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The amplitude for a knockout reaction in the plane-wave impulse approximation is derived
from the Faddeev equations. It factorizes into the product of an off-shell two-body t matrix
times the bound-state wave function in momentum space. In this paper results are derived for the
(P, 2P) experiment from a realistic potential and compared with those arising from some cur-
rent approximations. Distortion effects are ignored in order to isolate the off-shell effects.
We find that for incident protons with lab energy below 200 MeV using an off-shell amplitude
can change the cross section significantly as compared with the on-shell approximations in
current use. The effect increases with the binding energy of the struck proton and with the
recoil momentum. This indicates that (P, 2P) reactions below 200 MeV are sensitive to the
off-shell behavior of the two-body amplitude and that they shouM not be used to obtain nuclear
information using on-shell approximations.

I. INTRODUCTION

Interest in knockout reactions which proceed
via quasielastic scattering stems mainly from the
two distinct kinds of information which may be ex-
tracted from them: (I) information about off-shell
scattering amplitudes between the projectile and
the struck particle, and (2) information about the
wave function of the struck particle. Especially
in (p, 2p) reactions, most of the emphasis to date
has been on the second type. In this paper, we
focus on the off-shell information. Our understand-
ing of these effects then allows us to discuss am-
biguities in the extraction of the form factors and
spectroscopic factors arising from off-shell prop-
erties.

Off-shell information may be obtained from
many-body systems. It has been found that calcu-
lations of the density and binding energy of nuclear
matter' and the low-energy three-nucleon proper-

ties' (H' binding energy and the doublet n-D scat-
tering length) are very sensitive to the details of
the two-nucleon force. Since these systems con-
tain both protons and neutrons, their properties
depend on both the T =0 and T=1 forces and are
especially sensitive to the off-shell properties of
both the 'S, and '8, states and on the ratio of cen-
tral to tensor forces. Because the nucleons inter-
act over long periods of time and at low energies,
the exclusion principle is important and must be
taken into account in deriving the effective interac-
tions. ' These facts make the extraction of off-
shell information from the properties of bound
many-body systems quite difficult.

Nuclear reactions provide an additional degree
of freedom compared with bound states. Since con-
tinuum wave functions have flux at infinity, the in-
vestigator may choose a particular set of boundary
conditions by specifying the incident particle, tar-
get, the energy of the reaction, etc. Comparisons
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between the same reaction at different energies
can provide sensitive probes of very specific as-
pects of a nuclear system. In such a comparison
the complexities of the nuclear structure may be
the same in both cases. This would permit empir-
ical information from one experiment to be used in
analysis of another. Thus, the second experiment
may depend primarily on the specific property of
interest.

We propose to study the (P, 2P) reaction with re-
gard to determining off-shell information about the
7'=1 part of the two-nucleon scattering amplitude.
We treat knockout as a three-body reaction via iter-
ation of the Faddeev equations. In the three-body
model the target is treated as a two-body bound

state with a given wave function. In reality, the
structure of the target is much more complicated
than this and mulct be described in terms of parent-
age expansions. 4 Also, one must include distortion
effects, multiple-scattering corrections, and in-
elastic effects. ' In this work we ignore all these
corrections and examine the plane-wave impulse
approximation in order to determine if there are
regions of phase space which are sensitive to the
off-shell behavior of the proton-proton amplitude.

In most of the work on knockout, on-shell ap-
proximations are used for the t matrix. In order
to determine whether or not it is necessary to go
off shell or whether an on-shell approximation suf-
fices, we have compared the half-shell t matrix
elements as prescribed by a one-term impulse ap-
proximation from the Faddeev equations with the
various on-shell approximations in current use.

Since we find that the on-shell approximations
are good at sufficiently high energies, we presume
that the bound-state wave function is known, being
obtainable from high energy (P, 2P) or (e, e 'P) ex-
periments or from a theoretical calculation. (In
fact, however, there are always difficulties in the
extraction of the wave functions. ) The dependence
of the (p, 2P) cross section on the fact that the am-
plitude is off shell is then displayed. We find that
for the coplanar symmetric (P, 2P) experiment be-
low about 200 MeV, none of the on-shell approxi-
mations tested is completely satisfactory. The
disagreement is worse for more deeply bound
states. At these energies it is essential to include
the effects of refraction before attempting to ex-
tract off-shell information from experiment.
These distortion effects may reduce the sensitivity
of the experiment to off-shell behavior somewhat,
but we do not expect qualitative changes in our con-
clusions.

