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The effect of AN tensor forces on the A-particle binding in nuclear matter is studied with
the use of second-order perturbation theory and the Brueckner-Bethe reaction-matrix ap-
proach in the g-matrix approximation. The g matrix is calculated self-consistently by use of
the Kallio-Day version of the reference-spectrum method. The free kinetic energies are as-
sumed for the unoccupied states. One-boson-exchange (OBE) models indicate that the AN ten-
sor force is expected to be of short range and moderate strength. For short-range tensor
forces the dominant momentum components are very large, and the effects of such forces are
only slightly modified by the nuclear medium. On the other hand, if the AN tensor forces
were of rather long range, they would be quite strongly suppressed in nuclear matter. These
features are very clearly exhibited by consideration of the effective nonlocal central potentials
that represent the (s-state) effect of tensor forces for nuclear matter and for scattering. The
ratio of the (nuclear-matter) expectation values of these two effective potentials is a good mea-
sure of the suppression. The expectation value of the effective potential for nuclear matter is
just the second-order perturbation-theory energy. Reaction-matrix calculations show that
higher-order effects may become quite important for shorter ranges. Such calculations have,
in particular, been made for various mixtures of central and tensor forces chosen to give a
constant s-wave scattering length. Yukawa shapes corresponding to the kaon and one- and two-
pion masses were used, as well as "realistic" OBE potentials with a hard core and a tensor
component due to kaon exchange (and also approximately due to q exchange). For a particular
mixture, the suppression is measured by the reduction in the well depth relative to the depth
for a purely central potential which has the same hard core and the same scattering length
and effective range as the mixture. For the short-range tensor forces there is rather little
suppression even for very strong tensor forces which account for all the triplet scattering.
Different assumptions about the d-state interaction have an almost negligible effect on the s-
state well depth if the same assumption is made for both scattering and nuclear matter. Sim-
ilar considerations are made for the effect of tensor forces in the p wave, for which we find
very little suppression (~ 1 MeV). We conclude that if central and short-range tensor forces
are chosen to compensate each other for low-energy scattering, they will also compensate
each other quite closely for nuclear matter. In particular, for the OBE potentials with
strengths consistent with the phenomenological values of the ANK coupling constants, the re-
duction in the well depth is at most about 4 MeV. The conclusions about the AN interaction
obtained from a comparison of the calculated and phenomenological well depths are, there-
fore, effectively unchanged by the presence of a AN tensor force. Consequently, in order to
bring the two numbers into agreement, it is necessary to invoke a substantial short-range
repulsion, a rather weak P-state interaction, and suppression of the AN-ZN coupling and/or
repulsive ANN three-body forces.

1. INTRODUCTION

The effect of tensor forces on nuclear binding en-
ergies is a problem of long standing. Of particular
interest is the relation between the effect of a ten-
sor force for scattering and for binding energies-
in particular, the question of the so-called suppres-
sion of a tensor force in nuclei. In this paper we
study these questions for a A particle in nuclear
matter. Thus we consider the role of AN tensor
forces for the binding energy of a A particle in nu-
clear matter (i.e. , for the A well depth D), using
both perturbation theory and Brueckner-Bethe re-

action-matrix methods. Apart from the specific
interest of the A-well-depth problem we have
tried —in the context of this problem —to obtain a
better understanding of the role of tensor forces.
We believe our approach has some novel features
and is also of wider interest.

The A well depth (D) is of fundamental interest
for hypernuclei and plays a role for these which is
analogous tothe role of nuclear matter for ordinary
nuclei. ' On the one hand, a comparison of the phe-
nomenological value' D = 30 MeV with calculated
values may shed some light on the AN interaction.
A number of studies with this emphasis have been
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made, especially for central AN forces, ' which are
related to the Ap scattering data and to the binding
energies of the s-shell hypernuclei. In particular,
recent studies for hard-core potentials have used
current developments of the reaction-matrix meth-od"" and also variational procedures which use
Jastrow-type wave functions. "

On the other hand, the nuclear many-body prob-
lem of the A particle in nuclear matter can serve
as a theoretical laboratory for problems of hyper-
nuclear structure that are also of interest for fi-
nite hypernuclei. Thus, because of our lack of de-
tailed knowledge about the AN tensor force, we try
to obtain useful and rather generally valid results
(e.g. , about the equivalence of a tensor force for
scattering and for a A particle in nuclear matter)
for AN tensor forces which have reasonable ranges
of strengths and shapes consistent with theoretical
expectations.

Although we have no direct phenomenological in-
formation about the AN tensor forces, we do have
some theoretical indications about the strengths
and shapes of these interactions. OBE models of
the AN interaction show that, if charge symmetry
is assumed, the longest-range tensor-force contri-
butions in the AN channel wi11 be due to the pseudo-
sca1ar K and g mesons. Thus, in contrast to the
NN interaction, for which one-pion exchange is pos-
sible, the tensor force in the AN channe1 is expect-
ed to be of short range. However, it cou1d be fair-
ly strong if one uses some of the recentiy deter-
mined values of the ANK coupling constant.

The effect of AN tensor forces on hypernuclear
binding energies was first considered by Buxton
and Schrils' for ~H' and by I aw, Bhaduri, and

Gunye, "for ~He'. The latter authors used an ef-
fective local interaction obtained from the appro-
priate second-order perturbation expression for a
A particle in nuclear matter. The first authors
who used reaction-matrix methods to study the ef-
fect of tensor forces on the well depth were Bod-
mer and Rote, ' who also investigated the use of
perturbation theory and emphasized the importance
of the range of the tensor forces. Considerations
based on the use of Jastrow-type wave functions
together with a perturbation-theory treatment of
the tensor forces were made by Mueller and Clark. '
Since then, Dabrowski and Hassan" have also made
calculations using reaction-matrix methods with ef-
fectively the same assumptions as those of Ref. 1.
Goodfellow and Nogami" have studied the effect of
separable tensor potentials. Nearly all the results
of these studies indicate a small suppression of the
AN tensor force, with a correspondingly small re-
duction in the well depth of not more than a few
MeV for the short ranges and moderate strengths
appropriate to the AN interaction. " The present

work is an extended and more complete version of
the relevant portions of Ref. 1; in particular, we
attempt to obtain a more general understanding of
the role of ten" or forces.

Section 2 deals with tensor forces and AlV scat-
tering, and describes the potentials which we sub-
sequently use. These potentials are mixtures of
central and tensor forces. For each set of mix-
tures the potential shapes are the same but the ra-
tio of tensor-to-central-force strength is varied
so as to give a fixed scattering length. We consid-
er both Yukawa and OBE potentials with several
different tensor-force ranges for the former. In
Sec. 3 we consider perturbation theory (to second
order) followed in Sec. 4 by a discussion of the re-
lated effective local central potentials and the as-
sociated average energies which have frequently
been used to represent the effect of a tensor force.
Section 5 discusses the reaction-matrix procedure
for AN potentials that include a tensor component.
This is followed in Sec. 6 by a discussion of the ef-
fective nonlocal central potentials for scattering
and for a A particle in nuclear matter. The use of
these potentials can be regarded as an approxima-
tion to the complete reaction-matrix treatment,
and they are very useful, in particular, for a com-
parative understanding of the effect of tensor forc-
es for scattering and nuclear matter. In Secs. 7
3nd 8 we present the complete reaction-matrix re-
sults for Yukawa and OBE potentials, respectively;
in particular, we also discuss the limitations of
the perturbation-theory and effective-potential ap-
proximations. In Sec. 9 we consider tensor-force
effects in the p wave. Finally, in the last section
we summarize our results and also give some dis-
cussion of their limitations and of their relation to
the effect of the NN tensor force for ordinary nu-
clear matter. A summary is also given of the con-
clusions obtained about the AN interaction from a
comparison of the calculated 2nd phenomenological
well depths.

An important aspect of our work is the careful at-
tempt to obtain a meaningful measure of the sup-
pression of a tensor force in nuclear matter. To
do this we have obtained purely central potentials
with the same hard core and the same scattering
length and effective range as the central-plus-ten-
sor-force mixtures. The well depths correspond-
ing to these equivalent central potentials are then
considered to give the "unsuppressed" values, and
the suppression is measured by the reduction in the
well depth for the mixture relative to the corre-
sponding "unsuppressed" depth.

2. AlV SCATTERING AND TENSOR FORCES

Tensor Forces and Scattering

With a tensor force, the triplet AN interaction
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V, is

V, =V, (r)+S V (r), (2.1)

d Q, +k'u= V, u+ v8 V~zv, (2.2a)

where V, (r) is the triplet central potential, S~ is
the AN tensor operator, and Vr(r) is the shape
function of the tensor potential. The singlet inter-
action V, (r) is of course purely central. The effect
of the tensor force is to couple different partial
waves. In particular, the (triplet) s-state wave
function u is now coupled to the (triplet) d-state
wave function zu, and for a free AN pair, one has
the coupled equations:

dependent of the sign of V~. Of course if one uses
V„=V, —2VT, then the sign of V~ does matter.
This is explicitly brought out by the form of the ef-
fective potential V', ff

" which is given by Eqs.
(6.3), (6.4), and (7.1) and which, when used in the
s-state equation, reproduces the s-wave scattering
exactly.

