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for &H correspond effectively to complete suppression
of a short-range AN tensor force. This seems surpris-
ing in view of the short range of the force and of the open
structure of AH3, and is in contrast to the results for the
A well depth.

For a review, see G. Alexander, in Proceedings of
the International Conference on Hypernuclear Physics,
Argonne National Laboratory, May, 1969,. edited by
A. R. Bodmer and L. G. Hyman (Argonne National Lab-
oratory, Argonne, Illinois, 1969), p. 5. The Rehovoth-
Heidelberg collaboration obtains a~ = -1.8 F, a& =-1.6 F,
rp, =2.8 F, r« =3.3 F, whereas the University of Mary-
land group obtains a =-2.0 F, a& =-2.2 F, rp 5,0 F,

One has g~ =g&&~ x g&A~ in terms of the NNo and AAO.

constants and with neglect of some small recoil terms.
If it is assumed that the 0 meson is a unitary' singlet,
then gN&~ =gAA~. For our purposes this assumption is
unnecessary. However, equality of the two coupling con-
stants is in fact consistent with a phenomenological anal-
ysis of the singlet AN and AA interactions (D. A. Rote
and A. R. Bodmer, unpublished).

16The mass M& (not M&) occurs because this is an ex-
change interaction, the A particle and the nucleon being
interchanged by the exchange of the kaon. This is also
the reason for the presence of the operator -P~P~.

R. Levi-Setti, in Proceedings of the International Con-
ference on Elementary Particles, Lund, Sr@eden, June,
1969, edited by G. von Dardel (Berlingska Boktryckerlet,
Lund, Sweden, 1970), p. 339.

~BA. R. Bodmer and S. Sampanthar, Nucl. Phys. 31,
251 (1962); see also Bodmer and Rote, Ref. 1.

~ This expression for ~'~ is actually correct for any
nuclear-matter wave function if V is an ordin'ary poten-
tial.

H. Euler, Z. Physik 105, 553 (1937).
2~A. Kallio and B. D. Day, Phys. Letters 25B, 72 (1967);

Nucl. Phys. A124, 177 (1969).
K. A. Brueckner and J. L. Gammel, Phys. Rev. 109,

1023 (1958).
23P. C. Bhargava and D. W. L. Sprung, Ann. Phys. (¹Y.)

42, 222 (1967); D. W. L. Sprung, private communication.
Thus the values of D~~~~ shown in Figs. 8 and 9, and

also in Fig. 10 of Sec. 7, are slightly different from the
corresponding values of Table III, since the latter are for
the equal singlet and triplet potentials.

~This is because the volume integral for these purely
central potentials does not change too much as rp changes
and, furthermore, because changes in this volume inte-
gral (which is smaller for smaller rp) are partially com-
pensated by the higher-order effects (which are larger
for smaller rp).

J. Dabrowski and H. S. Kohler, Phys. Rev. 136, B162
(1964).

2~Such nonlocal tensor forces have been considered for
nuclear matter by M. I. Haftel and F. Tabakin (to be pub-
lished) .

We have now confirmed this by a comparison of ex-
tensive results obtained for hard- and soft-core poten-
tials (D. M. Rote and A. R. Bodmer, to be published).

2PF. Coester, S. Cohen, B. Day, and C. M. Vincent,
Phys. Rev. C 1, 769 (1970).

3 For a review, see Y. Nogami, in Proceedings of the
International Conference on Hypernuclear Physics,
Argonne National Laboratory, May, 1969, edited by
A. R. Bodmer and L. G. Hyman (Argonne National Lab-
oratory, Argonne, Illinois, 1969), p. 244.

lA. R. Bodmer, Phys. Rev. 141, 1387 (1966); in Pro-
ceedings of the Second International Conference on High-
Energy Physics and Nuclear Structure, Rehovoth, Israel,
1967, edited by G. Alexander (North-Holland Publishing
Company, Amsterdam, The Netherlands, 1967), p. 60.

32A. R. Bodmer and D. M. Rote, in Proceedings of the
International Conference on Hypernuclear Physics, May,
1969, edited by A. R. Bodmer and L. G. Hyman (Argonne
National Laboratory, Argonne, Illinois, 1969); and to be
published; J. Law, Nucl. Phys. B17, 614 (1970);
Y. Nogami and E. Satoh, Qid. B19, 93 (1970).
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We derive expressions for the K matrix for the general case where the Hamiltonian is sepa-
rated as H=Hp+ V, and Hp can have discrete as well as continuum states. It is shown that the
correct handling of the bound states in the continuum eliminates one of the correction terms
proposed by Tobocman and Nagarajan. In addition, some of the properties of the K matrix
evaluated at complex energies are discussed.