/' N
21
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—AK
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FIG. 1. Kinematics for the equal-mass knockout reac-
tion in the lab and c.m. frames. Particles 1 and 2 are
taken to have a mass m while particle 3 has mass Anz.
K is the velocity of the c.m. in the lab times m and
equals k/(A+ 2).

In Sec. II we use the Faddeev equation and de-
rive the plane-wave impulse approximation for
equal-mass knockout reactions [e.g. (P, 2P)j to
determine the appropriate half-shell scattering
amplitude. The case of unequal masses is rele-
gated to the Appendix. In Sec. III we discuss the
kinematics of the coplanar symmetric experiment.
The approximations in current use are defined in
Sec. IV. We specialize to the proton-proton case
and, using the Reid soft-core potential as a model
for the interaction, compare the half-shell p-P
cross section with those of the various approxima-
tions in Sec. V. The effect of these divers ap-
proaches on representative (P, 2P) reactions are
presented and discussed in Sec. VI. We present
our conclusions in Sec. VII.

II. IMPULSE APPROXIMATION

In this section we derive the plane-wave impulse
approximation (PWIA) for the knockout reaction in
which the incident and the struck particle both have
masses equal to m. The core is taken to have a
mass Am. The more general case is considered
in the Appendix. The equal-mass case will be re-
ferred to as the "(P, 2P) case" although the equa-
tions are also correct for other cases such as (o.,
2o.).

We describe the reaction by means of a three-
body model. The residual nucleus is treated as an

inert core which binds a proton in the initial state
of the system. If the wave function of the bound
state in momentum space is taken to be g, then
the scattering amplitude in the c.m. frame is (see
Fig. 1)

M= dk'dq p —K, p' —K, q-AK T E k —K, k'-K, -k'-A. K g k',
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where T(E) is the three-body scattering amplitude.
In Eq. (I) plane-wave states are used for particles
1, 2, and 3, respectively. The momentum of the
incident proton in the lab is k, and the momenta of
the two outgoing protons are p and p'. Since the
recoil momentum q is not measured, we integrate
over it. It is determined from momentum conser-
vation to be

q=k-p-p'.
The energy of the system in the center of mass is

k~ k2

2m 2m(A+ 2) '

The plane-wave impulse approximation con-
sists of approximating the full amplitude by the
term corresponding to a single scattering of the
two protons. Using the labeling of Fig. 1 we take

T= t3. (3)

The three-body operator t, can be related to the
two-body scattering amplitude. Let p, be the rela-
tive momentum of particles 1 and 2, q the momen-
tum of the center of mass of 1 and 2 relative to 3,
and P the total momentum of the system. Then if
the particles 1, 2, 3, have momenta kg k2 k3,

where Q is the binding energy of the state g.
In this three-body model the multiple-scattering

series can be obtained by iterating the Faddeev
equations. In Faddeev theory, T is broken up into
three amplitudes T', which satisfy the equations

p, =(m,k, —m,k, )/(m, +m, ),

q
= —[(m, +m2)k~-m~(k, +k, )],

P =k, +k2+k3.

(4)

7'(Z) = Q T'(Z),
i =1

T'(E) =~;(&)+&;(E)G.(E) Z T'(E)

(2)

The amplitudes I', are three-body scattering am-
plitudes in which the particle i is taken to be a non-
interacting spectator to the interaction of the other
two. G, is the free propagator for the three parti-
cles.

We define reduced masses [(ij k) =(I23)]:

lf,. =m,. m, /(m, . +m, ),

M,. =m,. (m, +m, )/M,

M=m +m +m

The Lippman-Schwinger equation for t3 is

( P(f (E)( i P ))—()P(y (
) ) P))+ d «d «dP«~P3q3 ) u)P3 q3 ~~P3 q3 ) 3( I)P3 4

Z -P"', 2

Since the interaction potential depends only on the coordinates conjugate to P„one obtains

2 2

(i&,q. «I(.(«)liilf. «')=()(«-&')()(f, —il)(i). &. (z — I —
2M fl) .

3
(7)

pon=2(p p ))

p()ff 2(k k ) )

1—k'=p+p'-k =- q.

(9)
(gb)

(9c)

This says that only the relative momenta of par-
ticles 1 and 2 can be changed by a collision be-
tween them. Their total momentum and the total
momentum of the system remain unchanged. It al-
so says that in the center of mass the energy rele-
vant for the collision is the total energy minus the
energy of the spectator relative to the center of
mass of the pair.

Putting the Eqs. (3) and (7) into Eq. (I) gives the
impulse approximation for the transition matrix
element:

M=(p, lf (P ..'/2ff, ) lp. ff) k(k ), (3)

where we have used the notation

The energy appearing in the t matrix is the rela-
tive kinetic energy of two protons with relative
momenta p, „. Here, I' is half off the energy shell
(half shell), since the magnitude of p, ff is not nec-
essarily the same as that of p, „.