The corresponding p-state expressions and con-
siderations are given in Sec. 9.

We recall that the analysis of the Ap scattering
data gives about —2 F for both singlet and triplet
scattering lengths and about 3 F for the effective
ranges and that there is tentative evidence of a
rather weak p-state interaction about half that of
the s-state one. '"d'm, 6, + k' ——, w= V„u+&8Vru,A J' (2.2b) AX Potentials

where (as in all of the following) the potentials are
in units of 0'/2p, p. =MAM~/(M~+M~) is the reduced
mass, and V, denotes the net (diagonal) d-state po-
tential, which for the case of a local potential is
given by V„=V, —2V~. In particular, we are inter-
ested in the low-energy s-wave scattering —espe-
cially in the s-wave scattering length a, and the ef-
fective range r«as given by the s-wave dominant
solution. It is clear that the tensor force affects
the s-state wave function u only through the cou-
pling to sv, and hence can affect s-state properties
only through V~' or higher powers of V~. We shall
discuss this in more detail in Secs. 6 and 7. We
note here that if V~ is independent of Vr (and in
particular if V, = 0) all the s-wave results are in-

Subsequently we shall use mixtures of central
and tensor forces, as in Eq. (2.1). For a given set
of mixtures the potential shapes are fixed and the
ratio of tensor-to-central-force strength is varied
so as to give the same (s-state) scattering length
for all members of the set. We have used two gen-
eral types of potentials. Those of the first type
are Yukawa potentials. These we consider also for
illustrative purposes. For these potentials, both
V, (r) and Vr(r) have Yukawa shapes Ve ""/pr
For all the Yukawa mixtures the range of the cen-
tral force is the same, namely, p, ~ '=0.7 F. For
Vr(r) we consider the three ranges pr '=0.4, 0.7,
and 1.4 F. These correspond approximately to a
kaon mass, a mass of two pions, and a pion mass,

TABLE I. Results for mixtures of triplet central and tensor Yukawa potentials which give a scattering length of
-0.75 F. The central part V&e ""/p, r has a range p =0.7 F. Two ranges p, z &=1.4 and 0.4 F are considered for the
tensor potential S&2Vz e "~ /pz r. The triplet effective range is denoted by ro&. &p is the energy in the effectiver (SCAT) ~

central local potential, given by Eq. (3.13), which reproduces the effect of the tensor potential. The s-state well depths
Ds are for the corresponding triplet potentials plus a singlet potential which is equal to the triplet potential in the limit
V+=0. The values of D are for kz ——1.4 F, Mz/M& ——0.64, AN=85.4 MeV and 6A ——30 MeV. The results depend only
slightly on 6 and thus are very close to the self-consistent results.

V]
(Mev)

V~
(MeV)

pz '=l.4 F
g(SCAT)

OC T
(F) (Mev)

Ds
(MeV)

V4 =0

Vg

(Mev)
Vp

(Mev)

——0.4 F
Ot

(F)

g(SCAT)
T

(MeV)
Ds

(Mev)

0.00
20.40
40.80
48.96
53.28

22.80
18.11
11.12
6.63
0.0

2.68
3~17
3.66
3.84
3.94

580
513
450
424
415

20.0
25.8
31.5
33.9
85.1

0.00
20.40
40.80
48.96
53.28

412.4
328.4
206.2
121.8

0.0

0.72
2.05
3.22
3.70
3.94

10 300
7 870
5 530
4 500
3 900

82.0
83.4
84.6
84.9
35.1

V4 =V] —2Vg

0.00
20.40
40.80
48.96
53.28

24.00
18.70
11.32
6.67
0.0

8.04
3.32
3.69
3.84
3.94

642
550
475
450
440

20.4
26.5
31.5
33.9
35.1

0.00
20.40
40.80
48.96
53.28

444.0
346.1
212.7
122.6

0.0

0.81
2.02
3.21
3.70
3.94

11950
8 900
5 825
4600
4 100

32 e3

33.5
34.6
34.9
35.1
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TABLE II. The same as for Table I except that the potentials give a scattering length of -2 F. The well depths are
again for A~ ——30 MeV and in this case are about 1 MeV greater than the self-consistent values.

U,
(MeV)

pz ——1.4 F
Uz roe

(Me V) (F)
D

(MeV)
V(

(Mev)

p&-&=0.4 F
Vz

(MeV)
rot
(F)

D
(MeV)

0.00
20.40
40.80
61.20
81.60
86,29

0.00
20.40
40.80

30.95
27.28
22.90
17.14
7.51
0.0

33.20
28.87
23.92

2.68
2.64
2.58
2.51
2.40
2.37

2.90
2.78
2.66

36.0
41.5
47, 1
52.6
58.3
59.7

37.0
42.2
47.5

U~
——U] —2'

0.00
20.40
40.80
61.20
81.60
86.29

0.00
20.40
40.80
61.20
86.29

480.3
424.0
356.0
266.8
115.4

0.0

524.2
455.3
375.6
276.3

0.0

0.67
1.08
1.50
1.91
2.29
2.37

0.69
1.12
1.52
1.90
2.37

50.2
52.7
55.1
57.2
59.2
59.7

50.8
53.1
55.3
57.3
59.7

respectively. The last range is unreasonably long
for the Ml interaction and is considered for illus-
trative purposes only.

For each range p, ~ ', pairs of values of V, and

V~ are determined such that the total triplet inter-
action V, always gives the same scattering length
a, . This procedure thus determines V~ as a func-
tion of the central strength V, , such that a, has a
constant value. In particular, at one extreme V~
= 0 and all the scattering is due to the central part
V, , while at the other extreme V, =0 and all the
(triplet) scattering is due to the tensor force The.
singlet potential is the same for a given set of mix-
tures, and is chosen equal to V, (r) in the limit Vr
=0. Two values of a, were considered, namely,
a, = -0.75 and -2 F. With V~ =0 and V, = V, and
with jtj. c '=0.7 F, the value -0.75 F is appropriate
to the spin-average strength determined from
BA(~He') The valu. e -2 F is roughly consistent
with the scattering data and leads to potentials
which overbind ~He'. Our potentials and the asso-

ciated low-energy scattering parameters are
shown in Tables I and II for a, = -0.75 and —2 F,
respectively, and for two different assumptions
about V„, namely, V„=O and V„=V, —2V~. For
V„=O, the sign of V~ is irrelevant; for V„=V,
—2V~, the results correspond to the choice V~&0.
Of course, for a given a, , the effective range x«
depends on the range p, ~

' and on the ratio of V~
to V, .

In particular, for the longer range p, ~ '=1.4 F—
and especially for a, = -2F -the values of r«do
not change much as the ratio of tensor-to-central
force is varied. Thus for this case we have in ef-
fect constructed mixtures of central and tensor
forces that give almost the same values of a, and

r„, namely, -2 and =2.5 F, respectively. Also
for a, = -0.75 F, the variation of r«over the whole
range of mixtures is relatively small. However,
for the short range p, ~ '=0.4 F the values of rpg
become quite (unreasonably) small for large Vr.

This behavior of r«may be understood as fol-

TABLE III. Results for central Yukawa potentials: V(r) =~ for r-c, and -Voe ""/pr for r&c. The strengths Vo are
determined as a function of JLf, so as to give a constant scattering length a; ro is the effective range. The s-state well
depths D~ & are for equal singlet and triplet strengths; the values are for k+=1.4 F,M~/M~=0. 64, 6&=85.4 MeV
(Ref. 23), and A~ ——30 MeV for c = 0.0 and d A =D~ ~ (i.e. , self consistent) for c = 0.43 F.

a= —2 F, c=043 F
V & o

D(c)
(Me V) (F ) (F) (Me V)

a=-2 F, c=0.0 F
Vo p, ro Zsc)

(MeV) (F ) (F) (MeV)

a = -0.75, c = 0.0 F
Vo p r

(MeV) (F ) (F) (Me V)

89.0
327.5
880.0

3245.0
8340.0

37 035.0

1.00 7.53
1.50 4.97
2.00 3.80
2.84 2.88
3.58 2.46
4.97 2.04

27.8
40.9
46.9
50.5
51.4
51.5

6.8
36.7
97.0

188.7
311.7
467.3
874.0

1410.0

0.5
1.0
1.5
2.0
2.5
3.0
4.0
5.0

8.18 48.3
3.82 58.5
2.21 59.6
1.51 58.0
1.14 55.9
0.90 54.2
0.64 51.5
0.49 49.7

9.6
20.5
37.6
60,6

126.8
221.7
346.4

0.75 10.16
1.00 7.51
1.25 4.85
1.50 3.64
2.00 2.33
2.50 1.66
3.00 1.27

31.8
35.4
36.0
35.9
35.5
34.3
28.7
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V~' = g,'M, e ' /p-, r, (2.3)

where g, =M,/hc. For the mass of the o meson,
we use M, = 420 MeV = 3M, . This is roughly consis-
tent with the mass needed for the NN interaction.
In fact, for our purposes the precise range of V '
is unimportant. The strength of V ~ is determined
by the effective coupling constant g,'."