I. INTRODUCTION

During the past few years there has been an in-
creased use of the K matrix for both the theoret-
ical and experimental study of nuclear reactions. ' '
One reason for this increased use is that the K ma-

trix treatment of nuclear reactions involves opera-
tors whose matrix representations are real, and
this property simplifies numerical calculations.
Furthermore, simple approximations and param-
etrizations for the & matrix do not destroy the
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unitarity of the S matrix.
The K matrix, however, has some properties

which are considerably different from those of the
T matrix used in the earlier works on nuclear-re-
action theory. Because of the different prescrip-
tions for handling the singularities in the K matrix
and 7.

' matrix, there has been some confusion about
the proper form of the final expression for the re-
duced K matrix. To point out the source of this
confusion and to resolve these ambiguities, we dis-
cuss some properties of the K matrix in the case
where the Hamiltonian is separated into two parts,
H, + V, where H, can have discrete as well as con-
tinuum states. Several reaction theories use this
approach, and while our results are of general va-
lidity, we limit our discussion to the shell-model
treatment of nuclear reactions.

In this derivation we first include the effects of
the continuum states in an effective interaction and
then look for resonances from bound states of Hp

in the usual way. ~ Tobocman and Nagarajan (TN)'
have claimed that the expressions derived by Mac-
Donald and Mekjian (MM)2 and Bloch and Gillet
(BG)" are incomplete and must be supplemented
by a correction term. For the case of a separable
interaction this correction term did not seem sig-
nificant for the MM treatment; however, it could
be very important for the BG method. While it is
reassuring to know that the effect of the correction
term is probably not significant for the MM ap-
proa. ch to shell-model calculations, the presence
of this term is still disturbing; especially since it
appears to have a fairly complicated form which
could be difficult to evaluate for a realistic calcula-
tion. The correction term that TN associated with
the MM approach arises from the application of a
principal-value prescription to terms containing
discrete states of P,. In this paper we show that
there is no principal value associated with the dis-
crete states of Hp and, consequently, no correc-
tion term is present.

It should be emphasized that there is a principal
value associated with the continuum states of H»
and hence the correction term discussed by TN'
is necessary for the BG formalism.

Also, we discuss what happens when complex en-
ergies are introduced into the expressions for the
K matrix. These effects can be important, since
the expressions for the energy-averaged cross sec-
tion are derived by evaluating the S matrix at the

complex energy 8+iI. Care must be taken in relat-
ing this S matrix to the K matrix because, strictly
speaking, the K matrix is only defined for real en-
ergies and it is not an analytic function of the ener-
gy. In Sec. III we examine some consequences of
this property for the case of a separable interac-
tion and show how discontinuities can occur.

II. THEORY

g. ..=
& x(,—,'IUI4, &+ & x,'-, )

I vl(j","'&; (4)

here y, is the incident plane-wave state in channel

c, and

(k) — P U
1

E —P +i& c
0

If we define the background-scattering phase shift

by

)(& y(, 'IUI q, &
= 5...(e("sino, ),

In the shell-model theory of nuclear reactions, 9

the Hamiltonian of the A-particle system is divided
into a shell-model Hamiltonian Hp and a residual
interaction V; that is, one writes

P=Hp+ V,

where
A

Ho= Q (T, +U;) = T+U. (lb)
i=1

The shell-model Hamiltonian has both continuum
and discrete (i.e., bound) states; by continuum
states we mean at least one particle is in a con-
tinuum state of U. The A-particle bound states of
Hp can have energies corre sponding to continuum—
state energies, and it is these bound states in the
continuum which are usually associated with the ex-
perimentally observed resonances. It is the pres-
ence of these bound states at positive energies
which has caused difficulties and confusion in the
K-matrix approach to nuclear reactions. There-
fore, we give a careful derivation of the K-matrix
equations for the general case where P=H, + V and

P, can have discrete states. Lane and Robson"
have shown how to define Hp for the various nucle-
ar-reaction theories. ' Using our general results,
we show that proper handling of the bound states
of P, insures that no correction terms are present
in the final expression for the K matrix.