The choice of a final half-shell t matrix element
is physically well motivated. For a particle to be
on shellv its energy and momentum must be relat-
ed by the free-particle relation E(k) =k~/2m. In
the initial state only the incoming particle is on
shell. Since the bound proton is interacting with
the core, it has potential as well as kinetic energy
and is therefore off shell. In the final state both
protons are asymptotically free so they are both
on shell. If they are pictured as scattering with
each other once and then propagating freely with
no additional scatterings, the final scattering must
occur on shell with the final relative energy.
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III. KINEMATICS

We now consider the coplanar symmetric experi-
ment (Fig. 2). This requires that both protons
come out on opposite sides of the beam at equal
angles to it and at equal energies. This restric-
tion produces a considerable simplification in the
theoretical analysis. Many of the experiments
have been carried out in this geometry. '

Following the notation of Eqs. (9a)-(9c), in this
case we find

P, „=Psine,

p ff =k -p cos6,
k' = 2P cos8 -k .

(1Oa)

(lob)

(1Oc)

Note that the vectors p, ff and k' are along the z
axis (beam direction), while p, „ is at right angles
to it. This means the f matrix element in Eq. (8)
describes a 90' scattering in the center of mass of
the two protons.

The quantity P = ]p ~
can be determined from en-

ergy conservation:

This argument does not hold in a distorted-wave
model. Since the P-P knockout scattering is not
the final scattering taking place, the P-P ampli-
tude involved will be fully off shell. Treatment of
this case is reserved for a later work. In the pres-
ent paper we restrict our analysis to the plane-
wave impulse approximation in order to isolate the
off-shell effects from those of distortion.

heavy-core approximation, 1/A =O.

Setting P =P ' this approximation gives

p =(-,'a'+ mq)'".

With these equations we may show explicitly what
the variation of k, P,«, and P,„ is in any particu-
lar experiment. They are shown as a function of 8,
parametrically for different values of the incident
proton's energy in Figs. 3 and 4.

In Fig. 4, note that the value of k' goes through
zero fairly rapidly as the angle varies around 45'.
The wave function in momentum space will there-
fore be swept out on either side of 45'. If one is
in the energy region where the P-P cross section
is approximately constant, the (P, 2P) cross sec-
tion will be proportional to the square of the wave
function. This is the basic idea of the experiment.
Note that at lower energies the range of variation
of k is considerably reduced as is its rate of varia-
tion.

In Fig. 3 the difference between the on- and off-
shell momenta becomes clearly visible. The dif-
ference is largest at forward angles. As the angle
between the two outgoing momenta becomes small-
er their relative momentum P,„goes to zero. For
a nonzero incident energy, the initial relative mo-
mentum p, ff can never vanish, owing to the binding
energy of the struck proton.

We can make some explicit statements about how

far off shell the amplitude goes at high energies.
Using Eq. (9c) to eliminate P' from Eqs. (9a), (9b),
and (11), we obtain

k2 P2 ps2 kf2—+ = + +
2m 2m 2m 2mA

'

I I I I I I I

k=5F

Q=-45 MeV /

k=5F
/

/

For the remainder of the paper we will make the 2,5
k=4F k=4F

2.0
I

E

l.5

)0

k =3F

=2F

k=3F

ik=2F

0 I I I

0 20 40 60 80 0 20 40 60 80

8 (deg)

FIG. 2. Coplanar symmetric geometry (equal-mass case).

FIG. 3. Values of pp„and ppf f versus 0 for different
values of k for the coplanar symmetric case. k and 0
are as defined in Fig. 2. Q is the binding energy of the
struck particle. The value of pp„ is given by the solid
line (—), Ppff by the dashed line (——).
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the bound-state wave function, 8 becomes a func-
tion of k and k', explicitly

k

(F ) Q e(deg)

cos8 =~ 1+ 1+

1 2m@ ~~2 2k r 4mQ -k'2
sln8=~ 1+

k2 1
k

+
k2 ~

Substituting these into Eq. (1S) and expanding for
fixed k', we find the O(k) and O(l) terms cancel
leaving

p fg-p „=— —mQ +0 —
2

=0

k=2 F

Thus, if we are investigating the bound-state wave
function, the difference between the off-shell and
on-shell momenta. vanishes as 1/k. Consequently,
at high energies the off-shell ambiguity vanishes
and the wave function can be determined uniquely.