The other meson is the kaon with M~ = 494 MeV.
This gives the well-known kaon-exchange potential
V'x~ (appropriate to.pseudoscalar-meson exchange),
which has a (spin-dependent) central part and a ten-
sor part

lows. The range of the effective central potential
V",

tcf
"~~ (that reproduces the effect of a tensor

force for the s state) is expected to be about half
of p, ~ '. Hence for p. ~ '=1.4 F, the range of
V f f will be quite close to the range p,

' = 0.7 F
of the central part V, , and one obtains mixtures of

V, and V~ which all correspond to an effective cen-
tral potential V, + Vpf f

"T~ of about the same range,
p. '=0.7 F. The same reasoning also immediately
explains the very small values of x«which are ob-
tained for the short range p. ~ '=0.4 F for large
strengths V~.

Table III shows Purely centra/ Yukawa potentials
of varying range which give either a = -0.75 or -2
F. These results enable one to find a central Yuka-
wa potential that has both the same (s wave-) scat
fering length and effective range as any of the mix-
tures of central and tensor forces that we consider.
Also shown for these central potentials are the cor-
responding s-state well depths D, (appropriate to
the interaction acting only in s states) for equal
singlet and triplet potentials.

The second type of AN potentials is more "real-
istic." For these potentials we consider a simpli-
fied OBE model which has the essential meson-
theoretical features —in particular, tensor forces
with the meson-theoretical shape and of the ex-
pected range. Our model has two mesons, as well
as a hard core of radius c =0.43 F. This hard core
is similar to that of the NN interaction and may be
considered as representing the repulsive effect of
the vector mesons.

One of the mesons is a scalar, isoscalar (T=O,
J =0') o meson. This gives a purely central Yuka-
wa potential

28'a —2
Eprh g

'Vp

(F)
Ds

(MeV)

change operators, respectively. " For the triplet
state one has -P„P,= -1 and o~ oh =1. The
strength of V is determined by gA„~ ', which is
the square of the (pseudoscalar) NAK coupling
constant.

Since we cannot be sure of the exact strengths
(or shapes) of the potentials, we proceed in analo-

gy to what we did for a mixture of central and ten-
sor Yukawa potentials. Thus we do not fix g, or
g»~, but determine these such that V&'~+ V&~& al-
ways gives the same triplet scattering length a,
= -2 F. In this way g»~ is determined as a func-
tion of g„ the value of which then characterizes
the interaction; in particular, for g»~=0, the
whole triplet potential is due to the central poten-
tial V' plus the hard core. The central part of
the triplet potential (for r&c) is V, = V~'~+ VIx&,

where V, ~ is the triplet central part of V . The
tensor part is entirely due to V ~ . The OBE po-
tentials are shown in Table IV for the two assump-
tions V„=O and V, —2V~ for x&c. The self-con-
sistent well depths D, are also shown. These val-
ues of D, are for the singlet potential equal to V,
in the central-force limit g„~~=0.

Some p-wave results for an OBE potential with

g„A—„'=23.9 are given in Sec. 9, in particular, in
Table VIII.

Dispersion-theory analyses of KN scattering give
widely differing values of g„~x (to a large extent be-
cause of the differing detailed assumptions made to
extrapolate into the unphysical region). The val-
ues obtained from the existing analyses, recently
compiled by Levi-Setti, "group into two regions.
The lower group of values are g„h~'= 4-7, and the
higher ones about 11-15, The larger values to-
gether with the associated values obtained for
g„z~ —and also with use of g»„—are consistent

TABLE IV. Results for OBE potentials which have a
hard core of radius c = 0.48 F and which are mixtures of
cr-meson and kaon exchange potentials: V~ ~+V ~ tsee
Eqs. (2.8) and (2.4)]. The mixtures are determined so
as to all give a scattering length c= -2 F; this deter-
mines g&Az and ~p as functions of g~ . The values of
Vz are for r &c, with Vz =~ for r-c. The Ds are the
self-consistent s-state well depths for the same nuclear-
matter parameters as in Table III, and assuming the
singlet potential equal to the triplet one for g~hz = 0.

M
V~ ~ =g ( P„P ) [&—'-&zf(V r)+SAnr~(Pxr)],

(2.4)

where f(x)=e "/x, h(x)=(l+3x '+3x )e "/x,
=ME/h, c with M„= [ME2 —(M~ -M„)'] '~' = 462 Me V,
and P„and P are the space-exchange and spin-ex-

2.62 0.0
2.16 16.0
1.79 23.9
1.24 88.4
2.18 16.0
1.78 28.9
1.14 88.4

V] -2Vz'
Vg -2Vp
Vg -2V~
V~ —2Vp

0
0
0

8.60
8.40
3.20
2.87
3.41
8.18
2.76

47.8
46.1
44.8
41.8
46.4
44.5
40.8
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with SU(3) for an E Dm-ixing ratio a=0.4, where
o. = F/(F+D). These larger values of g„~~ corre-
spond to a moderately strong AN tensor force.
Thus with g~„—„'=16, one obtains a, = -1.36 F if
one uses only V, , compared with a, = -2 F for the
full triplet potential V, + V~'.

Table III shows the purely central potentials
which have the same hard core as the OBE poten-
tials, but which have attractive Yukawa parts of
varying range and which all give a= -2 F. Simi-
larly as for the Yukawa, potentials, these results
allow us to find a central hard-core potential V,
which has the same scattering length and effective
range as any of the OBE mixtures we consider.
Also shown are the corresponding self.-consistent
s-state well depths D, —a,gain for equa, l singlet
and triplet potentials.

The q meson (M„= 580 MeV) is only slightly heav-
ier than the kaon. Thus for the long-range pa,rt of
the AK tensor force one should also consider the
contribution due to g exchange. The g meson, has
J = 0, I= 0, and therefore it gives rise to a poten-
tial which is similar to that of Eq. (2.4) except that
M„ is replaced by M„and g»~'( P„P,) is re-placed

by g„„„gpss„. Because llf„and M~ are not very dif-
ferent, one may obtain a rough representation of
the effect of g exchange on the AN tensor force by
approximating M„'k(p„r) by M~'h(p„r) One ma.y
then still use Eq. (2.4) for the tensor force in our
OBE model, but with I.»~ replaced by g»~'
-gz„„g~~„(in the triplet state). If one further as-
sumes the SU(3) relations between the coupling con-
stants, then g»»' in Eq. (2.4) is replaced by
C(o)g»z ', where C(o) = 1+2(1 —o)(4n —I)(1+2n)
and where a is the P-D mixing ratio. One has C
=-1, 0.25, 0.84, 1.22, 1.23, 1.13, and 1 for a=0,
0.1, 0.2, 0.4, 0.6, 0.8, and 1, respectively. Thus,
for most values of e, the coefficient C is quite
close to 1 and, furthermore, its largest value is
only slightly greater than 1; the contribution from
the g meson is thus considerably less than that
from the kaon for most values of n. For very
small n, the value of C becomes negative (and the

q contribution relatfvely very important), but even
then never larger than 1 in magnitude.

3. PERTURBATION THEORY

Perturbation theory gives the A-particle binding
energy as an expansion in powers of the AN poten-
tial strength. The convergence, and therefore use-
fulness, of such an expansion is dependent on the
use of weak AN potentials —in particular potentials
without strongly repulsive cores. In fact, when

purely attractive central potentials of reasonable
range are fitted to the binding energies of the s-
shell hypernuclei, or even to the scattering data,

their well-depth parameters are less than unity.
For such central potentials one expects fairly rap-
id convergence. " For tensor forces there is no
first-order contribution, and if the forces are rela-
tively strong the corresponding convergence is less
certain. We shall have some comments on this
later (in particular in Sec. 7) but in this section we

simply give the second-order results which in any
case are instructive. In fact, no higher-order
terms have so far been calculated.

We thus consider the first two terms of the per-
turbation expansion D=D '~)+D '~+ ~ ~ ~ . The ex-
pressions for D ' and D ' are

D"~ = -Q (nÃ~V~n~), (3 1)

i(n iY i Vingt) i

g/ E J+Egf E EgTl-
n'&I Z

(3 2)

The momentum ~ is that of the A particle, and n

is that of an occupied state in the nuclear Fermi
sea. The latter is represented by a Fermi gas
with Fermi momentum k~, the density being p
= 2k~'/3v'. The state ~nX) is a product of plane-
wave states for the A and the nucleon. For the
ground state, ~ = 0. For both D ' and D", there
is a sum over all occupied nuclear states n & k~.
(Spin and isospin summations are not explicitly in-
dicated, and V denotes the total spin-dependent AN

potential. )
For an ordinary central potential (i.e., one which

is local and the same in all angular momentum
states), the first-order term is"

D 'i =D 'i=pU, U=4(U, +3U, ), (3.3)

where U is the spin-average volume integral of the
central part of the interaction and U, and U, are
the singlet and triplet volume integrals correspond-
ing to V, and V, , respectively. There is no first-
order contribution due to the tensor force.

The total second-order contribution is D ' =Dc'
+D~', where D~ and D~' are the second-order
central- and tensor-force contributions, respec-
tively. The momenta X', n' are those for the inter-
mediate state ~n'X'). The interaction conserves
momentum; thus n+X=n'+~', and the momentum
transfer to the A particle in the intermediate state
is q=X' —X =n —n'. Because of the exclusion prin-
ciple, one has n' &k~ for the intermediate-state
sum; of course, no such restriction is placed on X'.

