„)+ quadratic phonons

+ cubic and higher orders (even operators),

where the coefficients A("&&"(20) and A"„" ( )(11)are given by Eqs. (II.58b}. For odd operators,

g(" =q(" ('&(I)J'+ g q("&&'&(0)(6 t —6 )+ZQA„"&('&{II)(6„~+6„)+(Iuadratic phonons

+ cubic and higher orders (odd operators),

~M, 0& = (2}() "'e'"'~vac&

for the ground-state band, and

(II.62a)

~M, }&&
= (2«) "'e™

&& „t~vac& (II.62b}

for the one-phonon bands, where 4 =4(+, b„t= 8„(~&t, and the state ~vac& is the vacuum of the phonon oper-
ators.

It should be noted that all the f coefficients appearing in E&I. (IL58b') are of the same order. But the co-
efficients q,") '&(0) are one order higher than (0 ~Q(") i0&, so that the last term in Eq. (IL58b') should be con-
sidered as being of higher order than the others and considered along with some cubic terms of the same
order for consistency, Indeed, among the cubic terms not shown, there are some, for example, which are
schematically of the form q(")('&{0)[f(')(02) —f„'(„'&(02)]6 6 t6 t and thus contribute a comparable amount to
matrix elements between states differing by one phonon. Since we shall be interested only in the lowest-
order corrections to the matrix elements, all of these higher-order terms which take into account the ef-
fect of the Coriolis-type term J x(quadratic phonons) in H„, on the transitions will be dropped. Using the
expression (II.42a) for f„'&{ll), which takes into account the diagonalization of the vibration-rotation term
J' )((phonon) in H'„„one obtains

I('& 21 -~ -'~('& ll
A(&)(2)(20) = ~q(s)(2)(20) 2Q q(&)(~)(0) (11.62a)

a('& 21 - v, -'y('& ll
A& "&('&(ll) = q„"&('&(ll)+2M(0 (q(»io& " (II.63b)

where A& "&&'&(20) = A("&('&~(20), A&»&')(I I) = A&"&(»*(II)
In calculating matrix elements within the ground-state band, it should be noted that the quadratic phonon

terms in E(I. (II.60) are not generally in normal order Putting .these in normal order gives a small higher-
order renormalization of the moment (O~Q

")
i0&, which we neglect. The intraband matrix elements are then"

I A(»(2) 20
(II.64)
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while the interband matrix elements are

2l IQ 1~10& 6—N M,-N q2 (0) I
2 (N)(1) ()

(~l. M2) ~
(M) (N)(1) (II.65)

Since the coefficients A ")(')(20) and A'„")(')(ll) are of the same order, while q(")(')(0) is of higher order
than (O~Q(") ~0), the corrections are much more important for the interband transitions than for the intra-
band transitions, a result well known in the three-dimensional case. It is important to note that the correc-
tions are not entirely dependent on the vibration-rotation band mixing, but also depend on the additional pa-
rameters q ")(')(20) and q(" ')(1l) in the transition operators. Thus, knowledge of the transition matrix
elements does not generally determine the contribution of the band mixing to the S coefficient, as is often
assumed in phenomenological models.

III. CRANKING MODEL AND THE BELIAEV-ZELEVINSKY
EXPANSION

A. Beiiaev-Zelevinsky Expansions

Thus far, our analysis has been essentially phe-
nomenological, based only on the assumption that
a boson expansion in a small parameter is given
and on the exploitation of elementary symmetries.
In order to obtained definite expressions for the co-
efficients, one must, of course, choose a definite
boson expansion. The interest in this section, how-
ever, will not be focused on these expressions,
some of which are given in the Appendix, but rath-
er on the link with the cranking model, which also
requires closer specification of the type of boson
expansion as a preliminary step. Once this link
has been established, the cranking model may be
used in lieu of the boson expansion for calculating
some of the coefficients. And the type of boson ex-
pansion which must be used is that of Beliaev and
Zelevinsky (BZ).

We must, first of all, clarify a slight modifica-
tion in our definition of the self-consistent field
from that used in Ref. 1. The BZ'expansion was
originally designed to be used with schematic sep-
arable forces, such as the quadrupole-quadrupole
or pairing force, or some combination thereof.
When working with such forces, it is expedient not
to begin with the Hartree-Fock approximation (or
the Hartree-Fock-Bogoliubov approximation when
pairing is included), which includes direct and ex-
change factorization of the two-body force, but

rather with the approximation based only on direct
factorization, which we shall call the Hartree or
simply self-consistent-field approximation (or the
Hartree -Bogoliubov approximation when pairing is
included). " It is this latter definition which turns
out to be natural as the zeroth order of the BZ ex-
pansion. When dealing with more realistic forces,
one would prefer to-begin with the Hartree-Fock
approximation, and, indeed, in Ref. 1 the RPA was
interpreted as the harmonic order in a boson ex-
pansion about a Hartree-Pock minimum. We still
believe this point of view is viable, but there are
some well-known problems with the RPA correla-
tion energy which are more awkward than seri-
ous, ""and further problems arise when the re-
sidual interaction is treated by the higher orders
of the BZ expansion. " These problems occur be-
cause the exchange effects included at the outset
really belong to the higher orders of the boson ex-
pansion. The recent paper of da Providencia and
Weneser" shows how to deal with these difficulties
and points the way to development of boson expan-
sions about Hartree-Fock solutions. In this paper,
the difficulties will be avoided by starting with a
Hartree-like approximation, even when dealing
with nonseparable forces. The treatment of the
harmonic boson Hamiltonian given in Ref. 1 still
applies to this situation, and the exchange terms
are properly included in the higher orders of the
BZ expansion. As in Ref. 1, pairing correlations
will not be taken into account, the generalizations
being straightforward.

We begin by rewriting the Hamiltonian so that the interaction more closely resembles the quadrupole-
quadrupole force:

~ Tab la Ib ~ ~ ab,cd~a 1b 1&~c
ab abel

where

ab 1a Ob ~ ~ ab,cd~a c~b ~d
ab abed

(III.la)

1 ~
ab Tab & ~ ~ac,cb

c
(III.1b)
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The indices a, b, e, d run through a complete set of single-particle states, and the two-body matrix ele-
ment is not antisymmetrized.

The main idea of the BZ method for systems of even numbers of particles is to replace fermion-pair op-
erators»l~t»1, by functions of a set of exact boson operators (B&,B„t),

»1 n'n. = P.n(B„B„'),
chosen in such a way that the fermion-pair algebra given by

(III.2)

[ la Vb& 7e f»1 bcb la ld bdaUc»b (III.3a)

is preserved. " [Instead of boson operators one may, of course, use a set of canonical pairs {P„., Q„).]
The BZ procedure thus guarantees that the equations of motion will be preserved.

The boson mayping of pair operators can also be used to define a corresponding mapping of state vectors.
It can then be shown that as a eonsequenee of the commutation rules all matrix elements are correctly tran-
scribed into the physical boson subspace (image of the fermion space). The boson images of fermion oper-
ators also have nonvanishing matrix elements in the spurious subspaee (complement of the physical sub-
space), but there is no coupling between physical and spurious states when the boson expansions are car-
ried to infinite order. Hence, in this limit, there is no trouble with the Pauli principle; the physical ener-
gies and eigenvectors are correctly given, and they are orthogonal to the spurious states. In practice,
truncation must lead to some mixing of physical and spurious states. But one can still correctly generate
perturbation expansions in the smaU boson-expansion parameter, which is all we do.

In order to give a concrete example of a BZ expansion for nonsupereonducting systems, it is convenient
to introduce particle-hole notation. If the occupied Hartree-Pock orbitals are denoted by the index a,
where n = I, ~ ~ ~, N, and the empty orbitals by the index i, where j= %+1.. . . . the transcription to parti-
cle and hole operators is defined by

Throughout the paper we adhere to the convention of denoting occupied single-particle states by the indices
a, P, y, 5 and empty single-particle states by the indices», j, b, I. Then, the algebra (III.Sa) may be re-
written as follows:

[a» a, , a, a»]=b, ,a» a, —5»»a„a»,

[b ebs, bq"b»]=by»»b tb~ —6», „b~tb»»,

[a;t ab tb8]=0;

[b„a,, a~ta~]=5, »b~, , [b a;, bqtbs]=by„b»»a;,

and Hermitian conjugate equations;

[a»tb„t, a;tbBt]= [b a;, bsa, ]=0;
[b a„a;tbsp]=5;»58 —5»»b8tb —58~»ta, .