%e define the projection operators P, and I'~ onto
the scattering states X, and the discrete states y„
of H, . Since these states form a complete set,

&,+P„-1
An outgoing-wave scattering state for the total

Hamiltonian is found from the Lippmann-Schwinger
equation

q(+) — (+) p y(j)(+)
1

(3E —H +i&0

where the scattering from the potential U is con-
tained in the y',", and the scattering from the re-
sidual interaction is generated in Eq. (3). Using
the two-potential formula, " the 7.' matrix for scat-
tering from channels c to c' is
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the S matrix can be written in the form

S, , = e'" (6, , —27(iT, ,)e(~c,

where the reduced T matrix T...is defined as
'""' '(x'.-'I vis'."),

=e '""' '(x' )I&IX',")
Using Eqs. (3) and (8) we find

T= V+V . T.1
E —H +i&0

(7)

(8)

(9)

The i& in the denominator is a result of the bound-
ary condition imposed on (/)( ) in Eq. (3). To study
the effects of the bound states we rewrite Eq. (3)
as

(X&, V)/)',")=(X&, (P —Ho)I/)' ),
=(&-E,)(x„l' ),

where the crucial point in the above relation is that

yd is a discrete state and thus asymptotically goes
to zero. To clearly indicate that the ie is needed
only for the integrals over the continuum, we re-
write the reduced T matrix as

T=V+V ' T+V T.E —H0+ ie E Ho
(12)

Because the ie has no effect on the sum over dis-
crete states, Eqs. (3) and (10), as well as Eqs.
(9) and (12), are equivalent. However, a similar
result does not hold for the K matrix.

To derive the expression for the K matrix, we
modify Eq. (10) to impose standing-wave boundary
conditions on the eigenfunctions of H, that is, we
write

g(+) - (+)+~ dE& Xc'(Xc'& ~c )+~ Xc(xc& (/)c )
c &c ~ ~&' E —E +i~ ~ E —E

c d
d

(10)

The ie specifies how to handle the pole in the in-
tegral over the continuum states of H0, and the lim-
it e-0 is to be taken after the integration is per-
formed. The presence of the ie insures that the
wave function has the proper asymptotic behavior,
that is, only outgoing waves occur. The bound-
state wave function yd is zero in the asymptotic re-
gion and it is independent of the boundary condi-
tions on the continuum wave functions. Therefore,
we do not need a label on yd to indicate the bound-
ary conditions used.

Furthermore, it is clear that there is no need
for the i& in the sum over discrete states, since
there is no integration to be performed and the
last term in Eq. (10) is not singular at E equal to
E„. That there is no singularity can be seen by us-
ing the relation

y(0) — (0) p P s Vy(0) p & Vy(0)
P P

E —H ' E —H
(13')

This is not the same as

1

0

(14)

because in Eq. (13) the principal value only appears
in the integral over the continuum states of H, . Of
course, if Ho has no bound states, Eqs. (13) and

(14) are the same.
We define the reduced E matrix in the usual man-

ner as

&x"'= V4"'
C C

then using Eqs. (13) and (15), we find

P, Pd

0 0
(16)

Since Eqs. (13) and (14) are not the same when Po
has bound states, the reduced K matrix in Eq.
(16) is not the same as

K= V+ VP EC,
1

0

= V+ VP ' E+VP ' EE —H0 E —H0
(17)

when H, has bound states. However, the form in
Eq. (17) has appeared in the literature, and the
principal-value prescription for discrete states
has led to a final expression for the reduced K ma-
trix which differs by a correction term from the
result of MM. We show that using Eq. (16), one
obtains the MM expression for the reduced K ma-
trix in terms of the effective interaction

E= V+VP ' E.
0

(18)

However, before doing this, we first present an
alternate derivation of Eq. (16) which also gives

&(o), — (o) ~ p d & Xc'(Xc'& 4c ) ~~ X&((X&(& 4c )

C d

(»)
where P means that the principal value of the inte-
gral is taken and X'," is the standing-wave solution
for the shell-model Hamiltonian. Just as in Eq.
(10) we do not need to specify the asymptotic bound-

ary condition on yd, since it goes to zero in the as-
ymptotic region. The principal-value prescription
for handling the poles of the integrand is specified
by the standing-wave boundary conditions on the
scattering wave function (/)(o). Equation (13) can be
written in the operator form
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the relationship between the reduced T matrix and
the reduced K matrix. To do this, we use in Eq.
(12) the relation

Equation (24a) may be solved formally for K to
give

= P ' —in 6(E —Ho)P, ,
P, P, (19)

K= 1-K K.