The energy denominator in Eq. (3.2) is the differ-
ence between the intermediate- and initial-state
energies (or unoccupied and occupied states). The
relevant single-particle energies are E, = (k'/2M)
+ U(k), where U(k) is the appropriate single-parti-
cle potential. In the effective-mass approximation,
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this has a quadratic momentum dependence. We
then consider the following effective-mass expres-
sions in which the initial and intermediate energies
are separated by a gap, namely,

E„i= (n" /2M~)+ b, „, E„=n'/2M~,
(3.4)

E~ =() "/2MA)+~~ E),=~'/2M() .

In general, different effective masses may be as-
sumed for the initial and intermediate states;
= ~„+4~ is the total gap. These expressions are
usually more general than is required by perturba-
tion theory, and in their general form are appropri-

ate for the reaction-matrix calculations for poten-
tials with a strongly repulsive core, which we con-
sider in Secs. 5-8. In perturbation theory the sin-
gle-particle potentials are given by the appropriate
first-order expressions. This implies that for not
too highly excited intermediate states (in the vicin-
ity of k~) one should use M„=M"„, M~ =M), and b, ~
= ~~ =0, and thus single-particle energies which
are continuous between the initial and intermediate
states.

If one replaces the sums in Eq. (3.2) by integrals
in the usual way and makes use of Eq. (3.4), one
has (for X = 0)

D'*' =, ~f d nf 'd'q(v(q)( q q —=n +—26+ =——n (s.5)

(U)=U, +3U,

v(e)=)', (q) 4f ) =(e )U, ( ).
0

(s.8)

(3.7)

For the tensor-force contribution D~', one has

where p. =M~MA/(M„+M~) is the reduced mass ap-
propriate for the intehmediate states, and where
for the central-force contribution D~~' one has

intermediate states turns out to be quite small.
Thus, even when M„= —,'M~, the results for I("/P
are almost the same as for M„=M„. Thus, to a
very good approximation, D ') simply scales with
the appropriate reduced mass.

It is instructive to consider the average excita-
tion energy E which represents the energy denomi-
nators in Eq. (3.2). If one replaces these by E,
use of closure gives

(U') =3 X8Ur', (s.s)

V(q) = Vr(q) =4m j,(qr)Vr(r)r'dr.
0

(3 8)

Here 'Uc is the normalized central potential (the
same shape is assumed for the singlet and triplet
central potentials} and Ur and 'Ur are the volume
integral and normalized potential, respectively, of

V,(r).
In Eq. (3.8), the factors 3 and 8 come from the

triplet-state statistical weight and the square of
the tensor-force matrix element, respectively.
The functions jo(x) and j,(x) are the zeroth-order
and second-order spherical Bessel functions, re-
spectively, and Vc(q) and Vr(q) are the momentum

transforms appropriate to Uc and U~, respectively.
Using the methods of Euler, ' one finally obtains

D(&) (y = ()) = (Q)1 (2)

(3.10)
p k~I ' = p2, dt V'(q)I, (t),

0

where t = q/kz. The function I,(t) also depends on
6 and on certain mass factors that arise from the
kinematics associated with unequal masses in the
intermediate state. I,(t) may also be obtained ana-
lytically in closed form and is given explicitly in
the Appendix. The correction due to the difference
between the A particle and nucleon masses in the

E =
41(,)

'U' h h'ch.
0

(s. it)

Thus D") may be obtained by the use, to first or
deh, of an effective local potential

V.(~(r) = -((U')/E) 0'(r) (3.12)

In particular, the effective central (and local) po-
tential, which gives Dr() if used (as a triplet cen-
tral potential) to first order is

V,H(r) = -8Vr'(r)/Er, (3.13)

where Er is again given by Eq. (3.11) together with
the expression for I ' j appropriate to tensor forces.
This is also the effective potential used by Law,
Gunye, and Bhaduri' in their study of the effect of
a AN tensor force on AHe'. lt should be noted that
the range of VP&/(r} is only about half that of Vr(r).

We discuss results for the Yukawa potentials de-
scribed in Sec. 2. Figure 1 shows 'U'(q)I, (t) for two
Yukawa ranges and for both central and tensor po-
tentials. As one expects, the shorter-range poten-
tials involve higher-momentum components —the
average momentum involved for central potentials
is of the order of magnitude of the inverse range p, .
On the other hand, the function I,(t) starts from
zero and rapidly levels out for q&2k„; this behav-
ior corresponds to the decreasing effect of the ex-
clusion principle for large q. Thus one expects the
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exclusion principle to be less important for shorter
ranges and, conversely, to be more effective in
suppressing the relatively low-lying intermediate
states which predominate for longer-range poten-
ials. Also '0'(q)I, (t), and hence I ', are larger

for shorter ranges. For a given value of U do, an
ence of D, the second-order contribution D '

will therefore be la,rger for shorter ranges
These features are illustrated by Figs. 2 and 3

These show the average excitation energy E as a
function of p and of 4, respectively. If one wants
to compare the values of E with the Fermi energy
E~, then one should divide the former by about 2,
corresponding to the ratio of the actual to the. re-
duced masses in the intermediate states. Equa-

200

0 lo 2
I I I I I

0 30 40 50 60 70 80 90 100
I I I I

000

~(MeV)

e as Fig. 2 except that the energies Ec andFIG. 3. Same a
ET are shown as a function of the gap 2 for k =1.4 F- i

tions (3.11) and (3.12) show that, apart from the
trivial proportionality to p, the effect of the nu-
clear medium on D ') enters only through E. Thus

D(2) ~

if E were independent of the nuclear medium thium, en
would be given by use of Ue ff to first order

with U, f f independent of the nuclear medium d'um, an
would be proportional to p just as D ' is. In-

deed, as expected, E is larger for the shorter
ranges and for these, furthermore, depends less
sensitIvely on p or 4 than for the longer ranges.

It is most important to note that for DT" the rele-
vant transform Vr(q) involves the second-order
(spherical) Bessel function j,(qr) instead ofj,(qr)
as for central forces. The former peaks at a fi-
nite value of r —in contrast to jo(qr), which has its
maximum value at r =0. As Fig. 1 shows, this im-
plies that, for the same shape, Vr(q) involves
much higher-momentum components than does
Vc(q). Hence, one expects Dr2~ to be much less
sensitive than D~') to the properties of the nuclear
medium. Thus the values of ET are much larger
(by a factor of about 5) than the corresponding val-
ues of E~, and the dependence of ET on 4 or p is
much less than that of E (and the same is t f

e ependence on the exclusion principle). Again,
as for central forces, ET is larger for shorter
ranges and correspondingly less dependent on 6 or
p (i.e., on the nuclear medium) for these ranges

The increase of Eo ET with b, or with p corresponds
to a suppression of the effect of a tensor force
nuc~

or orce xn

clear matter, since increasing 4 or p inhibits
uppression ef-transitions to intermediate states. S

fects are more important for longer ranges
pec e, because of the correspondingly lower-lying
intermediate states. On the other hand, for short-
range tensor forces the dominant momentum com-

T is independent of the nuclear medium and one
can use an effective potential V,«(r) that is inde-
pendent of this medium.
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Since also for the low-energy s-wave scattering
V~ enters at least in second order, one may con-
jecture that -for short ranges -the effect of a ten-
sor force is similar both for scattering and for nu-
clear matter, and that one may use an effective
central potential which may then also be used (to a
good approximation) for a. A particle in nuclear
matter. Below and in Secs. 4, 6, and 7, we shall
clarify the relation between the effect of V~ on a
free AN pair and on one in nuclear matter.

In this connection it is interesting to consider
perturbation-theory results for some of the mix-
tures of central and tensor Yukawa potentials dis-
cussed in Sec. 2. Thus Fig. 4 shows D as a func-
tion of V, for several ranges p. ~

' and for a,
= -0.75 and -2 F. The first-order contribution
D~'I varies linearly with V, , since U = —,'(U, + 3U,).
Thus, when the triplet interaction is all tensor,
D '~ is only one quarter of its value for V~=0. The
second-order central contribution D~' is small,
consistent with other results. '" The striking con-
stancy of D for the shorter ranges shows how well
D~ ~ compensates very large changes in D" . Con-
sistent with our earlier discussion, this compensa-
tion is considerably less for the long one-pion
range (p. r '= l.4 F) for which there is an appre-
ciable decrease of D for large values of Vz, (which
is evidence for important suppression effects).
Further and related results for the Yukawa poten-

tials will be discussed in Secs. 6 and 7.
The results just discussed assumed an effective

nucleon mass M„=M„ for the intermediate states.
Since D ' effectively scales with the reduced mass
p, =MAM„/(M~+M„), the compensation between DP~

and D ' depends on the assumption that M~=M„.
For potentials that involve excitations close to k~,
one would expect M~=M~ =0.65M„, which would re-
duce D '~ by a factor of about 0.775. However, for
tensor potentials the relevant excitations are much
higher than k~ and, just as for hard-core potentials,
the relevant value of M~ is probably close to M~
for such highly excited states. Some further discus-
sion of this is given in Sec. 10.