IV. APPROXIMATE METHODS

-I
k=5 F

FIG. 4. Values of k' for some typical coplanar
SQQ1metrlC Case8.

where

is the c.m. energy of a pair of protons with rela-
tive momentum q. Thus the difference between
the on- and off-shell energies depends only on the
binding energy and the momentum of the struck
nucleon in the nucleus. Increasing either of these
quantities increases the distance off shell.

Using Eqs. (10a), (10b) we can get an explicit ex-
pression for the difference of the magnitudes of
the on- and off-shell momenta. These equations
give

p, f f —p, „=k -p(sin 8+ cos 8)

which is always positive. This quantity has a mini-
mum (for fixed k) at 8=45'. If we expand the above
as a function of 1/k for fixed 8, we find

pofg -po„=k 1 —-- ~ +0

The coefficent of k does not vanish at fixed 8, so
as k goes to infinity the difference function also
becomes large. However, as k increases, the
image of the wave function is compressed into a
smaller angular interval about 45' (see Fig. 4).
If we look at fixed k', i.e., at a particular point on

A number of different techniques have been used
to approximate the half-shell f matrix in Eq. (8).
Most of these replace the off-shell amplitude by
some on-shell amplitude obtained from two-body
scattering experiments. We will use the notation
f(E, 8) for the on-shell two-body scattering ampli-
tude at a c.m. energy E and a c.m. scattering angle
8.

One common prescriptione is to take E to be the
final relative energy of the two protons and 8 to
be the angle between P,„and P,~f. (In the coplanar
symmetric case 8 is 90'. ) This gives

(14)

This will be a good approximation if the half-shell
amplitude varies slowly as a function of p, &&.

We will refer to this method as the final-energy
P Ke sc'v'EP t2 On.

Alternatively, E can be taken to be the initial
relative energy with the scattering angle as in the
final-ener gy prescription. ' This gives

This is the initial;energy ascription.
Another method relating the off-shell t to an on-

shell t is to assume that the amplitude depends on-
ly on an energy and a momentum transfer. " The
separation of the two-proton vertex and a particu-
lar set of Galileo invariant variables are shown in
Fig. 5. Other choices have been considered by
Bonbright. " The energy and momentum transfer
are chosen so as not to involve the leg correspond-
ing to the bound proton, since it is off its mass
shell. The assumption is that permitting this leg
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s=g

q=k —
p

FIG. 5. Diagram for the knockout reaction in the im-
pulse approximation. A set of invariant variables is in-
dicated.

(k —p (' =h'+p' —2kp cos8 =p, „'.+p«, ' (18)

(see Fig. 2 and Eq. (10)]. Solving for sin8 gives

to go off its mass shell by a small amount does
not affect the amplitude. This procedure need not
always yield an on-shell t matrix which can be ob-
tained from a two-body experiment, since the two-
body reaction satisfies the inequality

q'/4mS =cos 0&1,

which is not required in the knockout process. We
will refer to this as the final-energy-and-momen-
tum transfer-PrescriPtion Explic. itly, we wish to
choose a momentum q and an angle 8 such that

q'=I-'(p-p')I'=p. .'
and

2q sin —,'8 = (k —p (.

In the coplanar symmetric case

mation fits some subset of the on-shell data. This
potential is then used in Born approximation in Eq.
(8) and in distorted-wave calculations. A local en-
ergy-independent pseudopotential is chosen to fit
the scattering data at 90 . In the coplanar sym-
metric case this is actually another method for ob-
taining an on-shell prescription. Because this is
not the usual description of the pseudopotential
method, we will derive it in some detail.

Lim and McCarthy assume their potential is cen-
tral and includes exchange forces. The cross sec-
tion for (P, 2P) is given by Eqs. (7) and (8) of Ref.
13 to be

4&» l&X,Xs-x&, ItlX.N) I

L

+-,'1„'(&X,X,+X~, (t(X,()(2.

(17)

The first term is triplet scattering and the second
is singlet. X~ and X~ are the wave functions of
the outgoing left and right protons, respectively.
The incident P has wave function Xo and g is the
bound-state wave function. Since the force is as-
sumed to be central, the singlet and triplet wave
functions are the same. The coefficients A]y and
A] 0 are linear combinations of the exchange param-
eters (W, M, B,H) (see Introduction to ¹clear The
ory, p. 82)." If t is taken to be a local function
t (r, —r~), and Xz, Xz, Xo are replaced by plane
waves with momenta as in Fig. 1 then

ol

sin 28 4(1 +p, ff /p, „') &X,X It (X,g&=t(P-k)g(P+P'-k),

&X~ (t IX,g)=t(p' —k)g(p+p' —k),
8 —2 sin-1 (] +p 2/p 2)g/2

In order for a solution to exist we must have

2(I+p«~'/p. .)'"&1

or

where the tilde indicates the Fourier transform.
For coplanar symmetric scattering one has

(P-k I=I@'-k(.