(III.Sb)

(III.Sc)

(III.3d}

(111.3e)

Any boson expansion obeying the algebra of E»ls. (III.3) will be referred to as a BZ expansion.
The most familiar example of this type is given in terms of the particle-hole bosons (B,„,B, ), where

[B B»81 0[B»-B;8'] b»» b8—
This particular expansion is obtained by requiring that in addition to fulfillment of the algebra, the particle-
hole vacuum be mapped into the boson vacuum, both of which will be denoted by the symbol ~0); that parti-
cle-hole states be mapped into one-boson states, a, "b„t~O) =B, "~0), where B, ~0) =0; and that the values
of all one-particle density-matrix elements (0$, »I, ~0) be preserved, which determines the remaining con-
stants in the expansion. We call this the "special BZ expansion. " Defining the operators A, ,- and A8

A»»=gj B»„tB, , A»»~=QB»„tB»»», (III.4)

which commute,

[A»;, A8„]=0,
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we can write the special BZ expansion as follows:
A

~n ~B ~Bn ~ne=+Bn~

baai Pia =Bin 2 +AnsBj8 —
jj Q Aa8Ajj yBj y r6 QAnBA8 yA y&B

8 By Byjs

nl ~ ~ ~ n

Bin —2+AjJBia —Ti+AjjA»Bnn —QQAjiA»AnjB
j jk jhow

+ +C„Q Ai;A, i Ai, A, , Bi „+
1 2 n-2 n-1 n-1 n n

n

f- p~ f 24b
i n in

We see that each term in the expansion of the particle-hole operators is arranged in two ways:

AnnAnn ''An n An n Bja = & AjjAj j'''Aj i Aj j Bj a ~

n ~ ~ ~ n n
1 1 2 n-2 n-1 n-1 n n

n

(111.6a}

(III.6b)

(III.7)

Since this identity turns out to be quite useful, we provide its straightforward derivation. Denoting the left-
hand side of Eq. (III.V), for example, by Pjj"„I, we carry out the following manipulations, making use of
Eq. (III.5):

~ ~ ~

1A„„A„n ~ ~ ~ An n Bja yBjn Bjan-2 n-1 n n-1 n

jnl 'n
An„An n

~ An n QBja B;n Bjn
nn

Z AnnAn n
' ' 'An n AjjBj

jn ~ ~ ~ n 1 1 2 n-2 n-1 n-1
1 n-1

A;,.A A „A, A
jn nn nn I 1 2 n-3 n-2 n-2 n-1 n-1

1 n-1

P(n-1)
jnj

(III.8)

We therefore have

Z P jjP jn Z(5 8Pajja)P jaj B

(III.11)

which holds independently of the values of the coef-
ficients C„ in Eq. (III.6b). An important applica-
tion of Eq. (III.11) will be made later.

Let us now check that the series (III.6) satisfies
the commutation rules (III.3). It is readily verified

where PjnJ =B . . Iterated application of Eq. (111.9}
establishes Eq. (III.V). For later application, we
note that manipulations analogous to those of Eq.
(III.8) can be applied to the right-hand side of Eq.
(III.V) to give

P&."&=+A P" I=+A P " 'I jj-Iin ij jn nB iBj B

(IIL 10)
Since pj„=+„C„P,"„,A,.& =pjj, and A 8=58 -ps„,
Eq. (III.10) leads to the identity

that the density matrix elements are preserved.
First of all, as noted in a recent paper, the finite
expressions (III.6a) clearly satisfy the commutation
rules (III.3b)." The form of the expansion (IIL6b)
for particle-hole operators allows the commuta-
tion rules (III.Sc) to be fulfilled for any values of
the coefficients C„. This is easily seen by choos-
ing the appropriate form of (III.6b). Thus, when
calculating [b~j, antaj]=[p, .„,A»], the first form
should be chosen, and because of Eq. (III.5), the
calculation then becomes trivial. Likewise, use of
Eq. (III.5) and the two forms of writing the particle-
hole expansion enables one to prove that the com-
mutation rules (III.3d) are satisfied. Finally, it is
not hard to see that the expansion (III.6b) must be
infinite to satisfy Eq. (III.Se), from which the coef-
ficients C„are finally obtained.

It is very important to note that the boson expan-
sion (III.6) satisfies the commutator algebra (III.3)
term by term, each successive term correspond-
ing to a higher order in the Taylor series. To
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make this point more definite, let us write the expansion (III.6) in our previous notation:

1a 1b (1a 7b)0 (Oa I7b) I (7a I1b)II (III.12)

where the first term on the right is a constant, the second is linear in bosons, etc. Then, it is readily
checked that

[(I1.'I1b)I, (I1,'I1d)I]= 6, b(I1." I7d) c 6d-(1 1b)0

[(7a 7b)I t'(7c 7d ) II ] [(1a 7b)II I (1c 1d )I ] 6 bc(7 aOd )I 6da (7c 1b)I

[(1 1b)I (7 I7d)III] [(7 7b)II (7 7d)II] [(1 0 b)III (1 7d)I] 6 b (1 1d)II 6do (1 7b)II

(III.13)

It is thus seen that by not writing the expansion in
normal order, we have obtained a convenient cor-
relation between the order of a term in the expan-
sion and the number of boson operators in the term.
As a consequence of this arrangement, the indices
in each term are completely linked. It is expected
that this linked structure greatly enhances the ten-
dency of the expansion toward convergence. If, on
the other hand, the series is rewritten in normal
order, the contractions give rise to terms with un-
linked indices. Thus, for example, the quintic
term in Eq. (III.6b) written in normal order is

—s ZAaBAd piI b (Q Bdb B,II)BIc.
By j8

(Cubic terms will arise from normal ordering of
all other higher-order terms as well. )' The appear-
ance of this coherent cubic term would seem to
bode ill for the convergence of the series if it is
mistaken as belonging to the same order as the in-
coherent cubic term. In fact, however, it should
be considered together with the normal-ordered
quintic term, and then cancellation of coherences
becomes possible.

An expansion parameter e clearly labeling the
order may be defined by passing from the purely
kinematic bosons to more physically interesting
combinations, for example, the RPA normal modes
or the angular momentum coupled bosons used for
spherical nuclei, which establish the parameter
g-I/2

Of the more general BZ-type expansions, we
shall be interested mainly in those which can be ob-
tained from the special one (III.6) by a canonical
transformation in the boson space. We shall also
require for later applications that in the more gen-
eral expansions, the successive terms (I7, 1I1b)»,
( ~I1)I»1b„etc , satisfyi. ng Eq. (III.13), be so ar-
ranged that the number of boson operators in each
term correspond to the order of the term. In other
words, the kth term is a homogeneous function of
the boson operators of degree k. A boson expan-

sion arranged to satisfy this requirement shall be
called a "c-ordered expansion. ""Obviously, a c-
ordered expansion cannot, in general, be a normal-
ordered expansion. It is not hard to show that ex-
pansions written in c order have the property that
if all boson operators (B„,B„t)are replaced by c
numbers (Cr„, o„*), with &7„and io „*interpreted as
classical complex canonical variables, then all
commutator relations are replaced by the corre-
sponding classical Poisson-bracket relations. We
shall call this the classical correspondence prop-
erty, and it plays an important role in the discus-
sion in Sec. (III B). If the c-number replacement
is made on the expansions written in normal order,
different functions are obtained which do not obey
all. the required Poisson-bracket relations as is
easily shown by examples.

That the classical correspondence holds for the
expansion (III.6) can be independently seen from
the fact that the expansion can be obtained by quan-
tizing a classical expansion satisfying Poisson-
bracket relations corresponding to Eq. (III.13).
The c-ordered quantized expansion is obtained by
replacing the classical variables by boson opera-
tors frozen in a permutation which allows the quan-
tal commutator algebra to be fulfilled. There is
more than one such permutation, the proper choice
depending on additional considerations. Specifical-
ly, the ordering of operators in Eq. (III.6a) is de-
termined by the requirement that (0~a, ~ad ~0)
= (O~b 1b&~0) =0. The ordering of the operators in
the successive terms of the infinite expansion
(III.6b) is then fixed by the commutators (III.3e).
There are still two arrangements left, but the
identity (III.7) shows that the expansions are identi-
cal. As long as no contractions are carried out
afterward, one can retrieve the classical expansion
with the c-number replacement. More general BZ
expansions may be obtained in a similar way with
greater ease than would be the case when working
with quantized expressions from the outset.

In practice, the general BZ expansions will be ob-
tained from the special one by defining a canonical
transformation from the particle-hole bosons
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(B, , B, y) to general bosons (B„,B&y). The gener-
al bosons can be expressed as a c-ordered series
in the particle-hole bosons, which may be inverted
to give the particle-hole bosons as a c-ordered se-
ries in the general bosons. If the inverse expan-
sion is then substituted into the special expansion
(III.6) and terms of the same order are collected
together zoithout contracting any operatm s, the re-
sult will be a c-ordered expansion for fermion
pairs in the set (B„,B„y) having the classical cor-
respondence property. As an example, consider
the expansion of the fermion pairs in terms of the
normal-mode operators (J((, 4 ((, 6„, 6„y) which are
related to the particle-hole bosons by the equations'

B;„=2[-V;.(V)*6„'+&; (u) 6„J

+ 0 0 'C(Q(( —i J(((4 ((,

B;.'=Z[&;.(u)* 6„'-I';.(V) 6, 1

+go 'Ci~ Ja+iJ,&„4~.

One need only substitute these directly into Eqs.
(III.6) and not contract any terms to obtain a c-
ordered expansion in the new set. One may per-
form a second transformation from the normal
modes to the set (J, 4, 6„,8„y). This is provided
by Eqs. (II.32)-(II.34) and is c ordered to the order
shown. The expansion of the operators a, ~a& and
b ~b

8 then becomes infinite, and that for the parti-
cle-hole operators acquires even as well as odd
boson terms.

Why do we introduce expansions written in c or-
der rather than the more orthodox normal order?
One reason, already provided, is the ease of keep-
ing track of the order of a term. But a more im-
portant reason, as will be seen, is that it then be-
comes possible to state a simple prescription for
carrying out the Hartree approximation in the bo-
son picture.

B. Hartree Approximation in the Boson Picture

Let us insert the special BZ expansion (III.6) into the Hamiltonian (III.1) and collect terms of the same

order seithout contraction to give the c-ordered expansion

H- JJT +H~+0()) + ' ' ',
in which the linear boson term is

ff( = &(e(n+& V(s ns)B(a + H~ i
ia 8

and the quadratic boson term is

Hy(= Escy ++ (e(, ++V(8 ((()B(„B(((—Q (e((8++V„y 8y)B;8 B(~+ Q V, s ~, 2(B(„"B„((+B(8B(„)

i&0, 8

where Es« is the constant

E„,=Z(e„.+lZV. , „,)= E e. , &oln. '~.IO&+ l Z V., „&oln.'~. 10&&oln 'n. IO& .