4. EFFECTIVE LOCAL POTENTIALS AND AVERAGE
CLOSURE ENERGIES FOR BINDING AND

s-WAVE SCATTERING

It is of interest to comment on the values of
Z&rsc"T' that reproduce the (s-wave) scattering and
to compare these with the values of E~ discussed
in Sec. 3. These considerations are also closely
related to those of Secs. 6 and 7.

We determine the values of X~ " ~ by requiring
that for a given mixture of central and tensor forc-
es, the same scattering length is obtained with the
corresponding effective purely central local poten-
tial V, + V&(( )r, where V~«(r) = SVr'(r-)/Er
Results for E~ " are given in Table I for the
Yukawa mixtures.

The energy E~ " increases with V~ so that
V', &&(r) increases less rapidly than Vr'; further-
more, this increase of E~~ ~ is relatively greater
for the shorter range. This may be understood as
follows. The values of E~ " ' have been chosen so
that use of the corresponding local effective poten-
tial V, && (r) reproduces the exact s-wave results ob-
tained with the coupled-channel equations. Howev-
er, the solution of these, for V„=O, is exactly
equivalent to using the s-wave nonlocal central po-
tential

V~~&cf
"TI(r,r'; k) given by Eqs. (6.3) and (6.4).

Because of the presence of the Green's function
G, (r,r'; k) in Eq. (6.3), the range of this nonlocal
potential does not decrease as rapidly with the
range of Vr(r) as does the range of the local effec-
tive potential. Since higher-order effects are more
important for shorter ranges, the higher-order ef-
fects of V~&)(r) are larger for shorter ranges of
Vr(r) and, more especially, are relatively larger
than the higher-order effects due to the longer-
range nonlocal potential which gives the exact re-
sult. Thus, to reproduce this exact result, the val-
ue of E~ " must increase with V~ and, further-
more, must increase relatively more for the short-
er ranges.

The perturbation-theory results for the energies
E~ are obtained from the second-order energy DT'~
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and thus correspond to the limit of small V~ and,
furthermore, also to V„=O. Thus, for a significant
comparison of E~' " ' with E~, we should use the
values of E~' " for V~- 0 and also for V„=O.

The necessity for V„=O may be seen from Eq.
(7.1), which gives the correction to the nonlocal
effective potential arising from V~. In particular,
with V„=V, —2V~, this additional term gives a cor-
rection which is proportional to V~'V, for V~ 0.
Thus, in general, with V„40 there will be addition-
al terms proportional to V~' which will affect the
value of E~ " that is obtained in the limit V~=0.

Quite generally it is seen that the various higher-
order effects can appreciably change the values of
E~ " ~. This indicates that also for nuclear mat-
ter, one should be quite careful in using the pertur-
bation-theory results for E~ to represent the effect
of a tensor force through use of an effective local
potential.

For a still more meaningful comparison between

E~ and EI " one should probably consider the
energies E~(,

&
that correspond to the second-order

energies D~&, &
appropriate to exclusively s-state

interactions, since E~ " is obtained entirely
from s-wave scattering. The energy D~'&~,

&

= -(V~ &~/)) is just the expectation value of the (s-
state) effective nonlocal potential V~ ~&/ )(r,x'; k) ap-
propriate for nuclear matter and is discussed in
Sec. 6. One again obtains E~(, ~

from D~~,
&

by the
use of V, f&(r) to first order, except that now the
expectation value (Vr ), appropriate to a pure s
state interaction is used instead of the value (Ur')
appropriate to equal interactions for all L —which
was used to calculate E~.

The relevant results are given in Table V. The
ratio (Vr ), /(Vr') is close to unity even for the
longer range p, ~

'= 1.4 F, because even for this
range Vr'(& ) is a quite short-range potential for
which the interactions for L &0 are relatively unim-
portant. The ratio, in this case, is only slightly
greater than the corresponding ratio D~r'&), )/DP),
and thus E~(, ~

is only slightly larger than E~. For
p, ~ '=0.4 F the effect of the interactions for L &0
is seen to be quite small.

Within the context of effective local potentials, a

measure of the suppression for a given Vr(r) is ex-
pected to be the ratio Er " /Er t, ), since this
measures the ratio of the strengths of Veff(r) for
nuclear matter and for scattering. Clearly, this
ratio becomes smaller for larger 6 and p. In par-
ticular, it is smaller for longer ranges, which cor-
responds to stronger suppression for these. A

better measure of the suppression is probably the
ratio -Dr) /(V," "~'), where (U' " ') is the (e-
state) expectation value of the nonlocal potential
that reproduces the s-wave scattering. In fact this
ratio, which is also given in Table V and which is
further discussed in Sec. 7, shows the same quali-
tative features as E~~'c" /Er~, )

but is numerically
somewhat diff erent.

5. REACTION-MATRIX FORMALISM FOR AA

POTENTIALS WHICH INCLUDE

A TENSOR COMPONENT

A perturbation treatment is, of course, no longer
possible for forces with strongly repulsive cores
(except insofar as one uses the long-range Moskow-
ski-Scott separated potential). Furthermore, even
without strongly repulsive cores, one would like to
know something about the importance of higher-
order effects, i.e., about the goodness of the sec-
ond-order result D~, especially for large values
of V~. One would also like to clarify the relation
between the effects of a AN tensor force for scat-
tering and for a A particle in nuclear matter.

To deal with these questions, we turn to the re-
action-matrix (or g-matrix) approximation which

gives the leading term in an expansion in powers
of the density. In Sec. 6 we shall also consider
another, more novel, approach which involves ef-
fective nonlocal central potentials and which is, in
fact, an approximation to the complete g-matrix
solution. This approach also forms a convenient
bridge between the perturbation and the g-matrix
results and is very helpful in relating the scatter-
ing to the nuclear-matter case.

As in Ref. 1 we obtain the g matrix by use of the
Kallio-Day version" of the reference-spectrum
method. We use the free kinetic energies for the
unoccupied states' which corresponds to the use of

TABLE V. Results for closure energies and related quantities for pure Yukawa tensor potentials of range p& ~. The
values of E'r "

& are for Uz
—-0 and Ur 0. The nuclear-matter results are for kz ——1.4 F t andMs/Ms=1.

(MeV)

E(SCAT)
T

(Me V) (MeV)
( )

(MeV)

2Dr (.~)
D(2)

T

E (SCAT)

E&(~)
-DPI, )

(v(scAT) )

1.4

0.4

0.2

60
120

60
120

415

3900

0.90

0.945

627
782

3688
3973

705
857

3636
3920

0.80
0.82

0.96
0.96

0.59
0.48

1.07
0.98

0.475
0.39

0.80
0.74

0.9



AN TEN SOR FORC ES FOR SCAT T ERING. . .

Eqs. (3.4) with the free masses for the unoccupied
states, i.e. , we use M„=M~, M~=M~. This method
involves the use of integrodifferential equations
rather than of integral equations as in the Brueck-
ner-Gammel procedure. " The latter is used by
Dabrowski and Hassan. '" With the same assump-
tions about the single-particle spectra, the two
methods are effectively equivalent and indeed give
the same numerical results. '4

The procedure we use for tensor forces is then a
straightforward generalization of that for central
A1V forces which was described in Ref. 2. Instead
of the single integrodifferential equation required
for central forces, one now has for the triplet case
(S= 1) a pair of coupled equations for the partial-
wave correlated wave functions. These equations,
which correspond to the use of the angle-average
Pauli operator Q and to an initial relative AN mo-
mentum ko are

d L(L+ 1)
d2 —

2 -r uLJ ~ QJCh r

= -(y'+ k, ')rj ~„(k,r) 5~~. ,

(L") (L")+Q V, uL~ + V~~ sL~LIuL
LI

(5.1}

d2
2 -y u= —y +ko +)0 kot' + @ Vtu+~8Vzuj,

(5.2a)

, ——,-y w = Q(V, w+v8 Vru).
d 6

dr2 t2 (5.2b)

These are to be comps. red with Eqs. (2.1) for the
scattering case. Of course for the singlet case (S
= 0), one has J=L and thus only one equation —just

For ~ =0, ko is completely determined by n through
n = (M„/i). )k,.

For a given total angular momentum J, the orbit-
al angular momentum quantum number L can have
the two values I.=J+1, so there is a pair of cou-
pled equations. The quantum number L "'labels the
solutions and refers to the (dominant) partia. l wave
that corresponds to the unperturbed solution (i.e. ,
to the appropriate partial-wave component of a
plane wave). Thus the fact that the solution must
asymptotically approach the unperturbed one is
built into the equations through the presence of the
inhomogeneity in Eq. (5.1). For a given J, there
are then two solutions corresponding to I."=J+ 1.
The coefficients sL~ L, are the usual matrix ele-
ments of the tensor operator S». The quantity y'
is discussed below.

For the s-wave dominant solution for the cou-
pled sd case, which we emphasize here, Eqs. (5.1)
are explicitly

(k, [g ~k,}= 4m Q (2J+ 1)g~(,' (k„k,) .
J, L

The well depth is finally given by

h' 1D= -—,d'n(k, [g(k,) .

(5.5)

(5.5)

For X =0, the quantity y' in Eqs. (5.1) and (5.2) is

as for the case of a purely central force. The ap-
propriate considerations forthe p wave are given
in Sec. 9.