The triplet scattering therefore vanishes leaving

P off 3pon

This is not satisfied for all of the permissible
phase space even in the coplanar symmetric (P, 2P)
reaction (see Fig. 3). In order to use this pre-
scription for the entire range of experimentally ob-
served variables, one would have to analytically
continue the on-shell amplitude to unphysical val-
ues of cos(9. Where the prescription is permissi-
ble one obtains

dQ dO dE

The function t(r) is chosen to fit the 90' on-shell
scattering data. To get the on-shell cross section
r/r is replaced by a plane wave in Eq. (17) giving
(Ref. 14, p. 83)

da' p, (3&„'(&X,X„-X~,' (t (X,X,) ('

&P..(t(h(p. .)) IP. )=t(&(p..), 8). +A„' I &x,'x,'+x~,' (t Ix,x„)(').

Another type of approximation, the PseudoPoten-
tial method, was introduced by Lim and McCarthy. "
A potential is chosen such that its Born approxi-

Going to the c.m. frame and letting the initial mo-
menta be k and -k and the final momenta k' and
-k' gives
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(x,x„(tax,x,)=t(k-k ),
(x„x,'/tax, x„)=t(k+k ).

At 90 the triplet scatteri. ng again vanishes giving

because at 90'

ik-k'I= lk+k'I.

Thus for any momentum of magnitude q, t(q) may
be related to an on-shell amplitude at 90', in par-
ticular

t (e) = t(&(e), 80')

Using Eg. (16), the loca.lity of the t matrix implies
that the pseudopotential prescription is equivalent to

sitive (less than 1% variation) to mesh sizes from
0.02 to 0.1 F and matching radii from 5 to 15 F.

Once the wave functions are obtained in coordi-
nate space, t matrices are obtained by Fouriex-
transforming the potential times the wave function
according to the equation

&k jt (h(k)) (k&=(k (V i|tt')(k)&

where

(1)I')(k, r) „„-e' ) [cos5,j, (kr) —sin5, n, (kr)].

The integration is performed via a 240-point mesh
in a Simpson's-rule routine.

The value of the on-shell t matrix, calculated by
Fourier-txansforming the wave function, gives a
value of the phase shift via

when P,~f and P,„are orthogonal.
A detai1ed consideration of the angular distribu-

tions given by the pseudopotential is necessary
when refraction effects are included. This is some-
what more complicated than the 90' case due to
the nonvanishing of the triplet scattering. Since
we are only considering the eoplanar symmetric
case in the PWIA, only the 90' scattering is rele-
vant. Because the Lim-Mc Carthy pseudopotential
does not, in fact, fit the 90' on-shell cross section
very well, we will use the above on-shell prescrip-
tion rather than their pseudopotential. We refer
to this as the avenge-energy pxesn iPtion.

V. p-p CROSS SECTION

For the purpose of numerical examples we now

restrict our attention to the proton-proton interac-
tion and the effects of the divers approximations
on (P, 2P) cross sections. In this section we will

compare the half-shell t matrices generated by

the Reid soft-core potential" with those generated
by the on-shell approximations discussed in the
previous section. The on-shell information is also
generated by this potential. This gives us a realis-
tic model of the two-proton interaction in which

we may evaluate the approximations.
The half-shell t matrices a,re evaluated using the

routine THAT. The relative p-p scatt;ering wave
function is calculated in a partial-wave basis using
the Cowell algorithm' with a Runge-Kutta starting
routine. The Coulomb force is omitted and the
wave functions are matched to the phase-shifted
free wave functions at a radius 8.57 F. In the cal-
culation reported here, a mesh size of 0.071 F is
used in the Cowell routine. The x'esults are insen-

The phase shift calculated this way agrees with
the phase shift calculated from matching in the
differential equation to better than 0.5% in most
cases, the agreement being best for the large
phase shifts. The t matrices were calculated at
discrete values of k and A,". Intermediate values
were obtained using a four-point Lagrange inter-
polation. For the 'Sp state a grid size of 0.15 F '
was used while for the other states (which are not
as rapidly varying) a grid of 0.3 F ' was used.
The interpolation routine agrees with the direct
calculation of TMAT to G. l%%uo.