(III.14)

(HI. 15)

(DI.16)

(III.IV)

If the single-particle basis is chosen to consist
of the eigenstates of the Hartree or directly factor-
ized Hamiltonian H s«, given by

@scF scy ~

(sub+�

& V..~. &o In, 'n. l0&)n. 'nb s

ab cd

(HI. 18)

Hg =Q, (III.20)

the constant ESCF becomes the Hartree ground-
state energy, and H~ takes the form

H((=EscF+Q (e( —e„)B(~"
ia

Consequently, the linear boson term H, vanishes,

then the following conditions hold:

e( +~ V(8. 8=0
8

e (( +Q V( s (((
8

e„((+Q V„y 8y= en58((. (III.19)

+ Q U(8 ~( 2(B((( B(((+B,8B((().
ign8

ij+8
(III.21)

Apart from the modification (III.1b) in the defini-
tion of the quantities e„, Eq. (III.21) differs from
the RPA Hamiltonian, also denoted by H~ in Ref. 1,
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through the replacement of antisymmetrized two-
body matrix elements by unantisymmetrized ones;
this includes Eg. (III.19) and the constant E~cF
(which corresponds to E„F in Ref. 1). However,
all of the desirable features of H~ found in Ref. 1
still hold —conservation laws are preserved and
the quadratic form is positive if the self-consistent
field is stable. We note that Eso~ W (0 ~H~O); in fact,
the following condition holds:

(OiHio) =(OiH, io) =B„,+-,'g V..., . (III.22)

This guarantees that cubic and higher-order terms
will not contribute to (O~H~O).

We have thus seen that if the Hamiltonian is first
written down in the Hartree single-particle basis
and then the special BZ expansion is inserted to
produce the c-ordered expansion of H, linear bo-
son terms will be absent. We emphasize that these
linear boson terms are defined relative to the c m-
der. Additional linear boson terms can still arise
if one puts higher-order terms into normal order,
as, for example, the term H&&& given by Eg. (A17).
Now, in this procedure, one must first solve the
Hartree problem in the fermion picture before in-
troducing the bosons. If, on the other hand, an
arbitrary single-particle basis is used together
with the special BZ expansion, or some more gen-
eral expansion is used, even with a Hartree basis,
linear boson terms (relative to c order) will in
general be present. However, these terms can be
removed by an additional unitary transformation
in the boson space. This is obviously equivalent to
introducing from the outset a new boson expansion
related to the special one by a canonical transfor-
mation. In this w3y, it is possible to solve the
Hartree problem working entirely within the boson
picture, and it is just such a technique which is
needed to establish the link between the boson-ex-
pansion method and the cranking model.

Now, there are mariy unitary transformations
H- e isHei capable of removing linear boson
terms in H. Which correspond to the Hartree ap-
proximation? One obvious Bnswer is a direct tran-
scription of the Hartree problem from the fermion
to the boson picture. It is well known that in the
fermion picture S can be chosen as a one-body oper-
ator, S=Q«(S,. a, tb +t.Hc), such that the trans-
form of Hs«contains no a, ~b ~ and b„af terms.
Let HzcF and S be transcribed into the boson pic-
ture by means of the special BZ expansion. It is
then clear that S must have an infinite expansion
containing only terms with odd numbers of bosons

chosen to make the transform of HscF a finite quad-
ratic form:

e ' HzcFe' =const+ g h, ,&B, "B,8. .

inj 8

In order to relate the cranking model to the boson
expansion of H, it is necessary to transform H as
well as HscF, and the infinite form of S makes this
task very cumbersome. But in the cranking model,
only the ground-state energy ESCF and expectation
values of one-body operators with respect to the
Hartree ground state are all that is required. In
that case, fortunately, another much simpler
form is available for S yielding exactly the same
results for these quantities, as we now proceed to
demonstrate.

We shall prove the following theorem: Let
H(B„,B„t)be a c-ordered boson expansion of the
Hamiltonian and A(B„,B„t) the corresponding c-
ordered expansion of any one-body operator, the
boson expansion being either the special BZ expan-
sion or any other one obtained from it by a canoni-
cal transformation in the boson space. " Let S~ be
defined as the generator of the pure inhomogeneous
transformation

~=0 *+g ~
P v

where the (g„,o„*)are constants determined by the
condition that the transformed Hamiltonian e
x He e (written as a c-ordered expansion) contain
no terms linear in the bosons. The transformation
(111.23) is just a shift in the origin of each oscilla-
tor, and the generator must have the form

Ss = ig(o„B„" g„*-B„). -(III.24)

Then (as will be proven), the constant term in the
-fSgc-ordered expansion e IIe is just the Hartree

energy for the Hamiltonian II, and the constant
-tSg tSgterm in the c-ordered expansion e Xe is the

expectation value of X in the Hartree ground state.
Before proceeding with the proof, we emphasize

the following obvious point in order to avoid possi-
ble misunderstanding: The transform of a c-or-
dered expansion and that of the same expansion
written in normal order are, of course, one and
the same operator; but what we mean by "constant"
and "linear-boson" terms relative to the two or-
derings is different. For example, consider a fac-
tor B,.B~B,SBf ~, which may occur among the terms
of Hgy~ in the c-ordered expansion of II. The trans-
form of this factor written in c order is

-fSg iSge sB,S~B~8B, te s=g, *g.,.8*g»+(g, 8*o»B, "+g,8*g, "B». +g, „*g»B,.&.
~)

+(g)s*B„BB;~"+g~8B, 8 B;„+g(~*B)8BI,8)+B,8 B~sB;~
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The "constant" term that we shall be talking about relative to c order is the first term on the right-hand
side, and the "linear boson" term relative to c order is the second term in parenthesis. Let us write the
above expression in normal order, which is the same result one obtains by directly transforming the
normal-ordered term 5~,58 B» +B, B» B„B.

e B,BB». B; e =(5B,58„o,8*.+o,„*o,8*v. »)+(5„&58 B&8 +o, (("cr»B.
&

+o, 8"o; .*B»

+o( *gBSB,~t)+(g)8*B( Bq8+o„sB)8 B;~ +o,~*B(8 B„B)+B)g"B,~ B„e.
The true constant term and the linear boson term obtained after normal ordering are different, and these
are not the terms that we shall be considering.

Let us first consider the effect of the inhomogeneous transformation on the boson expansion of fermion
pairs. We write q, ~q, =p„=f„(B„,B„"), where f„defi ne sthe functional form of the dependence of the c-
ordered expansion on the bosons. Then, define the matrix g by p„=f„(a„,(y„); i.e., p, » is obtained from

p„by replacing the boson operators (B„,B„t)with the c numbers ((7„,o„"). The transformation of fermion
pairs is then given by

e ' d„e =f„(B +E„,B +r„d)= e( d, d)+P ' B„+ ' B,i} quadratic aud higller orders.

(III.25)

This is just a Taylor series and therefore c ordered. The Eq. (IIL26) defines the transformation of any
one-body operator K,

K= +KB,(7~~@, s

ab

as follows:

8 ' &Kg' ~= QK, P, + QQK„, "B„+ "„B„t+quadratic and higher orders . (III.26}

The constant term on the right-hand side, which may be written as Tr(Kp}, is the quantity which will be
identified with the expectation value of K in the Hartree ground state. It should be noted, that since the ex-
pansion is not normal ordered, this constant is not equal to the expectation value of the exp@nsion taken
with respect to the vacuum of the bosons.

The inhomogeneous transformation of the Hamiltonian is readily obtained from Eq. (III.I) and (III.25):

-j$g isg 8EO- BEO-s Bs =E(E(ds, tis )t+g 'B ' B i)+quadratic aud higher orders,

where the constant term Eo is given by

E0 z eg((P((otd((i (I(( ) 2 + ~(tb (P sgt(o((drdo(t )Pdb (o((i o(( )
ab abed

(III.27)

(III.28)

Again, because the expansion (III.27) is not normal ordered, EB is not the expectation value of the expan-
sion with respect to the vacuum of the bosons. The condition that S be chosen such as to eliminate linear
boson terms in Eq. III.27) is seen to be the variational requirement

sE,(p((Y„, o „*)} BE,(g(cr„, o„*))
(III.29)

The constant E„evaluated with the solutions o„=a'~„'~ of Eq. (III.29) is to be identified with the Hartree
ground-state energy:

(IIL30)

From the forms of EB and the constant term in Eq. (III.26), it is obvious that in order to prove the theo-
rem we must identify p with the one-particle reduced density matrix of the Hartree theory, but parame-
trized by the quantities (&z„,o„). Now, it is well known that the Hartree equations can be derived by vary-
ing E„as given by Eq. (III.28), with respect to the parameters p„, subject to the constraint p'= p." It is
clear that entirely equivalent results will be obtained if the matrix p is expressed in terms of a smaller set
of essential variational parameters, provided that the parametrization automatica11y satisfies this con-
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straint. Since there is one complex parameter o&

for each boson, and there is one boson for each
particle-hole excitation, we have one parameter
for each partic1e-hole excitation. As is well known,

this is the correct number of essentia1 variationa1.
parameters for the Hartree-Pock or Hartree ap-
proximations. 'a Therefore, Eq. (III.29) will be
equivalent to the Hartree equations, and our theo-
rem will be proven if it can be shown that the con-
ditions

p'(v„, v„*) g( -v„, o„*)=0,
and also

Trp(v„, o„*)= N,

(III.31)

(III.32)

(BA 88 BA B)8 (III.33)

Therefore, the commutation relations for fermion
pairs,

[Pbaspdc] 6cbpda 6daPbb (III.3' )

imply the corresponding "classical" relations

(paar pdc j 6cbpda 6dapbc (III.34)

The Eq. (III.34) can also be obtained from Eq.
(III.3') by applying the shift transformation (IIL23)
to both sides of Eq. (III.3a), and then separating
orders, making use of Eq. (III.25).