In all the above equations Q is the angle-average
approxima, tion to the complete Pauli operator Q.
For this, one explicitly has

Q[4)z] —=
JI dr' —Jf dk k rj ~(kr)Q(k, P)rj'~(kr') 4z, (r') .

0 — 0

(5.3)

[For Eqs. (5.2a) and (5.2b), one has L =0 and 2, re-
spectively. ] P =n+). is the total c.m. momentum
(conserved in the interaction), and k is the inter-
mediate relative AN momentum. The definitions of
Q and Q are given in Ref. 2. The angle-average
Pauli operator Q(k, P) depends only on the magni-
tudes k and P, whereas the exact operator Q(k, P)
depends on the angle between k and P. The effect
of approximating Q by Q is to decouple the differ-
ent partial waves (except of course for the coupling
due to the tensor force), and one is then left with
only a single pair of coupled equations to solve. In
Ref. 2 the angle-average approximation was shown
to be excellent for central potentials, and we shall
assume this to be true also for tensor potentials;
in particular, the use of Q is exact for interactions
only in the s state.

The correlated wave function must asymptotically
approach the unperturbed solutions, i.e., u~(~~ )(r)

rj ~ (k-,r)5»„n. Thus the correlated wave functions
must "heal, " and the rate of healing is largely de-
termined by the decay distance y '. With a hard
core of radius c, the correlated wave functions
must also satisfy the boundary condition u~~ (r) =0
for x ~c. The procedure used for solving the cou-
pled integrodifferential equations is a straightfor-
ward extension of that used for central forces and
is described in Ref. 21. The solution is obtained
by iterating on the integral term (corresponding to
the contribution Q —1}, and the iteration process
converges rapidly.

The partial-wave g matrix element is given by

gP,"'(k,k,)=fed', (kr) v, uP„"'(~,(,,)

+Vr Q si ~, i'uI g (r ko) (5.4)
LI

The total diagonal g matrix element, which also in-
cludes the singlet contribution, is then
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given by

p ~ M~M
(5.7)

(Recall that 6 = n, „+n~.)
Since D depends on n~ (through the effect of y')

and since A~ is identified with D, one has a self-
eonsistency condition for the determination of D,
namely,

D=D(b q) = Aq. (5.8)

For a given k~, the effect of the nuclear medium
enters via y' through the appropriate values of AP~

(the nucleon effective mass for the occupied states)
and through A~. These values are taken from the
results of nuclear-matter calculations; in particu-
lar, we have used, the results of Bhargava and

Sprung. "
The fact that the free kinetic energies have been

assumed for the energies of the unoccupied states
enters Eqs. (5.1) and (5.2) through the fact that the
potentials are expressed in units of k'/2p just as
for the free-scattering case of Eq. (2.1). If the
masses M~ and%~ for the unoccupied states were
different from the free masses, then all the poten-
tials in Eqs. (5.1) and (5.2) should be multiplied by

p/p. , where p, is the reduced mass for the unoccu-
pied states and where the potentials are again ex-
pressed in units of 8'2/2p. Equation (5.7) would al-
so have to be appropriately modified. The changes
in the wave functions due to the presence of the po-
tentials are proportional to the strengths of these
potentials. In particular, all of M —which deter-
mines the effect of the tensor potential —is propor-
tional to the potential strength, in particular, to
V~. Thus the contribution to g, and hence to D,
from Vz is expected to be approximately propor-
tional to ILL, just as for the second-order energy
which was discussed in Sec. 3. (The first-order
energy is independent of p, , since it involves just
the unperturbed wave functions —which are inde-
pendent of the potentials. ) Thus if ff 4 p. , the re-
sults for the tensor-force contribution to D can be
expected to be obtainable, to a good approximation,
from the results appropriate to p, by multiplying
the latter by p, /p.

6. EFFECTIVE POTENTIALS, PERTURBATION
THEORY, AND THE EQUIVALENCE OF

AN TENSOR FORCES FOR s-WAVE
SCATTERING AND FOR NUCLEAR

MATTER

For simplicity of presentation and also because
this is the only case we consider in detail in this
connection, we discuss only effective s-state poten-
tials for the coupled sd-wave case. The generaliza-
tion to other partial waves is trivial. For both a

for scattering, and

(
d2

2-y ur = —y +k zjpkr +QVg

+ V'„, '(r, r'; k)u(r')dr'j (6.2)

for nuclear matter. The integral operator Q is
defined by Eq. (5.3). The effective potential
V,ff(r, r'; k) is in both cases proportional to Vr' and
is nonlocal and energy dependent but central, being
given by

V,«(r, r'; k) = 8Vr(r) G, (r, r';—k) Vr(r ') .

The Green's function for scattering is

G, sc"T~(r,r'; k) = krr j', (kr,-)n, (kr, ),

(6.3)

(6 4)

where j, and n, are the d-state spherical Bessel
and Neumann functions, respectively, and where
r, and r, are the greater and lesser of the dis-
tances r and r', respectively. For nuclear matter
with neglect of the exclusion principle (i.e., with
Q = 1), the Green's function is

(6. 5)G2f ~(r, r', k) = yrrj', (iver&)k2f-''(iver, ),
where h, '~ is the spherical Hankel function of the
first kind and y is given by Eq. (5.7). For nuclear
matter with use of the angle-average exclusion-
principle operator Q, one has

NM I 2 2 ~

G, (r, r'; k) = — dk'k "rj,(k'r);, ','rj', (k'r') .
p

2 f2+ 2 ~2

(6.6)

This reduces to Eq. (6.5) for Q = 1.

free AN pair and one in nuclear matter, one may
obtain the effect of the tensor force on the s-wave
u in terms of an effective s-state potential. This
is obtained by expressing w in terms of u by use of
the equation for w and then substituting this expres-
sion into the equation for u. This may be done
most simply for V~ =0, i.e., for the case of no net
d-state potential. (This is, in general, a quite
good approximation because the d-state function is
being driven by the dominant s-state function and
also because of the shielding effect of the strong
d-state centrifugal barrier, as discussed below. )

With V„=O, one may then use the Green's func-
tions which correspond to the left-hand side of the
d-state equations (2.2b) and (5.2b) and to the appro-
priate boundary conditions (i.e., one uses the ap-
propriate noninteracting d-state propagators) to ob-
tain w in terms of u. Substituting in the s-wave
equations then gives

(
d2
, + k' u r = V, r u r + V,f f r r'; k u r' dr'r'

(6.1)
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n~kF
(6. 7)

dnn' dry, kr
7T p 0

xJ) dy'V', « '(r, r'; k)rj'o(kr') .
0

Th t D '&)
) is the s-wave contributio'

n to D~') maya p{g)
~ ~also be shown directly by making a partial-wave

analysis o D~ .f "~ The ratio Dr2~, /Dr'~ becomes
closer to 1 for shorter ranges, since then the par-
tial waves wi'th L ~ 1 become less important. This

ted b the appropriate results of Table V.
Thus, especially for the shorter ranges, e e ec

t' l aves are quite small if there is no hard coreia wav
r the

wave effects of a tensor force when a hard core is
present.

=0 the useIt must be emphasized that, for V„=O, e use
of V &in the s-wave equations (6.1) an, . g') nd (6.2) ives

hich would be obtainedthe exact s-wave solutions w ic
b solving the corresponding pcou led s- and d-wave

With V =0, the (s-wave) g matrix ap-equations.
in all thetion thus corresponds to summing a e

ers of V and there-terms in an expansion in powers o,ff an
f in powers of Vr (smce V,tt

'
p pis ro ortional toore i

rtional toV ') The leading contribution, proportxona
V~' in this expansion, is ~ust the sec

It should also be noted that thetribution D~~, ) . s
ofan e of V,f fir, r 'ra, &&(

' k) becomes less as the range ora g
Vr(x) becomes less. [However, thisthis decrease in
range is no as s ront strong as for the local effective po-
tential of q.E . (3.13) because of the presence of

ussed', k) f r V (r r', k). This is also discusse

The difference between the effects of a given
V (r) on the s-wave interaction of a free AN pairVzp" pn e s-wa

As indicated, the Green's functions are not only
nonlocal but also depend on the initia/ relative AN

. momentum . ork. F G ) this dependence arises
through y' which is a function of k.

If there is a hard core in the central part of the
interaction, is wi, th' 'll force the wave functions to
zero at the hard-core radius, and the Green's func-
tions must then be appropriately modified. This
may be done by following the procedure of Brueck-

22ner and Gammel.
The s-wave contribution D~~, ) otp the secpnd-pr-

der tensor-force perturbation result is given by
use of the nonlocal potential Vgff ppJ j I 0 irs
order. Thus

~ 0.2—
~ gy

Os

cu 0.]-
CO

r =1.194 F

/

2.0 r' (F)

X
80—

+ )20—
LLII-
O
Q 160—
FIG. 5. The &-state Green' s functions appropriate

to the effective potentials of Eqs. 3 —5.6) and for 0
=0.61 F ~. The full lines are for nuclear m atter (kF

=M =M M =M, and6=49 MeV), and
the dashed lines for scattering. The lower par o e
figure s ows woh t Yukawa potentials with the indicated
ranges.