The only relevant coupled state is the J =2 state
('P, -'E, ). For this state the 2&&2-component wave
function (I is calculated by a coupled Cowell rou-
tine. The 2&&2 f matrix,

(k') t)~e (h(k)) (k) =Q tdr rj, (k'r)V„„(r)g(P, (k, r),

is calculated as in the uncoupled case.
To calculate the ex oss section we have retained

only the / =l'=1 component of this ]I matrix. Par-
tial waves above E =2 were dropped. This seems
reasonable, since all energies calculated are be-
low k = 2.8 F ' (E„b- 650 MeV), and the energies
relevant to the experiment are all below k =2 F ~

(&q, b 350 MeV). Recent phase-shift analyses"
indicate that, in magnitude, the I', phase shift is
less than 10' at 700 MeV and less than 2' below
400 MeV.

However, when one goes far off shell the above
statements may fail. The higher partial waves
can contribute significantly off shell if the cross
section is small. [For example, the dip in Fig.
't(a) may be modified upon the inclusion of the 'F,
state. ]

With these approximations the half-shell cross
section in momentum space is given by 8
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(
6(7 ~ ( If' I'+ 6 I p I') +& (e)[~ Ip I'+ IQIte(p p *)]+f (0)(QO Ip I2)

Qv

( "( I f,', I' + & I f', , I' + 6 I I,', I') +&2(e)l a If', , I' +-.' I p I'+ 4Re(p p *)+ 9Re(f' p *)] (2Q)

where we have used the notation fzs and the normalization of Eq. (19). The couPled state is normalized so
that it goes over to the above when the tensor force goes to zero. At 9 = 9Q' Eq. (2Q) becomes

(
do'

cc If I2/25 Ip I2 6Re(p p 4)
90o

(
d0'

I t I'+ —'
I
t' I'+ —"

I p I' —2He(p„p *)-—Re(p p *)
90o

p =0.4
on

I,O

O, I

I,O 2,0

p ( F '
)

I

2,0

FIG. 6. Off-shell p-p cross sections at 90 in the c.m.
I (p», 90' It(f2~„/2p, g Ip~ff, 0')I, as given by the Reid
soft-core potential. The on-shell points are marked by
a heavy dot. In (a) the cross sections are plotted as a
function of p off parametric al ly with p 0„. In (b) the roles
of Pof f and Ppli are reversed.

Note that there are now contributions from the trip-
let states, since in general L ~ S forces are per-
mitted.

The half -shell cross sections for the Reid soft-
core potential are plotted in Fig. 6 in mb/sr. On-

shell points are marked by a heavy dot.
At low energies the amplitude is strongly peaked

for low values of p, ff and has a dip. This is due
to the behavior of the '80 state which dominates
at low energy. The scattering amplitude in this
state has a zero as a function of p, ff for values of

P,„below 1.5 F '. For higher P, „ the amplitude
is dominated by P and D waves which vanish for
p f f 0 and have a peak. In the transition region
the cross section is fairly flat. For both P,„and
p .ff greater than 1.5 F ' and less than 3 F ', the
cross section is very slowly varying around 4
mb/sr.

In Fig. 7 the half -shell cross sections are com-

paredd

with the various on -shell approximations.
We have chosen to display these results as a func-
tion of p, f f parametr ical ly with p, „. In such a

plot the final energy prescription is a, constant (in-
dependent of p off) and the initial energy prescrip-
tion is a curve which is the same on al l the graphs
(independent of P, „). If the curves had been plotted
as a function of p, „par ametr ical ly with p, ff these
would have been switched.

From Fig. (3) we recall the relevant off-shell
regions for the coplanar symmetric (P, 2P) experi-
ment. For low or intermediate energies (k & 4 F ')
p ff 1.5-2F'while p, „ is always less than p, f f
and can be zero. Thus for Fig. 7 the relevant re-
gion is to the right of the on -shell point up to
about 2 F '. These regions are indicated on the
figures by the solid bars .

One result is clear from these curves: The ini-
tial - or average -energy prescriptions give much
better approximations to the exact half -shell cross
section than does the final -energy prescription.
The average -energy prescription does slightly
better than the initial energy. For both P,„and
p of f above 1.2 F ' al l the prescriptions become
approximately equal .

This agrees with the results of Jain" which in-
clude distortion. He finds that at energies between
100 and 460 Me V, the initial -energy prescription
is superior to the final -energy prescription. This
supports our hypothesis that the correct I; matr ix
for the impulse approximation is the half -shell
amplitude .