The variational condition (III.29) immediately im-
plies that

where N is the total number of particles, are satis-
fied for any values of (o„,v„*). The Eq. (III.32} is
required, since it is part of the definition bf the re-
duced one-particle density matrix.

As discussed in Sec. IIIA, the c-ordered boson
expansions have the property that if the boson op-
erators are replaced by c-number variables, @11

commutator relations are replaced by classical
Poisson-bracket relations. Thus, if A and B are
any two such boson expansions, then, upon making
the replacements B&-o„, B„~-g„*,so that A and
B go over into functions A and B, respectively, of
(v„, o„*), the commutator [A, B]=AB BA is re--
placed by the bracket

has the form of the matrix of the Hartree Hamil-
tonian (III.18). The Eq. (III.35b) is the familiar
density-matrix form of the self-consistent field
equations. It is important to note that we were
able to go from Eqs. (III.29) to (III.35b) only be-
cause the conditions (III.34) hold. However, the
proof that we have the Hartree approximation will
not be complete until Eqs. (III.31) and (III.32) are
proven.

It is sufficient to prove that Eqs. (III.31) and

(III.32) are true when the special BZ expansion is
utilized; it then follows that they will also be true
for any expansion related to the special one by a
canonical transform3tion. Let us examine this
point in more detail. The special BZ expansion
(III.6) may be summarized by writing

'0
b9 d 'Pda(B;„, B»~ ) . (III.6')

The shift transformation (III.23) for the special
case will be written as

-ISg aSg
B&n e Bsne O~n+B&n y

B ~-e B; ~e =v„*+B,~,

where

Ss = -i Q (v, ji'; t v, *B, ) . —
in

(III.37)

(IIL 38)

The set of particle-hole bosons (B, , B;„t)may be
expanded in the general set (B„,B„t) related to it
by a canonical transformation:

B;„=g; ~(B„,B&t),

B» '=g; '(Bb B» ') ~ (III.39}

The functional dependences p„and g,. are deter-
mined as usual by requiring c-ordered expansions.
The general boson expansion of fermion pairs is
thus obtained by substituting (III.39) into (III.6'):

Pa ( aa V»a|"V)»Pdb(V»»~V» } ~ (III.41)

»la'7l. =P.b(g»n(B„„'),an'(B, ,")) =P!a(B,~ B,')
(III.40)

We therefore have the c-number relations

j(B„P., ]l
= 0 (IIL35a) where

for every p„. From Eq. QII.28) it is seen that B,
depends at most quadratically on the p,b, so that
the above bracket is readily calculated from Eqs.
(III.34) with the aid of the identity N,XY, Z) = X((Y, ZI
+ Y$X, ZJ, to give the equations

v»a=g»a(v» ~ v» }

Consequently, if the conditions

p'(v, „,v, „*)-L»(v, , v, *)= 0

and

(III.42)

(III.43)

[P, HscF(P)] = 0,
where Hs«, defined by

( scF)ab eab + ac,bdpdc
CC

(1II.35b)

(HI. 36)

Trp(v, , o; *)=N (III.44)

hold identically, they will obviously hold when the
substitution (III.42) is made.

Let us proceed with the proof of Eqs. (III.43) and
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(III.44). Corresponding to the special Bz expan-
sion, we have from Eqs. (III.4) and (III.6)

ly evaluated from Eqs. (III.45) by setting all o,„
=04 *=0 and is then found to vanish. Therefore,

pyi ~ +in )ny Pn8 ~8n ~ ~in ~48 & Z44 =Z =0 (IIL 53)

(III.45a)

Pi~ Oin ~~ O&8 O&aO'48
j8

Z=p —p (HI. 46)

From the bracket relations (III.34), one computes
the brackets

[ps~~ Za~j 6 ~Z~, —5~, Z~, . (HI. 47)

The values of the brackets are, of course, inde-
pendent of the choice of canonical variables, i.e.,
one may choose the set (o, , o; *) or any other set
(o„,v, „*)related to the former by a canonical trans-
formation. It is convenient, however, to choose
the special set (a;, a; *). Then, from the operator
relation (III.11) one obtains, upon making the c-
number replacement B, -o, , B, ~-oi *, the
equation

+psgpga+ + pg8 pea p~a=0~
j 8

(III.48a)

holding identically in the variables (o;, a,„). This
is just the statement that the particle-hole matrix
elements of Z vanish identically:

——,
' Q a, z*o& v, *a,so;„+ ~ ~ . (IH. 45b)

j8ky

From Eq. (III.45a), it is easily seen that the condi-
tion (III.44) is in fact satisfied. It is readily
checked that Eq. (III.43) is also satisfied order by
order. To extend the proof to all orders, we intro-
duce the matrix Z:

corresponding to the condition Z=0. The proof of
Eqs. (III.43) and (III.44) and therefore of our theo-
rem is thus essentially complete. We wish, how-
ever, to make two further comments.

First of all, we have made the assumption that if
all the brackets of a function A(o, , o;„*)with the

p, ~ (a«, o;~") vanish, then that function is indepen-
dent of the canonical variables. Actually, it is suf-
ficient to show that the brackets fp, „,A) and

[p,„*,A) vanish. The remaining variables p;, , p
are redundant. Now, Eqs. (III.45) can be consid-
ered as a change of variables from the set
(o,„,o, *) to the set (p, , p,. *). It is easy to see
that the Jacobian is nonzero in some neighborhood
of the point at which all 04 =0. One may then prop-
erly conclude that within this neighborhood (p;, A[
=kp;, Al =0 implies that

BA BA

Q 0.

The second comment is that since the proof
greatly hinged on the boson operator identity
(III.11), it would be reassuring to know that it cor-
responds to a meaningful identity in the fermion
space. Such need not be the case from general
principles, since Eq. (III.11) is not a commutator
relationship. However, Eq. (III.11) can indeed be
considered as the boson image of a fermion identi-
ty as will now be shown:

Q(a, ta, )(b„a,. ) Q(bztb„)b-za;

Z4 =0. (III.49) a&~a, b a, + b8~b8 b~ai
Taken together with Eq. (III.47), Eq. (III.49) also
implies the vanishing of other matrix elements.
We have, for example,

[p,.a*, Z, ) =ba Z, , —6,,Za„=0 .
Therefore,

Z, , =O, j ~i,.

Z8 =0, P4 n;

Zii=Z ~, alii, (y.

(III.50)

(III.51)

Thus, one can only conclude that all diagonal ele-
ments are equal. However, from Eqs. (III.47),
(III.49), and (IIL 51) it is easily shown that

)p„,Z„) = [p„,Z~~) =0, all a, b. (111.52)

As shown below, this is sufficient to prove that the
diagonal matrix elements are constant, i.e., inde-
pendent of the set (c,.„,o,„*). The constant is easi-

= (N N)b„a; =0 (in-the N-particle subspace).

Here, N is the number operator, and the last term
obviously vanishes in the N-particle subspace.

In summary, it is possible to find the ground-
state energy of the Hartree approximation, and the
expectation value of one-body operators with re-
spect to the Hartree ground state, in the boson pic-
ture, starting with an arbitrary single-particle
basis and any BZ expansion related to the special
one by a canonical transformation, by adhering to
the following prescription: Linear boson terms in
the c-ordered expansion of Il are removed by a uni-
tary transformation which amounts to a simple
shift in the origin of each oscillator. The constant
term in the c-ordered transformed Hamiltonian is
the Hartree energy F.,«. The same unitary trans-
formation may then be carried out on one-body op-
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erators written in c order, and the constant aris-
ing after the shift is the expectation value of the
operator in the Hartree ground state. It must be
noted that if ~0) is the vacuum of the bosons
(B„,B„"), then e sTO) is not in general the boson
image of the Hartree ground state.

C. Higher-Order Cranking Model

in the Boson Picture

We are now in a position to analyze the cranking
model for deformed nuclei in the boson representa-
tion. This was already done to first order in Ref.
1, where it was explained why the cranking model
must give the same moment of inertia as the RPA.
In this section, the argument is first of all car-
ried in detail one step further to show that the
cranking model also gives the expression (II.43)
for the coefficient, which had been derived from
the boson expansion through quartic terms. Next,
an argument is sketched which shows that the
cranking model to all orders gives the ground-
state-band rotational energy with an error of the
size of the boson-expansion-parameter squared.
As explained in Sec. IIIB, the self-consistent
cranking model used here is based on the Hartree
ayyroximation rather than the Hartree-Fock ap-
proximation as in Ref. 1. Therefore, antisymme-
trized two-body matrix elements are replaced by
unantisymmetrized ones in the Thouless-Valatin
equations for the moment of inertia. Also, one
should take Eq. (III.1b) into account in the single-
particle energies. For the case of a velocity-inde-
pendent two-body interaction, one then obtains the
Inglis form of the moment of inertia go.