=0 is reflect-an o ond f one in nuclear matter (for V, =

V (scAT)ed entirely in the difference between, ff an

V, ff
) —and this difference between effective poten-

tials arises entirely from the difference between
the corresponding Green's functions.ns. Thus a com-' k) and G™(r,z'; k) will in-parison of G, r,r; an
dicate the difference between the effects of a ten-
sor force for a reef AN pair and for one in nuclea, r

n of this differenceA more quantitative indication o is i
= V™)withis given by comparing -By( ) f f

V "~~). The latter energy is just the second-
order s-wave contribution obtained by using Eq.
(6.7), except a offth t V ) is replaced by the effective" ' x r' k) appropriate for scatteringpotential V,f f

' nofr'forFi ure 5 shows G, (x,r', k) as a function o r or
two values of r and for k = 0.w = 61 F '. The disconti-

of thenuity a r=r i't t = ' is of course characteristic
Green s unc ion.f t' Also shown are two Yukawa po-

rnetential shapes, one for the short (kaon) range p
=0.4 F and the other for the long (pion) range p

'
= 1.4 F. The scattering and nuclear-mar -matter Green's

r the same for short dis-functions are very nea. rly
tances. However, for larger distances G,

th G . This difference cpr-appreciabLy LarI. er an
res onds to suppression of the effect of a tensorrespon s o
f in nuclear matter, especial y or gl for ion er

i le andranges. The effect of the exclusion princip
of an increase in the gap is, as e pex ected to re-
duce G™—appropriate to more suppression.2
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FIG. 6. The (triplet) s-state well depths as a function
of V& for a pure tensor Yukawa potential of strength V&
and of range p, &

~ = 1.4 F. (kz ——1.4 F"~, 6 = 103 MeV,
Mz =M&.) The strengths that give the indicated scatter-
ing lengths (for V&= 0) are shown by arrows. The dashed
line corresponds to using the effective potential N~fP &,

appropriate for scattering, and should be compared with
the second-order result Dp& which is obtained by
use of the effective potential N~ff & appropriate for nucle-
ar matter. The lines labeled D, are coupled-channel re-
action-matrix results for the indicated values of the d-
state potential V~; Vs =+2(Vz) and -2( V&[ correspond
to V& & 0 and V& & 0, respectively (making the assumption
Vz=-2' appropriate to a local force with V&=0).

The dominant feature of the functions
O' A (r,r'j k) and G (r,r', k) is the sharp
peak at ~ =x', which has a magnitude of 5~, and
the rapid falloff from this peak towards the origin.
This rapid falloff is a reflection of the d-state cen-
trifugal barrier. Outside the peak, G2I I(r,r'; k)
goes into a, damped long-wavelength oscillation or
decays exponentially, depending on whether or not
the Pauli principle is included. The wavelengths
are about 4 F —i.e., about A. ~ —consistent with a
modulation which corresponds to the exclusion of
intermediate nucleon momenta less than k~. The
wavelength of the oscillations is thus much longer
than the range of our potentials, and hence has a
negligible effect on the energy. Outside the peak,
the function G2sc"rI(r, r', k) has a node followed by
undamped oscillations. For the values of k of in-
terest, these are again effectively outside the
range of the potentials.

These features of G, and G, ~ make it very
apparent [in the light of EIl. (5.3)j that V, II

"rI and
V f f will be quite similar for short -range tensor
forces for which only the short-distance parts of
the Green's functions are important. For longer
range potentials, on the other hand, V,ff

~ will be

=+2 VT

=0)

C9
K
LLI

30

Cl

20

(2) N M

T(s) eff

IO

0
0 IO 20 30x(Q

7. g-MATRIX APPROXIMATION AND HIGHER-ORDER
EFFECTS WITH RESULTS FOR YUKAWA

TENSOR FORCES

Figures 6 and 7 also show the s-wave results-
for pure tensor forces —of the exact g matrix cal-

V, (Mev')

FIG. 7. Same as Fig. 6 except for a Yukawa range
pz ~ ——0.4 F.

significantly smaller (in magnitude) than VI II
" I

and, correspondingly, (VIII I) will be appreciably
less than (V,II

" ) in magnitude.
These considerations are illustrated by Figs. 6

and 7, as well as by some of the results of Table
V. The figures show the s-wave well depths D, as
a function of Vz' for purely tensor potentials (V,
=0) of Yukawa shape. For Ij, '=0.4 F, the ratio of

Dr'I, I
= (V,« I-) to (V'„'I " ) is 0.8 and fairly close

to the value 1 (which corresponds to no suppres-
sion). As Table V shows, the ratio (V,II )/
(VI Isfc

"rI) for the even shorter range Iu
' = 0.2 F is

0.9 and thus very close to 1. However, for the
long range p. '=1.4 F, the ratio is less than 0.5,
appropriate to strong suppression.

These results demonstrate very graphically the
dependence of suppression effects on the range of
the tensor potential; in particular, for short
ranges very little suppression is expected, where-
as for long ranges there may be large suppression.
A reasonable measure of the expected (s-wave)
suppression for a tensor potential would seem to
be the ratio (VI MI)/(VI I)
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culations which are obtained by use of the coupled
reference-spectrum equations. A comparison of
these results with the perturbation results (V', fP'),
which are proportional to U~', leads to an under-
standing of the higher-order effects of the tensor
force in the g-matrix approximation.

For small values of V~, the g-matrix results are
proportional to VT' Bnd agree with the perturbation
results —as they must. (This is in fact a good
check on the coupled g-matrix calculations. ) For
larger values of V~, we first look at the results
for V„=O. The g-maf, ix results axe then larger
than the perturbation theory -results, and this dif
ference is greater for the shorter range We. may
understand this as follows, We recall that if V„=O,
the s-wave equation (6.2) with V'„P gives the ex-
act s-wave solution in the g-matrix approximation,
and this exact solution then corresponds to an ex-
pansion in powers of V,f&, i.e., in powers of V~',
the leading term in U~' being D~'~~, ~. The terms of
higher order in V~' are associated with the change
that V,«causes in the s-state wave function. Thus
the fourth-order term in U~ will be given by the
second-order term in V,«and is associated with

the change of u to first order in V, ff.
As is generally the case for the higher-order

perturbation terms these (especially the second-
order term in V,)f} increase the binding —which is
consistent with our results. Furthermore, for cen-
tral potentials the second-order term not only en-
hances the binding but also becomes larger for
shorter ranges. We thus expect that also for the
central, but nonlocal, potential V,&fM the second-
order terms (proportional to Vr') will be larger
for shorter ranges of V,«, i.e. , for shorter
ranges of Vr(r) This is in.deed the case and is
another example of the general result that higher-
order effects are larger for shorter ranges.

It is interesting to attempt to estimate the contri-
bution in V~ by using the local effective potential
V, f&(r) of Eq. (3.13}to second order One then ob. -
tains contributions in U~ which are in general
much too large, especially for the shorter ranges.
The explanation for this is in essence the same as
that given in Sec. 4 to account for the increase in
the values of Etr'c"T' with Vz. Thus V,«(r} is pro-
portional to Vr'(r), and its range [which is only
about half that of Vr(r)] decreases much faster with
the range of Vr(r) than does the range of the non-
local potential V', f) (rp'; k}, which has the Green's
function built in and which gives the exact results.
This difference in range accounts for the unreason-
ably large second-order terms due to the local
V,ft(x); the increase of these second-order terms
as the range of V~ decreases is much more rapid
for the local potential than for the corresponding
nonlocal one.

If one turns on the d-state interaction V„, then
the effective nonlocal s-state potential will no long-
er be given by Eqs. (6.3)-(6.6), but now has addi-
tional higher-order terms which involve V„. Of
course, the effect of these higher-order terms is
also automatically included in an exact coupled g-
matrix calculation. Thus the exact expression for
V, f f(x,r'; b) when V~ 40 is obtained by modifying
the expression for U,«previously given by includ-
ing the additional term

&&v, ) ) fs "&:,), "; &,)v, ) ")«:'&) ", ", &,) v, ) '),

(7.1)
where G, is the appropriate Green's function given
by Eq. (6.4) or Eqs. (6.5) and (6.6) for scattering
or nuclear matter, respectively; G, ~ is the cor-
responding Green's function appropriate to the to-
tal d-state Hamiltonian including V„. Since G, ~

=G2+G2vdG2("), one may expand G2(") ln terms of
the noninteracting Green's function G, and so ob-
tain an expansion for V,f& in powers of V„. Thus
the first-order term in V„ is just given by Eq.
(7.1) with G2' ) replaced by G, . This lowest-order
additional term to V,« is proportional to V~'U„.
We note that V,f) is independent of the sign of Vz,
even if V„40, so long as V„ is considered inde-
pendent of V~ —i.e., not given by V„= V, —2VI as
for a local potential. (The sign of the d-state wave
function is of course changed if Vr changes sign. )

With the assumption V„= V, —2V~, one has V„
= -2V~ for the case of pure tensor forces which is
appropriate to Figs. 6 and 7. The lowest-order ad-
ditional contribution is then proportional to -V~
and is repulsive or attractive depending on whether
V~ is negative or positive. This is nicely con-
firmed by the appropriate curves (Figs. 6 and 7)
depicting the exact g-matrix results for V„
= +2~Vr~. Thus Dr&, ) is indeed larger or smaller
than the value for V, = 0 if V„ is positive or nega-
tive, respectively. The effects of V„are rather
small for long ranges, but these particular higher-
order effects are again seen to be more important
for the shorter range. In what follows, it is also
important to note that the effect of V„ is similar
for scattering and for nuclear matter. The rela-
tive insensitivity of the results to V~ is due to the
presence of the d-state centrifugal barrier which
shields the d-state wave function from the d-state
potential V„.