These statements are specific to the proton-pro-
ton interaction and should not be taken to imply
similar statements for other interactions. For
example, for the (o, 2n) reaction there are indica-
tions that the final -energy approximation is pre-
ferabl e to the initial ." Qualitatively the results
for the P -P interaction can be explained from the
behavior of the cross section. For high energy
the P -P cross sections are virtually constant. As
the energy is lowered below 1 F ', the cross sec-
tion begins to rise rapidly. Letting one of the mo-
menta go off she 11 to a larger value reduce s the
cross section again. The most appropriate energy
is therefore somewhat higher than the final rela-
tive energy.
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FIG. 7. Comparison of on-shell approximations with the half-sheD cross section plotted as a function of ppf f for sev-
eral values of po„. The half-shell cross section is shown as a solid line (—), the final-energy prescription as a dotted
line (~ ~ ~ ~ ), and the average-energy prescription as dot dash line (-~ ~ - ~ - ~ ). The solid bars under the curves indicate
the regions relevant to the (P, 2P) reaction in the PWIA for k &4 F for binding energies of 20 and 45 MeV.
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The ener gy-and-momentum-tr ansf er procedure
is not displayed. Since, for most of the energies
discussed the P-P cross section is virtually inde-
pendent of angle, the prescription is identical with
the final-energy prescription.

VI, (p, 2p) CROSS SECTIONS

The effects of using the various on-shell approxi-
mations on the (P, 2P) cross sections are shown in
Fig. 8. Cross sections for both 1s and 1P wave
functions are shown.

The wave functions are chosen to be single-par-
ticle states in an oscillator well. The parameters
of the well are taken to be appropriate for a light
nucleus in the region of the sd shell. Since the re-
sults of this paper consist of comparisons of dif-

ferent approximations for t on the (P, 2P) cross
section, the particular wave function chosen makes
no difference in our conclusions. The main re-
sults are all contained in Fig. 7. Only the ratios
of the cross sections are being investigated in

Figs. 8 and 9. It is for this reason that we felt it
unnecessary to use more realistic wave functions.
Explicitly we take

v= —,M~, ~ =13.4 MeV,

g„(e)=8 "~'",

q, (e)=re '

The normalization of the wave function and phase
factors have been ignored. The cross sections dis-
played are simply the square of the matrix ele-

P STATE S STATE

Bo -(o)

20-

IO-

0
zo -(c)

t—

20-
0-
CL

IO-

CD
0

0
po — (e)

20-

IO-

00 IO 20 30 40 50 60
8 (deg)

IO 20 30 40 50 60

FIG. 8. Comparison of coplanar symmetric (P, 2P) cross sections in the various approximate PWIA' s as a function of
the energy of the incident proton. The curves are labeled as in Fig. 7. Curves (a), (c), and (e) refer to knocking out a
P-state proton whose wave function in momentum space is taken to be qe . 5~ and whose binding energy is taken to be
20 MeV. Curves (b), (d), and (f) refer to knocking out an s-state proton whose wave function in momentum space is taken
to be e 5 and whose binding energy is taken to be 45 MeV. Phase-space factors and normalization constants have
been omitted.
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150—

l00-

50—

~ IOO-
CC
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CC

50-

ences become more marked. At 180 MeV (k =3
F ') the final-energy prescription is quite bad be-
low 45'. The initial- and average-energy prescrip-
tions work fairly well down to about 20'. At 80
MeV (k =2 F ), the final-energy prescription is
bad for all the angles shown while the initial- and

average-energy prescriptions work above about
35'.

Figures 8(d) and 8 display the effect of decreas-
ing the binding energy for fixed incident energy.
In all these cases the wave function used is the
same. The binding energy is only allowed to affect
the kinematics. As is indicated by Eq. (12), as Q

decreases so does the off-shell effect. Again, the
initial- and average-energy prescription agree
with the half-shell prescription to smaller angles
(farther off shell) than does the final-energy pre-
scription for all curves.

VII. SUMMARY

150—

IOO-

50-

~ ~ 4 ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ 0 '~

I

I0 PO
I

50
8 {deg )

40
I I

50 60

ment in Eq. (1).
The results displayed in Fig. 8 are as follows:

as the incident energy increases, the on-shell ap-
proximations show increasing agreement with the
half-shell result and with each other. At 320 MeV
(k =4 F ~) the agreement is excellent over most of
the wave function. At lower energies, the differ-

FIG. 9. Comparison of coplanar symmetric (P, 2P)
cross sections in the various approximate PWIA' s as a
function of the binding energy of the struck particle. The
curves are labeled as in Fig. 7. In all the curves the
bound-state wave function is taken to be the same as the
s-state in Fig. 8, the momentum of the incident particle
is taken to be k = 8 F ~. Note that Fig. 8(d) is also rele-
vant for this sequence.