We begin with the cranking-model Hamiltonian

Hz defined by

H~=H-AJ, (III.54)

8, = k(X)4, fQ[$ „(X)8-„"—H.c.] (III.57)

where X is a Lagrange multiplier, usually inter-
preted as the angular velocity. The Hartree theory
in the boson picture is to be apylied to H~. It is as-
sumed that B„has been first expressed in the Har-
tree single-particle basis corresponding to a de-
formed solution for H and then exyanded in the
special BZ series (III.6) in c order T.herefore, H
contains no linear boson terms, but (-XJ) does con-
tribute linear boson terms, which must be removed
by the shift transformation. For added conveni-
ence, let II and J be expressed in terms of the set
of normal-mode bosons (Je, 4 e, 8„,8„t) as given
by Sec. IIA.

The shift transformation is the following:

4 -e C e =4

Je e Jee = k(X) +Je, (III.55)
8„-e 8„e =

$ &(X)+ 8&,

8„"-e '"8„'e' '=t„(X)*+8„',
where the constants k(X), $„(X) are chosen to elimi-
nate linear boson terms in each power of X and thus
may be expanded in X:

k(&.) = k "b.+k "b.'+ , ~ ~ ~

t„(X)=]'„'»'+]'„"~'+~ ~ ~ . (III.56)

It was already seen in Ref. 1 that $ „'~ = 0. There is
no need to shift 4~, since terms linear in this quan-
tity automatically drop out by the requirement of
rotational invariance. The generator of the trans-
formation is the operator

Since the cranking energy is needed to order A. , the boson expansion of H is needed through quartic terms,
and that of J is needed through cubic terms. First, consider the transformation of the relevant parts of J.
From Eqs. (II.5)-(IL7) we obtain:

xJ,-xJ, +a&'&x'+a"~x'+ ~ ~ ~,. (III. 56a)

yJ»-yJ» +g'(k ' g[j„' (11)8„"+H.c.]+k~'&j&'&(10)C e] +&.'{Jeg[j„'(11)$„' *+c.c.] +linear phonons]
P ]1

+X'(k~'& g[j~'&(11)$„' *+c.c.]+linear bosons]+ constant and linear boson terms of order X'

and higher; (III.58b)

XJ», -XJ», +X' x quadratic bosons+X'[3(k~'&)'j~'&(30)Js+ linear phonons+quadratic bosons]

+A.'[(k~'&)'j~'&(30)+linear and quadratic bosons]+ constant, linear, and quadratic boson terms

of order ~' and higher.

The transformation of the relevant parts of H is obtained from Eqs. (II.1)-(II.4) as follows:

(111.58c)
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Hs-Hs+& k&'&«, 'Js+&&'[(2«,) '(k&'&)'+ gE„($~„' s„t+H.c.)]+&&'[k ' «, 'Js+linear phonons]

+X'[gE„~$„' ~'+ «, 'k '&k ' +linear phonons]+ constant and linear boson terms of order a'
P

and higher; (III.59a)

H»& -H, » + && xquadratic boson terms+&&. 'f(k '&)'Q[k&'&(21) 6 „~+H.c.]+ (k&'&)'k '&(20)C s+ quadratic bosons]

+&&'(2k '& Jsg[h„'&(21)$ „'&"+ c.c.]+linear phonons+quadratic bosons] +&& [(k '&)'Q[h&'&(2l)(&'&*

+ c.c.]+linear and quadratic bosons]. + constant, linear, and quadratic boson terms of order &&'

and higher; (III.59b)

H, v —H, v +&& x cubic bosons+ &&,

' xquadratic and cubic bosons+X'[4(k&'&)'k&'&(40) Js+ linear phonons

+ quadratic and cubic bosons]+&&'[(k '&)~k&~&(40)+ linear, quadratic, and cubic bosons]

+ constant, linear, quadratic, and cubic boson terms of order A.
' and higher .

Of course, the constant terms in Eqs. (III.58} and (III.59} involve only even powers of &&.

Elimination of linear bosons proportional to && from Eqs. (III.58a) and (III.58b) requires that

u&'&= g, .
The linear boson terms proportional to X' arising from the shift of H~, H„, , and -AJ» add up to

(III.59c)

(III.60)

X'(QE„($„&s„t+H.c.) —&&~P[j&2&(11)8„t+8c ]+&& Q[h&&~&(21)8„t+H.c.] +&&~[&&~k' «(20) -j& &(10)]4 )
(III.61)

Note, however, that Eq. (II.9c), expressing rotational invariance, requires that the coefficient of C~ in the
above equation vanish. The rest of the term is eliminated by choosing

(III.64)

( "&= -~ '[k"&(21) —e 'j "&(11)]/Z„.
In order to obtain the energy to order &&', it is only necessary to remove &&'Js terms but not &&' x(phonon)
terms. The X Js terms arising from shifting Hs, H»„H, v, and -&&(J»+J», ) are eliminated by choosing

k ' = -4s, k&~&(40)+3&&~ j&'«(30) —2&&D Q[k&& «(21)(& «*+ c.c.]+ &&~ g[j„(11)$„«*+c.c.] (III.63)

Now that the shift constants k(&&) and $ „(&&) have been determined to the order of interest, the cranking-
model energy may be written down. Since the cranking term -~J is to be interpreted as a constraint, the
energy is the total constant arising from the shift in H. Thus, adding up the constants in Eqs. (III.59) and
using Eqs. (III.62) and (III.63), one obtains the shift constant (&& ~H ~&&& (in the notation of Ref. 1):

~k&'&(21) —« '&'&(11) "
(&& ~H ~&&&=E,c, +-,'«y' —3«,' k. '"(40}—«, 'j&'&(30) —g " " &&'+ O(X')+ ~ ~ ~,

P

(111.65)

where Es« is the Hartree energy corresponding to X =0. The expectation value of J in the Hartree ground
state, denoted by (&&~J~&&&, is likewise obtained by adding up the shift constants in Eq. (111.58), making use
of Eqs. (III.62) and (III.63):

k "«(21) —« ""&(11)'
(&&~J~x&=s,&&.

—4«,' k&'&(40) -«, '&'&(30) -g " ' " x'+O(x')+ ~ ~ ~

The Lagrange multiplier ) is determined by pre-
scribing the value of (&& /~&&&, say

(III.66)

with M an integer. We note from Eqs. (III.64) and
(III.65} that the condition

—
(& /H/&&»= —(~(J)&&,ax

which can be derived from the Hellmann-Feynman
theorem, is satisfied. Therefore, one may elimi-
nate X, just as in Ref. 6, to obtain an expansion of
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(X ~H~A) in powers of the angular momentum M:

M
(&, ~H ~& ) = Zs«+ +d&PC'+ O(M')+ ~ ~ ~,

0
(III.67)

where the S coefficient is exactly the expression
6&, given by Eq. (II.43}. This completes the demon-
stration.

As discussed in Sec. II, the rotational coeffi-
cients g, S, t, etc. , for the ground-state band are
each expansions in the parameter e and, as we

have just seen, the cranking model gives the lead-
ing-order values g0 and $0. To extend this "theo-
rem" to all orders requires a radical simplifica-
tion in the bookkeeping. Such a simplification can
be accomplished by introducing a new set of bosons
via a canonical transformation. It will be recalled
that the shift transformation can be properly ap-
plied to any set of bosons related to the particle-
hole bosons of Eq. (III.6) by a canonical transforma-
tion. Following Sec. II, one may introduce the gen-
eral set (J; 4, t&„, e„t), which includes the total
angular momentum. Since II is independent of C,
we already have one simplification. The ultimate
simplification, however, is brought about by a
transformation to the set (J; C, 6 „",8'„"& t), which
eliminates aII coupIings of the ground-state band to
higher-lying bands. For our purposes, it is even
sufficient only to suppose that all terms of the form
J" x(linear phonons) have been transformed away.
In either case, the leading-order contributions to
the ground-state rotational parameters will come
from terms of the form (constant) x J'", i.e. , the
piece of the Hamiltonian IIRQIp given by

HRoT= & hnJ'" . (III.68)
n=1

In the representation in which all couplings of the
ground-state bandwith higher-lying bands have been
eliminated, it is clear that the lowest-order cor-

rection to the coefficient b„comes from the expec-
tation value of a term of the form J'ne "&6 "~t.
This correction is therefore down by a factor of e'
relative to the leading-order term b„. It is ex-
pected that e is of the order of 0 ' in the two-di-
mensional case, and of the order of 0 ' ' in the
three-dimensional case. In shifting II & to elimi-
nate linear boson terms, it is obviously sufficient
to shift J, leaving the phonons alone. This is be-
cause all terms of the form J"x (linear phonons)
have been eliminated, so no linear phonon terms
can arise from shifting J. The only linear terms
consist of -XJ and those coming from the shiftJ- J+k(A) inserted into HRoT. The particular form
of the function k(X) is determined from the condi-
tion that these terms cancel. But how k(X) is cho-
sen becomes irrelevant now that the coupling
terms have been eliminated, since X is anyhow de-
termined from the condition (g ~J~»=k(z) =M and
the energy increment is just

(~IH~» E,«= g-b„k(&)2"= g b„M2".
n=l n=l

(III.69}

This result is all that is needed to extend the theo-
rem to all orders.

Why are the values of the shift constants imma-
terial in this second case and not in the first case
discussed? The answer is that in the first case II
contains coupling terms of the form J" x (linear
phonons) and the choice of shift constants reflects
the effect of diagonalizing the coupling terms. In
the second case, all of the coupling terms in ques-
tion have been removed and the rotational energy
is diagonal to begin with. The only function of the
shift is to push the information on the rotational
energy from the higher orders down into the Har-
tree order, and any value of k(x) will do for this
purpose.