Now, using the operator identity

(24b)

which is valid only when the operators appear in an
integral over the continuum eigenvalues of H, . The
result of the substitution of Eq. (19) into Eq. (12) is

T= V+ Vp " T —ivV6(E —Ho)P, T+ V
P, . P,

0 0

(2o)
We define the on-shell T matrix t as

1 1-1 1=—+—BX-B X W A-8'
Equation (24b) can be rewritten

K=K+K 1-K ' K,

(26)

(26)
I =6(Z H, )P,T. —

Now Eq. (20) can be rewritten in the form

(21)
This is usually written in the more symmetric but
equivalent form

T= V(1 —ivt)+ VP " T+ V ' T.P,
E —H E —H

(20') A A 1K= K+KP~ - PP . (27)

Using Eq. (20') we obtain the result

K=T(1 —ivt) ',
P, P,

0 0
(22)

which is the same as Eq. (16). Combining Eqs.
(21) and (22), the relationship between the reduced
K matrix and the reduced T matrix is found to be

T =K —imKt,

=K —ivK6(E —Ho)P, T . (23)

This is the usual relationship except that now the
projection operator onto continuum states of Ho

appears explicitly in the nonlinear term. However,
this is equivalent to

T=K —ixK6(E —Ho)T,

because from Eq. (11)

6(E —H, )P,T~q',")=0.

(23')

1 —VP .
' K= V+V K, (16')

and solving for K gives

where

0
(24a)

K= 1 —VP ' V,

= V+VP ' K.
0

(18')

Returning to Eq. (16), we now show that the K
matrix can be expressed in the standard form with
no correction term Rewriting . Eq. (16) in the form

We now have K expressed in a simple form in
terms of K, the solution of Eq. (18). We have
shown that in contrast to some previous deriva-
tions, '' there is no principal-value prescription
or correction term associated with the discrete
states in Eq. (27).

III. E MATRIX AT COMPLEX ENERGIES

Equation (18) for K involves taking a principal
value of the integral over the continuum states of
Hp therefore, this equation cannot be analytically
continued to complex energies. Because K(E+ iI)
and consequently K(Z+iI) have been used in formal
derivations of the relations between experimentally
observed quantities, it is of interest to investigate
the interpretation of K(E+iI).

The expression K(E+iI) can imply either of two
alternatives. The first alternative is to solve Eq.
(16) or Eq. (27) with E replaced by E+iI. Since the
spectrum of H, is real, there is no pole in the oper-
ator (E —H, )

' when Z is complex, and the princi-
pal-value prescription is not needed; consequently,
one simply obtains the reduced 7' matrix for the
energy E+iI. Another way to see this is to consid-
er the relationship between K and T given in Eq.
(23); at complex energies the 6 function disappears,
and K is equal to T. The T matrix is an analytic
function of the energy; thus, the K matrix cannot
be, since we know that for real energies the K ma-
trix is not equal to the T matrix. This alternative
would lead to the conclusion that the average value
of the K matrix parameters are equal to those of
the T matrix. Clearly, this is not the desired re-
sult.

The second alternative is to solve Eq. (18) for
real values of the energy and then to evaluate the
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resulting function of the energy at the complex en-
ergy E+iI. This is the method used in the formal
derivations for the distribution of the fine-struc-
ture parameters in the presence of a doorway
state."The expressions obtained using this al-
ternative will not be equal to the T matrix evaluat-
ed at the energy E+iI; however, the expressions
are still not analytic functions of the energy. The
function K(E) has singularities at the (unphysical)
thresholds of P„and care must be taken when us-
ing K(E+iI). The presence and effects of these
singularities are best illustrated in the following
example for a separable interaction.

The shell-model potential and residual interac-
tion we choose is one employed in previous discus-
sions of the shell-model theory of nuclear reac-
tions. ""This model consists of a spinless par-
ticle of mass m and zero angular momentum being
scattered by an infinite-mass target with states

whose energy is Q„. The interaction of the par-
ticle with the target is of the form

jglr ) „—'r.)r(r)(r. (l, (28a)

~@2 ~ 6(2) 6(r')
fly

(28b)

k k = 'f-"'f "'
1 —A+M (E) ' (29)

Using the ordinary separable-potential formalism,
one obtains

= [2m(E —Q )]'r2/k (33)