Based on a study of the impulse approximation
coming from one term of the Faddeev equations
and using the Reid soft-core potential as a realis-
tic model for the P-P interaction, we find that

(P, 2P) reactions above 300 MeV are not sensitive
to the off-shell behavior of this interaction. All
of the on-shell prescriptions studied give equiva-
lent results. This reaction, therefore, can be
used in this energy region to extract reliable in-
formation about the nuclear wave functions.

Conversely, the reaction below 200 MeV is sen-
sitive to the off-shell behavior of the P-P interac-
tion and is therefore best suited to the study of
this interaction. Moreover, the extraction of nu-

clear information becomes tenuous if on-shell ap-
proximations are used. If one must use an on-
shell approximation, the initial- and average-ener-
gy prescriptions appear to be the best. In this en-
ergy region, refraction is important and the cou-
pling between distortion and the off-shell effects
needs further careful consideration.
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APPENDIX
'I

In this Appendix we display the PWIA equations for the case when all three particles have different mass-
es. The lab momenta, incoming and outgoing, are taken to be as in Fig. 1(a). The velocity of the center
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of mass in the lab is k/M, so Eq. (1) becomes

M= dk'dq p- —k p' ——2k q ——k TE k k'- —k —k~ ™
k fk'

M ' M
'M' 'M' '

M' (Al)

with

q=k —p —p

as before.
Definitions in Eqs. (4) and (5) still hold for arbitrary masses as do Eqs. (6) and (7). Using the momenta

in (Al) and inserting (3) and (7) gives

M=(p. . I&(P..'/2v, ) Ip.ff) 4(k'),

as before, except now

p„=(m„p'-m, p)/(m, +m, ),
poff (m, k' —m, k)/(m, + m, )

k'=p+p'-k.
The equation for energy conservation [Eq. (11)]becomes

p2 pt2 I r2

+Q= + +
2m, 2m~ 2m2 2~

Putting in k' in terms of k, p, and p' and defining

8=angle between p and k,
8'=angle between P' and k,

P =angle between p and p'

gives

k m3 —mj P m3+mi ~" m +m, 1' +Q =— ' '+ ' '- —[pk cos8+p 'k cos8'-pp 'cosp].

(A2)

(As)

(A4)

Since the equation is quadratic, there are generally two values of p for any given p . Equation (A4) is the
equation of a curve which gives the locus of kinematically allowed points in the p-p plane. (For examples
of some curves, see Ref. 13.)

We now return to the equal-mass coplanar symmetric case and use (A4) to determine the corrections to
the kinematics due to the fact that A o~. From Eqs. (A2) and (AS) it is clear that the same pWlA equations
hold as given in the text. Only the value of p determined from Eq. (1].) will differ.

Upon setting m, =mn=m, m =Am, 8=8', /=28, andp p', Eq. (A4) gives

P2 i+ -- —2P — —f -— +mQ =p

This equation has the solutions

p= 1+
I

+ + 1+ —1-— +mQ2 cos28 ' (k cos8 k' cos28 2 cos'8 k2 1

A
I,

A A A 2 A

Since the value of the radical is larger than the term preceding it within the large parentheses the condi-
tion that P be positive requires the choice of the + sign.
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Deuteron Scattering from a Polarized 3He Gas Target*
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Scattering asymmetries in the angular range 78' - Oc ~ ~ 127' have been measured for
9.9- and 11.9-MeV (lab energy) unpolarized deuterons incident on a polarized 3He gas target.

INTRODUCTION

A polarized 'He gas target has been developed
which is suitable for investigation of scattering
and nuclear reactions; nuclear polarization was
achieved by the optical-pumping techniques devel-
oped by Colegrave, Schearer, and Walters'(CSW).

POLARIZATION MEASUREMENT AND ERRORS

Several papers' ' have discussed the relation-
ship between optical signals generated in the pump-
ing process and the magnitude of the nuclear polar-
ization. Equation (9) from Ref. 1 (slightly rear-
ranged) is

6 —2P+3(1 —P)I 3+P a+5+c

AI, 1+3P bI
I 1+ ~k —P(k+ ~) +k2P I (2)

vt here the ratio (a —b —c)/(a+ b+ c) =—k depends on
the relative illumination of the E = ~ and I = ~ lev-
els. Assuming equal illumination, CSW took k =--,'.
Greenhow' showed that the two levels were not
equally illuminated and suggested a formula deriv-
able from k = —,'. Klinger' and Hauer and Klinger'
(HK) measured directly the nuclear polarization
(P) and the optical signal aI/I. Equation (1) can be
written