In order to see more clearly the diagonalization of band-mixing terms in the first case, we consider the
kinematic expansion of H and restrict ourselves to the vibration-rotation term J'x (linear phonons). From
Eqs. (II.39c) and (II.41a) we have

J2
H = constant+QE„8i"& t8„"&+ +J' {[k'„'&(21)—s 'j&'&(11)]8 „'& t+ H. c.)+

2g
(III.70)

Let us now eliminate the vibration-rotation term in lowest order by the unitary transformation

II- Jl'= e "IIe (111.71)

which is equivalent to a transformation from the set of variables (J, 4 ~~&, 8„», 8„~& t) to the set (J, C &~&, 8&~&,

6„+t). The generator is

-k~'&(21) —g, -'&&'&(ll)

P

(III.72)
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Next perform the shift transformation J-J+ /pe:
(a) . (n)

0 -e-=e-'"" a e'"" (ill. 73)

(III.74)

The product of the two transformations corresponds to the procedure used in the second case, and to the

given order is equivalent to a single unitary transformation generated by the operator

h(')(21) ((
-'(» ll )~*e'"+ z'(I, ' ' '" O'"'-H c

I

Since J commutes with Bl it could just as well be replaced by ac number, say ((p, in Eqs. (III.72) and

(III.V4). In addition, to lowest order, C('&=Cs, 8(")= 8„. If one makes these changes in Eq. (III.74), the

result is the generator S~,

(III.75)

as is seen from Eqs. (III.57), (III.60), and (III.62). This shows explicitly that diagonalization of the band-

mixing term in question is built into the cranking-model procedure used in the first case.

D. Rotation-Vibration Coupling to Individual Bands

The cranking-model expression for the S coeffi-
cient, Eq. (II.43a), adds together all the contribu-
tions from the couplings of the ground-state band

with higher-lying bands which occur through the vi-
bration-rotation-type term J' x (linear phonons),
together with the diagonal term proportional to J4.
In one sense, it is an advantage of the cranking
model that it effectively provides sum rules which
eliminate the need to consider explicitly the mixing
with individual bands in calculating the ground-
state-band rotational energy. In another sense,
there is a disadvantage —what is one to do if one is
interested in the strength of the coupling to individ-
ual bands, such as the parameter I'~') defined in

Eqs. (11.39c)'? We shall show that this can be found

within the framework of the cranking model, thus
obviating the need to explicitly introduce boson ex-
pansions. Of course, as was already discussed in
Sec. II, there is nothing absolute in the division be-
tween a vibration-rotation term and a diagonal J4
term; one can switch back and forth between the
two by means of a unitary transformation, or,
equivalently, with a suitable choice of the f coeffi-
cients in Eqs. (II.40a) and (II.40d). In order to
make the problem well defined, we consider the
vibration-rotation term corresponding to the kine-
matic choice 4 = 4 ~) and 6& = 6&"), as given by
Eq. (II.41a).

One way to extract the desired information is by
means of a generalized cranking model in which
phonons are constrained, as well as the angular
momentum. Such an approach in lowest order has
already been discussed elsewhere, '4 and is easily
transcribed into the boson picture. ' However, we

shall instead describe an equivalent but simpler
procedure which does not require additional con-
straints. First, note that the information of inter-

I

est is already contained in the phonon shift con-
stants ((„') given by Eq. (III.62). One then has

I (s) = E ~(~)/~ 2 (III.76)

Since the practical implementation of the cranking
model is made in the fermion representation, one
must relate the phonon shift constant $ „') to the ex-
pectation value of a one-body operator in the
cranked ground state. Now, the phonon operator
8„=+, [X,„(p}*B,. + Y, (p) "B, ~] is not a one-body
operator. To the order of interest, however, it is
sufficient to define the one-body operator 8„:

8„=+[X, ()4*b~; + Y, ()()*a;~b t], (III.77)

e s8„e s=[$„'b.'+O(X')+ ~ ~ ~ ] + linear and

higher-order bosons . (III.V9)

Therefore, if one wishes to find the quantities $
&')

without explicitly introducing the BZ expansion,
one need only find the cranking-model wave func-
tion (in the fermion representation) to order )(,

' and
then compute the expectation value ()(~8„~)() to or-
der X to give the result

h ')(21) —e "')(11)
() ~8„~)()=X'((„')= -(~,) )'

(III.80)

It is interesting to note that the (((,A.}dependence
in Eq. (III.80) reflects the J' dependence of the pho-

where the X; (p)* and Y',. ()()* are the normal-mode
amplitudes. This will do, since the special BZ ex-
pansion of 6& contains only odd numbers of bosons:

8( =8( +(8()))) +' ' '
~ (III.78)

Upon performing the shift transformation (III.55),
the cubic term (8„)», can only contribute terms of
order X' or higher to the shift constant so that
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non operator 6„arising from the diagonalization
of all vibration-rotation terms to first order. To
see this, choose the value of f(„')(ll) given by Eq.
(IL42a); this is the choice which eliminates J'
&& (linear phonon) terms. From Eq. (II.33) one then
obtains

k ')(2l) —(( '('&(l 1)
+ ~ ~ ~

ji jI E y

(III.81)

omitting terms which are of no concern at the mo-
ment. Since in the relevant order of the cranking
model (A

~
J~X)

= g p, the correspondence between
Eqs. (III.80) and (III.81) is complete. This result
is not an accident, but rather an indication of the
fact that the cranking model can be used to trace
the angular momentum dependence of any operator,
not just the Hamiltonian. And the angular momen-
tum dependence involved is associated with the di-
agonalization of the coupling terms. This is easy
to see if one writes the operator in terms of the
set of variables (J, C '), 8(„",8(~') t). In that case,
the shift constant for the operator arises entirely
from inserting J-J + k(y) in that part of the opera-
tor which depends on J alone, just as in the case of
the Hamiltonian. This idea, will be illustrated in
Sec. III E.

E. Cranking Model Applied

to Transition Operators»

In terms of the set of bosons (J, 4 ), 8( ), 8( ) ~),
the transition operator Q

" may be written as

Q(N) —&{&iN 4 ' g(N) )
where the scalar g(") is expanded in the set (J, 8„',
8„ t) alone. "' To leading order, the transitions
within the ground-state band are determined by the
part of g "~ which depends on J alone:

g(Af) —Q (III.82)

The expansion contains either all even or all odd
powers of J, depending on the time-reversal prop-
erties of Q~"~. There are other parts of g " which
also contribute to these transitions. For example,
there is a term of the form J"6„"~6~"~~. This pro-
vides a renormalization of q„which is smaller by
a factor of e' compared with the leading term. The
cranking model neglects such small renormaliza-
tions. In the representation under discussion, the
cranking model requires only the shift of the angu-
lar momentum: J- k(X)+J, where k(X) = (1

~
J~)(),

the prescribed value. The shift in Q™is then
easily seen to be

&)(IQ("'()() = Zq„k(&()" = Q q„(&(J(&)" . (III.63)
n=on=O

Once the constants q„are identified from the crank-
ing-model expectation value of the operator, one
may easily calculate moments and transition ma-
trix elements between members of the ground-state
band using the wave functions (IL62a).

As an example, let us check that the cranking
model, when formulated in terms of the set (Js, 4s,
8„, 8„t) gives the expected results, at least
through order J'. It was already shown in Ref. 1
that the linear J dependence for operators odd un-
der time reversal is correctly given by the crank-
ing model. Therefore, let Q" be even under time
reversal. Performing the shift transformation
(III.55), using the expansion of Q(s) defined by Eqs.
(IL51) and (II.53), and the shift constants (III.60)
and (III.62), one obtains the shift constant for Q("&: .

()(~Q(")~&()
= (O~Q(") ~0)+((( &()'A(")( )(20), (III.84)

where the constant A("&(')(20) is just that given by
Eq. (II.63a).

The present version of the cranking model does
not permit calculation of transitions involving other
than the ground-state band. In order to treat these,
one must either use boson expansions directly, or,
possibly, the generalized cranking model in which
phonon operators are constrained.

IV. SUMMARY AND CONCLUSIONS

We hope to have demonstrated, first of all, that
boson-expansion techniques can provide a straight-
forward formal solution to the problem of deriving
a microscopic collective Hamiltonian for strongly
deformed even-even nuclei, including rotational
band-mixing effects, as well as vibrational anhar-
monicities. Transition operators are also easily
expressed in the collective representation. An im-
portant feature of the technique is the treatment of
rotation and vibration on an equal footing.

Additional justification has also been provided for
the higher-order cranking model by formulating it
in the boson "representation. " The mechanism be-
hind its success then becomes clearly evident: The
inhomogeneous shift transformation eliminating
linear boson terms carries information on the rota-
tional energy from the higher orders of the boson
expansion down into the Hartree order. In this way,
it is seen that the cranking model approximates the
energies of the members of the ground-state band
with an error of the order of the square of the bo-
son-expansion parameter. This accuracy is much
better than previously supposed.

For purposes of the proof, the cranking model
was formulated in the boson picture. Practical im-
plementation requires the use of the fermion repre-
sentation as usual. If one is content with its accu-
racy, especially for heavy nuclei, the cranking
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model provides a handy tool for computing proper-
ties of the ground-state band while circumventing
the explicit introduction of tedious boson expan-
sions. There are two more important advantages
which are readily exploited in the fermion repre-
sentation. First of all, as stressed in the Appen-
dix, the cranking model adds together the effects
of all band mixings on the ground-state band, effec-
tively providing sum rules for the rotational param-
eters. Second, the model can be diagonalized ex-
actly in order to describe high-spin states, a re-
gion in which the angular momentum expansion is
inadequate.