For real values of the energy, M&(E) is continuous
across the threshold energy Qz, therefore, K(E)
is also continuous. For complex values of the en-
ergy the discontinuity of Mz(E+ iI) across the
threshold is given by

M&(Q &+ iI) —M&(Q &+iI) =
2+K 2y (34)

where

z '=2imI/O',

and the resulting discontinuity of K(E+iI) is

(35)

K„()(Qy+iI) K~()(Qy+iI)y ~

~~

~

~

2I r
~

2 )
r

~
~ (rI I ~

in~~ &f„(k)f 8(k')
t)&2+(1&2 D(Q'+iI)D(Q&+iI)

'

(36)

It is clear from Eq. (36) that K(E+iI) is discontin-
uous at a threshold of the arbitrary shell-model
Hamiltonian Po, and that this discontinuity disap-
pears as I goes to zero. Since K(E+iI) is used to
obtain relationships between experimentally ob-
served parameters which are continuous functions
of the energy, care must be exercised in using the
reduced K matrix near a threshold of P,.

The threshold effects discussed above are not
physical and consequently should not be present in
the expression for the T matrix. To show that this
is the case, we use Eq. (12) to find

and

&f (k)f()(k')
(18 r D(E) 1

where

(30)

r(f (k)fa(k')
D(E)+gv~gf '(k )'

y'

(37)

where the sum over y' includes only the open chan-
nels. From Eq. (31a) we see that at threshold

and

f (k)
—[k/(k2+ f) 2)]1/2

kf~2(k)dkf (rm/)r')(2 —Q ) —)t' '

D(E) =1 —~+M, (E) —~g- B

y y y

B
y

= wkh2b y/m,

(3 la)

(3 lb)

(3 lc)

(31d)

f„'=,/(,",'), (38)

therefore, the discontinuity of M &(E) across Q &
is

just cancelled by the discontinuity in the sum over
open channels which occurs when a new channel
opens. This cancellation occurs for both real and
complex energies; hence, the T matrix given in

Eq. (37) is an analytic function of the energy. Thus,
the singularities of K at the eigenvalues of JJ, are
not physically observable.

M&(E) = v(b& —ik&)-', E &Q&,

M&(E) = vb&(b& +k&2) ', -E &Q&,

where

(32a)

(32b)

and E
y

is the energy of the bound state in channel
y. The singularities of the reduced K matrix oc-
cur because of the behavior of Mz(E) as the ener-
gy passes through a threshold 'Q

y
of Po. One finds

IV. CONCLUSIONS

If the Hamiltonian is separated into the two parts
P, + t/", as in the shell-model approach to nuclear
reactions, the expression for the reduced K ma-
trix contains a sum over the discrete states of the
Hamiltonian P,. We have shown that there should
be no principal value associated with this summa-
tion and consequently no correction terms are nec-
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essary for the MM expression for the K matrix.
In addition, we have shown that one must be care-
ful when evaluating the resulting expressions for
the K matrix at a complex value of the energy.
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The photoneutron cross section of ~Be is calculated using the Dirac model: It is found to
have a form that differs somewhat from the standard Breit-Wigner form near threshold. A
good fit to the data is obtained.

I. INTRODUCTION

In an experiment measuring the photoneutron
cross section of 'Be, Berman, Hermert, and Bow-
an, ' detected a peak thought to correspond to a
~" excited state of 'Be a few above the threshold
for breakup into 9Be(0+)+n. Below this threshold,
the cross section was found to be very small
(&1 pb). They were unable to fit the data with a
one-level Breit-Wigner form. Similar earlier
calculations by Mahaux and by Barker and Treacy'
fitted the higher-energy data but exhibited low-en-
ergy peaks too far from threshold. Barker and
Fitzpatrick managed to force an R matrix fit of
the data but only at the expense of making an un-
warranted 15% renormalization of the Berman,
Hemert, and Bowan data. The experimental re-
sults can, however, be understood by utilizing a
Dirac model. This method has the advantage that

it treats the final state as a three-particle state
and takes careful account of the threshold energy
dependence. One interesting consequence of using
the Dirac model is that the standard Breit-Wigner
form must be modified near threshold. This modi-
fication arises from an energy-dependent energy
shift in the denominator of the resonant part of
the amplitude and from an additional term in the
numerator which corresponds to direct nonreso-
nant breakup into three particles. These effects
are usually important only for low energies.

II. THEORY

To see this, we need to calculate the cross sec-
tion for the reaction

'Be(2 ) y +n+on+-
which has the form