The scope of the cranking model is not limited
to the computation of rotational energies. We
have seen that transition oyerators can also be
"cranked, " permitting the calculation of transition
probabilities between members of the ground-state
band. In a forthcoming publication it will be shown
that the cranking model can also be applied to nu-
clei with spherical ground states to calculate prop-
erties of those vibrational states which meld into
rotational ones as the strength of the long-range
force is increased. We therefore have a unified
calculational tool which can be applied to the har-
monic-vibrational, transitional (quas irotational),
and rotational regions. Its implementation only re-
quires application of the presently existing compu-
tational technology of the self-consistent-field
method.

Why should there be this connection between the
(Hartree) cranking model and the BZ boson expan-
sion'P The answer which we propose is that the BZ
technique may be regarded as a quantized version
of the nonlinear time-dependent Hartree method.
It is well known that the cranking model can be de-
rived by transforming the time-dependent equations
to a frame rotating with the self-consistent field.
In order to see the connection between the two
methods, note that the boson images pb, of fermion
pairs g, gb obey the exact equations of motion:

df Pba ~i bcPca Pbc ca)
C

debaf pbd y pfe ~bdge p«, pf0,

(IV.1)
If the bosons are replaced by classical canonical
variables, so that pb, is replaced by the c number

pb„ the result is
d

bdfPba Z (ebcPca P bc ac)a

Z ( eeet PbaP je +be,fe PeaP fa) (IV. 2)
def

Moreover, as was seen in Sec. III B, the conditions
p' = p and Trp = N can be satisfied. In that case,
Eqs. (IV.2) may be fully identified with the time-de-
pendent Hartree (not Hartree-Fock) equations. In
applications to bound states, the density matrix ele-
ments are normally expressed in terms of canoni-
cal variables and then quantized; the energy, given
by Eq. (III.28), being interpreted as the Hamiltoni-
an. The quantization is usually accomplished by
means of the Pauli prescription, an ad hoc choice.
The quantization can be achieved instead by requir-
ing that the fermion-pair algebra be satisfied, and
then one is back to the BZ method.

As a final point, we note that the present results
can be generalized in a number of directions and
work on this is in progress. Three-dimensional
rotations and inclusion of pairing correlations re-
quire straightforward if tedious extensions. The
method for two-dimensional rotation can then also
be easily applied to the so-called "pairing rota-
tion. " The possibility of developing boson expan-
sions about Hartree-Fock rather than Hartree mini-
ma is also under investigation. In this way, it
might be possible to assay the significance of the
Thouless-Valatin corrections to the cranking mod-
el. These have been considered in the lowest
cranking order in Ref. 1. As an illustration of the
ideas introduced here, direct applications are made
to an exactly soluble model in a companion paper.

APPENDIX. APPLICATIONS TO THE TVfO-DIMENSIONAL QUADRUPOLE-FORCE HAMILTONIAN

The boson-expansion techniques will be applied to a system of particles moving in a spherical potential
well and interacting via the two-dimensional analog of the quadrupole-quadrupole force. The Hamiltonian

ff= Qe„q.'qb --',~q&'»q") (A1a)

where the first term corresponds to the spherical well, g is the strength of the interaction, and qt ) is de-
fined by

q&') = P (ai(x+fy)'ir)~. &~, .
ab

It is convenient to rewrite (Ala) in terms of the Hermitian operators R ' defined by

(A2)
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R' =-'(q ' +q -' )= g&aIx' y-'Ib&q. tq, = QR,;q. tq, ,
ob ab

=-.'f(q -' - q '
) = g &aI2xy Ib&q. 'q, = g R.;iq. 'q, ,

ab

so that

a= g e.,q. 'q, --.'xg(R&" &)',
ab

The self-consistent-field Hamiltonian is

ffs«=-,'xQ &0IR&" &Io&'+ Q e.,q, 'q, -xg&0IR'"'Io&R~'~,
ab

(A3)

(Alb)

(A4)

corresponding to an elliptically deformed potential well with arbitrary orientation. The state IO) is the
ground state of (A4} determined self-consistently, with ground-state energy

Rscp = &oIffs«Io& = Z e.n&oln. 'no Io& —lxZ &oIR'"'Io&'
a,b

It is assumed that the single-particle basis has already been chosen to diagonalize (A4):

g e.,q. 'q„- xg&OIR~" &IO&R&" &= g~.q. 'q. .
ab

We are free to orient the deformed field so that the condition

&0IR&-&Io& =o

is satisfied. The total Hamiltonian may be split up as follows:

(A5)

(A6)

(A7)

(A8)

where the second term is the residual interaction.
The particle-hole notation will be used from now on, in terms of which

R ' =(OIR ~ Io)+ Q(R;~ a, tb t+H c)+ QR;&~ a, ta& —QR„~sbstb„.
in i) n8

(A9)

The special BZ expansion (HI. 6) can now be inserted into the Hamiltonian. The Hartree Hamiltonian re-
mains finite:

RSCF @sCF + (~j ~ )R '

in

The expansion of A('), however, is infinite:

(A10)

g( ) =g( )+g( )+g( )+. . .B II III (A11)

We only need the expansion of B( ) through cubic terms in order to obtain the expansion of H through quar-
tic terms. Explicitly, we have

R,"&= &0 IR~'& Io&+ Q(R',.'~B;„"+H. c.), (A12)

i jn iag
(A13)

(A14)Rrri s + &Ria +$8 Bgn ffgs+H. c.) ~

ign9

It may be noted that beyond A, 'I, there are only terms with an odd number of bosons. The expansion of H
is then given by

H- HB+HIII +HI V+ ~ .
where

ffs=Escs+ &(&& &.)Rg.'R;. —kxZ(R—s"' —&0IR'"'Io&)',
ia

(A15}

(A16)
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and

H„=='x Q(R " —(0~R "
~0), R qq }

r

2K-Q Q (R~~~~R~j~~(B;~~, B~B~B~B)+H.c.}+2' g Q (R!~)R~8 ~(B;~~, Bq ~B)8j+H.c.),
igloo. 8 r 3j&8y

II,v = --', ~ Q(R ~' —(0 ~R'" ' i0), RP„') —2~ Q(R'~) ')'
r r

= ~gQ Q (R~" ~R~~~(B;~~, B, tB~s~B~y)+H. c.)+ 4gQ Q (R;~~ R)g (B,y B~s B„~,Bg~)+H.c.)
4ga0(by r t ~an by

--.'~ Q(g R', ",. &B,„'B,.—Q R(:,&B,,'B,.)' .

(A17)

(A18)

The next task is to express (A1V) and (A18) in terms of the normal-mode bosons which diagonalize Hs.
These are given by

e„'= ZIP;.(m)B;.'+ I;.(m)B;.J,

6pe =+~+in(~} Ban +Xin(&)*Ban~ i

J's = Q(J';+)~~+ H. c.), (A19}

in terms of which

2J~H~=EI, +~EPs8~ 8~s+ 2ps fo

where E~ is a constant, the zero-point energy, and go is the usual Inglis cranking moment of inertia,

(A20)

&e ~i ~n
(A21)

There are no self-consistent corrections to Eq. (A21), since we are starting with the Hartree rather than
the Hartree-Pock approximation used in the Thouless-Valatin method. From time-reversal considerations,
one can show that the corrections in the latter come from the omitted exchange term. The additional indi-
ces s in Eqs. (A19) and (A20) denote different branches of the eigenvalue problem. In general, there may
be single-particle branches for which 8„,~ coincides with a particle-hole excitation 8,. ~ not affected by the
two-body interaction. In addition, there are two collective branches with eigenvalues given by the disper-
sion equations

2 ~ /R' /'(e, —e )
~(e, —e )' —E„,'

As a consequence of the choice of orientation (AV), the minus branch has an E=0 root. Comparing with the
three-dimensional quadrupole-quadrupole-force problem, one sees that the plus branch resembles the P-
vibrational branch, while the minus branch corresponds to the K= i branch. There is, of course, nothing
corresponding to a y vibration in the two-dimensional case. The amplitudes which correspond to Eqs.
(A22) are

X, (~) =N»
6

g
—E'~ —Ep~

~( y ) +
I',- (~) = -N„,

3 0 Pk
(A23)

where N„, is a normalization factor:

(A24)
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The inverse of Eqs. (A19) is

J
Xin ~ *6

ps
—~in ~ 6ps + &p

' JB+ ~Jin*@'B)
ps

P l ps 0 + c Bt

Bin - Yia PS *6ps +Xin PS 6ps + go JB- SJineB (A25)

(A26)

Substitution of Eq. (A25) into Eqs. (A17) and (A18) gives H», and H, v in the form of Eqs. (II.3) and (II.4).
We shall not write down all of the coefficients, only those which enter into the S coefficient.

First of all, consider the Js'x(phonon) term of H, ». Since R8(') is independent of J8 by time-reversal
symmetry, the J8 x(phonon) term can only come from a linear phonon term of Rs(') combining with a J8
term from R, &

. Actually, it will be shown that the JB' term of R, , ) vanishes. One therefore obtains the
coefficients of the JB'6 &,

~ terms as
(+) (+)

b (21) = -5, +~
p+ ~ in iy g n ~ ag is ia

The expression obtained from (A26) by replacing R('& by R ) is seen to vanish by noting that for each term
in the sum, the complex conjugate also occurs in the sum, and then employing the identity

J„(e,—e,) = 2zj((0(R(" (0)R(, &,

which follows from the rotational invariance of II and the commutation rule

(A27)

[J,R(-)]= -2fR(') . (A28)

Next, consider the J8' term from H, v. Since R(f&& cannot contain a J8' term by time-reversal symmetry,
and we have shown that R „does not contain a JB' term, it follows that the JB' term of Ir,v can only arise
from ——,'z(R(»))'. We therefore obtain the coefficient

J. *R(+&J R(+~J *J.
@(4)(40) 1 Q in ij jn g n8 i8 ln

(A29)
8n jjn (ej —En)(Ej —fn) . ( Ei68)(Ei —En)

We note that the term in brackets in Eq. (A29) is the square of the bracketed term in Eq. (A26).
In order to obtain the S coefficient, we also need the boson expansion of the angular momentum,

J=Q(J;na;tbnt+H. C.)+ g Ji,. a, taj —gJ„8b8tb' (A30)

given by

J=JB+J» +J»i + ~

where

Jii = &JijB(n"Bjn- ~ Jn8B(8'Bin,
i jn ins

and

Ji(( = -2 Q (Ji„B;8~Bj„tB,8+H.c.) .
i jag

Insertion of Eqs. (A25) identifies the coefficients of the J86&n terms of J» as

(A31)

(A32)

(A33)

j(„"(11)=8. '{Z(~ j )8'[x,.(jj-s)*J;jJj. F,.(jjs)"J,,-J,.*]+Z (8i -88) '[J.8J;8*F;.(jjs)* &;.(jjs)*J,8-J8.]j
i ja inc

The coefficient of the JB term oz J», is given by

.(3)(30) g in i8 j8 jn
8o i n8 (ei en}(ei ~8)(Ej E'8)

(A34)

(A35)

With the aid of time -reversal symmetry considerations, it may readily be shown that all the coefficients
are real. In accordance with the discussion in Sec. II, for the kinematic choice of bosons the vibration-
rotation coefficients are given by [b~' (21) —8, 'j(2)(11)], while the coefficient of the J' term is [b")(40)
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—((, 'j"«(30)]. The total (5 coefficient is then given by

lb(,'«2l) —((
-' (ll« I'

S=b"«(40) — -'"«(30) —g ' "'
ps ps

(A36)

The cranking model must give exactly the result (A36), but the formal expression is simplified by a sum

rule for the summation over phonon modes. In order to obtain this result, we work with the Hamiltonian
H ~'.

Hg=g —gJ. (A37)

The usual procedures of the cranking model in the fermion picture may then be followed. One may, for ex-
ample, remove all a, tb„" and b a, terms in Eq. (A37) by the transformation

II - e isH eis

where S is a one-body operator:

S= ig (S; a;-tb„t+H. c.).

(A38)

(A39)

Alternatively, we can use the boson picture and follow the procedures described in Sec. III. In order to ob-
tain the sum rule, however, the Hamiltonian Hz must be expressed in terms of the bosons B, , B; rather
than the normal modes. The linear boson terms, proportional to B; and 8, ~, are then removed by the
shift transformation

I3 ~- e ~B ~e =8 ~+0

where S~ is the operator

(A40)

(A41)

The constants o, are then expanded in powers of X:

. =x ('&+a' ('&+a' ")+~ ~ ~ .i CX i CX i CX
(A42)

The expansion of the density matrix, p
= p('«+ A p '«+ X'L«

' + «('g "«, may then be found from Eq. (III.45). In

this way, we obtain

p(&« = o(&« = S(&« =g /(g g ) ~ (A43)

p(&« = p(&) =0 ~ (A44)

(Eg —E~)(f) —E~) (e( —E(«)(E( —E~) ««. 6( —E~
(A45)

The quantity 6(R ' ) is the second-order change in the deformation due to the centrifugal stretching (6(R '«)

=(&g '
~«() —(O~R '«~0)) given by

(+) 1 x df+ ')=2
C d(R('«) '

where

(A46)

C=. 1-2.
CX

E i —
ECX

(A47)

and the quantity d((/d(R(+«) is the derivative of the cranking moment of inertia with respect to deformation,

given by the expression

1 d«( g ~gu Rig ga R;~ J;,J,~ J;~ J,SRS„J. *R('~J (+)g (+) &in Ji6Jpa(+)+
+2 —2

2K d(R + ) (|~ (f,. —E'~)(C~ —E~) ~~~ (f ) E&) EJ E+) &~8 (e & 6&)(6' EB) 4 8 (f . —e )(e. —ps)

(A48)



1712 E. R. MARSHALEK AND J. WENESER

Although o, and S,. coincide through second order, they no longer do so in third order. In fact, we obtain

(3) (3) 1~ (1) (1))If (I) S(3) 2 ~ (1) (1)g (1)Pia &ia 2~Oi8&jg &je ia 3~&ig&j8 ~jn
j8 i8

8 (f; fs)(f f ) E,. — „E.—Es g (E,. —E )(E.—fg) fi fa f f

+
j j i i

+ ~(f( —f.)(f, —f.)(f, —f.) 8 (f; —f.)(f; —f 8)(f; —f )

Ji gR 8 I)( R(, +~)J,
(f (

—f~)(f~
— ~f} (f ( —f ~)(f — f~) (f (

— f~)(f( —f 8) (f (
—f~)( f(—f ())

The other density matrix elements are

p(~) = g(o(~) (2)Ill + g(2) (~)4)ji ja i cf jcx ja

p(~] = g(o(2)eo(~) +o(~)eo(2)) (A50)

From Eqs. (III.65) and (III.67), one sees that the (8 coefficient is obtained from the shift in J, i.e., the ex-
pectation value in the cranked ground state, as follows:

(8=-e(( ()(IJI)() ' =-—'(( Trf) ') J

(f (
—f())(f~

—'f 8)(f )
—f ~) ()~() (f l

—f~)(f~ —f ())(f —f~)

(A51)

The first four terms in Eq. (A51) correspond to the "Coriolis" term (8c of Ref. 6. This term arises only
from HscF -yJ. The last term of Eq. (A51) arises from the residual interaction and represents the centri-
fugal stretching; it corresponds to the term S~~ of Ref. 6. It was assumed in that work that S„-b is the con-
tribution of the vibration-rotation interaction, and that therefore Sc is the coefficient of the J term. While
such a division is perfectly correct for a proper choice of C (or, equivalently, of the f coefficients in Sec.
II B) it is hardly unique, and, in fact, does not correspond to the kinematic choice. The kinematic vibra-
tion-rotation term contributes to both ()I)c and (8 .b, as shown by comparison of Eqs. (A51), (A35), and (A36},
giving the sum rule:

Ji *JijJj„J,
(8f( )f( gffs)(fi —f ) ~ ~~(f( f~}(f~ f~)( gff~)-i i i i i j i j

(A52)

It is seen from Eqs. (III.58b) and (III.59b) that this sum rule may also be obtained by computing the constant
term of order A~ arising from H»& —AJ, &.

One of the big advantages of the cranking model as a calculational tool is that it sums together the effects
of all band mixings on the ground-state rotational band, thus eliminating the need to solve for each RPA
band-head excitation explicitly. We also note that although the quantity C given by Eq. (A47) resembles the
adiabatic vibrational force constant, the (8 coefficient (A51) has nothing to do with the adiabatic approxima-
tion. On the contrary, S .

b actually includes summation of effects due to all RPA solutions.
As a bonus, we note that the )(' dependence of (R(' }identifies the J dependence of the operator (I)

') in
accordance with the discussion in Sec. III E. From Eqs. (II.63a) and (III.84), we may make the following
identification (with M= 2):
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A(»(»(20) =-' (»(»(2P) 2W &»(»(0)~ Q~
V P

1 ds 1
e ' d(R"&C ' (A53)

Finally, let us consider the orders of magnitude of the parameters. This will only be done very crudely
here. First of all, from Eqs. (A26) and (A34) it is immediately apparent that h'„', i(21) and 8, 'j(',i(11) are
roughly of the same order of magnitude. It is not so apparent that h~')(40), given by Eq. (A29), and

0, 'j")(30), given by Eq. (A35) are of the same order of magnitude, but this can, in fact, be verified by
more detailed considerations. Comparing Eqs. (A26) and (A34) with Eq. (A48) one obtains the rough
estimates:

"' e,' de('i

»&'&&40)-& -'&&*&(so)-- — ) .1 1 ds
0 ~ ~ 'd(R"& (A54)

The N„, are just zero-point amplitudes. The largest amplitude is expected for the lowest eigenmode, for
which one may make the adiabatic estimate

E.2,. 0'; I'(ef; —~.)
[(e; —e „)'—E']'

Therefore,

N„; (E„,/2z)'i',

so that one indeed obtains

-h ' (40) — '" (30)
ps

We may now write (with h = 1)

1 zero-point amplitude ds (OiR') ip&

(OIR" Ip&
(A55a)

1 (2g, )
' zero-point amplitude ' ds (OiR~'imp& '

(OiR~') ip& d(R(+)) (A55b)

Based on experience with the three-dimensional case, we expect that

(0 g&'& io& (A56)

Thus, the vibration-rotation coefficient is reduced relative to the leading-order ro.-ational-energy parame-
ter (2s,) '

by the ratio of the zero-point amplitude to the equilibrium deformation. This ratio must be
small if the RPA is to be a good approximation for the deformed system. The square of this parameter
occurs in the coefficient of the J term, which is further diminished by the ratio of the rotational to vibra-
tional energy.

In a similar manner, it may be shown that the coefficient A~'&(')(20) is reduced relative to the leading
term (OiR" ip& by a factor of order

(2g„') zero-point amplitude '
Z (OiR&'& io&
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