Figures 8 and 9 show the (s-state) g-matrix well
depths D, for the mixtures of central and tensor
Yukawa potentials discussed in Sec. 2. These ex-
act g-m3trix results are consistent with the above
discussion and show the same general features as
were already apparent from the perturbation-theo-
ry results.
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FIG. 8. The s-state (singlet-plus-triplet) well depth
D, obtained by use of the reaction-matrix procedures
for mixtures of central and tensor Yukawa potentials as
a function of the strength V& of the triplet central poten-
tial. The range of the tensor potential is p. z =1.4 F.
The range of the central potential is p

~ = 0.7 F and the
strength of the singlet potential is fixed and equal to the
value of V& for Vz =0 (i.e., for no tensor potential). The
curves labeled N & are the (s-state) well depths for the
equivalent purely central potentials whose triplet parts
give the same scattering length a& and effective range
&pg as the corresponding central-plus-tensor-force mix-
tures; the singlet potential is the same as for the corre-
sponding mixtures. Values of rpt (for V&=0) are indicat-
ed by the arrows and the associated numbers. The re-
duction of the well depth due to suppression of the tensor
force corresponding to a given value of V& is given by
the corresponding value of D~ ~ —B,. The upper and
lower sets of curves correspond to mixtures which give
a& =-2 and -0.75 F, respectively. The assumptions
made for the d-state potential V„(for both scattering
and nuclear matter) are indicated. For a~ = -0.75 F the
results for Vd = 0 and V& —2V are indistinguishable. All
the results are for kz=l.4 F ~, 6 =115.4 MeV, and
M~ /Mg ——0.638.

Figures 8 and 9 also show the corresponding well
depths D, obtained with the Purely central Yukawa
potentials V,'c~ (Table III) whose triplet parts give
both the same scattering length and effective range
as those of any given mixture which is character-
ized by the values of the triplet central strength V,
pertaining to the mixture. The singlet potential is
fixed and the same for both the mixture and the cor-
responding purely central potential. '~ Thus for a
given mixture, determined by U, , the figures de-
pict both the corresponding well depth D, 2nd the
well depth D, & appropriate to the purely central
potential that has the same low-energy scattering
parameters. The appropriate triplet effective
ranges are indicated in the figures.

In connection with the results for D, it is inter-
esting to note that even where —for a given a, —the

I

80 60
I I I

40
Vt (MeV)

I

20

FIG. 9. Same as Fig. 8 except for a Yukawa tensor
potential of range pz =0.4 F.-1=

effective range r«varies quite appreciably, the
value of D,c' does not change too much. " (On the
other hand, changes of the hard-core radius pro-
duce large effects. )

The suppression for a given V, is measured by
the difference 5D, =D, -D, . In particular, just
as for the perturbation-theory results, there is
rather little suppression for the shorter ranges of
Vr(r) even if these tensor potentials are of very
large relative strengths. For these short ranges
there is thus very good compensation between the
central and tensor forces if these have been chosen
to compensate each other exactly for the low-ener-
gy scattering, Thus, as is most graphically demon-
strated by consideration of the Green's functions
t", and the associated effective potentials, the ef-
fect of a short-range tensor force is quite similar
for nuclear matter and for scattering.

However, as we should expect, there is large
suppression for the long one-pion range p. ~

'= 1.4
F, as shown in Fig. 8. For this long range, the
well depth is very considerably reduced for strong
tensor forces. Thus in the extreme limit in which
V, =0 (and all the triplet scattering is due to Vr),
the tensor-force contribution to D, is only about
half of the corresponding (triplet) central-force
contribution for V~ =0.

We recall that for p, ~
'= 1.4 F, the effective

range r«varies only slightly over the whole range
of mixtures, in particular, if a, = -2 F. Corre-
spondingly, the value of D, is very nearly con-
stant over the whole range of V, . On the other
hand, for the short range p, ~

'= 0.4 F, the range
r«varies greatly as the ratio of tensor force to
central force is varied and, in particular, r«be-
comes very short for large V~. The correspond-
ing variation of D~ ~ is therefore more appreciable
than for p, ~

'= I..4 F —although still not large. The
very small values of r«are of course quite unreal-
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TABLE VI. Effect of the gap and the exclusion princi-
ple on the s-state well depth D, for kz-—1.4 F ~ and for
potentials which give a& = -2 F. D~ (Q) and D, (1) corre-
spond to the use of the exclusion-principle operator Q
and to neglect of the exclusion principle (i.e. , Q= 1),
respectively. D(rtI~& denotes the second-order perturba-
tion-theory result. The upper part of the table shows
the results for purely tensor potentials of Yukawa shape
with range p& and strength Vg and for Mg/MN = 1.0.
The lower part is for mixtures of 0-meson and kaon ex-
change potentials and for M&/Mz ——0.688.

p2, V&
(F) (MeV) (MeV) Ds (Q)/D8 (1) D(r2()~& (Q)/DIt I~&(1)

1.4
1.4
0.4
0.4

22.8
22.8

412.41
412.41

50
100

50
100

0.78
0.88
0.89
0.94

0.81
0.84
0.99
1.00

g~ g~A@ (Me V) Ds (Q)/Ds {1

2.18 16.0
2.18 16.0
1.187 88.4
1.137 33.4

65.0
115.4
65.0

115.4

0.92
0.96
0.90
0.95

istic and very different from the experimental AP
effective ranges.

We have examined the effect of different assump-
tions about the d-state interaction V„. Thus Tables
I and II show the results for the two assumptions
V, =0 and V„= V, —2Vr. (For a given value of a,
but with different assumptions about V„, one of
course obtains different values of V~ for a given
value of V, .) We recall that the effects of V„are
similar for scattering and nuclear matter

t
as can

be seen from Eq. (7.1) and the discussion following
it]. To be consistent, one must therefore make the
same assumptions for V, in the two cases. Thus if
Vr is obtained (as a function of V, ) so as to give
some fixed scattering length with some assumption
about V„, then one should calculate D, with the
same assumption.

One then finds that for a given scattering length
and a given value of V, , i.e., for a given net effect
of the tensor force, the value of D, is almost inde
pendent of the assumption about V„so long as this
is the same for both scattering and nuclear matter.
In fact the values of D, for V„=O and V„=V, -2U~
are almost indistinguishable for both p. ~ '=0.4 and
3..4 F on the scale of Figs. 8 and 9. This insensi-
tivity to V„ is just due to the d-state centrifugal
barrier as already discussed. (The value of r« is
slightly different for different assumptions about
V„, and therefore the equivalent central potential
will be slightly different. Thus strictly the value
of D, will depend on V„; however, this depen-
dence is negligible. )

The effects of the gap 4 and of the exclusion prin-

8. s-WAVE REACTION-MATRIX RESULTS FOR ONE-

BOSON-EXCHANGE POTENTIALS

Although the results just discussed were obtained
for Yukawa shapes, they strongly suggest that there
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FIG. 10. The self-consistent s-state (singlet-plus-
triplet) well depth D~ as a function of g~ for mixtures
of 0-meson and kaon exchange potentials which have a
hard core of radius c=0.43 F and which all give a&=-2 F,
The appropriate values of g&Ag are indicated; g+Az = 0
corresponds to a purely central potential. The singlet
potential is fixed and equal to the triplet potential for
g&Az =0. The results for V„=O and V„=V, —2Vz are
indistinguishable (with the same assumptions for scatter-
ing and nuclear matter). The numbers and corresponding
arrows indicate the appropriate values of ~0, (for V„=0).
The contribution to D, due to just the central part of the
potential is shown. The (s-state) well depths D~&+ are
those for purely central potentials with the same values
of c, and of c, and ro& (and with the same singlet poten-
tial) as the corresponding mixtures characterized by
go2. The suppression of the tensor force is again charac-
terized by D~&~& - D, . The results are for kz =1.4 F ~,

4~ = 85.4 Me V, and M~ /M~ = 0.638.

ciple (Q) on the (s-state) well depth, when this is
due to purely tensor forces of Yukawa shape, are
shown in Table VI. As expected from our previous
considerations, the effect of Q becomes less as ~
is in'creased or as the range of the potential is de-
creased. The effect of Q on the reaction-matrix
and on the perturbation-theory results is quite sim-
ilar for the long-range potential. This is because
the contributions to D, of higher order than V~'
are then relatively small. On the other hand, for
the short-range potential the effect of the exclusion
principle on the perturbation-theory results is con-
siderably less than on the reaction-matrix results.
This is presumably because, in this case, the ex-
clusion principle significantly modifies the wave
function at quite short distances, and this has the
effect of reducing the contributions from higher
order than V~', which are quite important for
short-range potentials.
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will also be rather little suppression for the more
"realistic" hard-core OBE potential mixtures
which have short-range tensor forces due to kaon
exchange 3nd which were described in Sec. 2. We
again choose the singlet potential to be equal to the
triplet potential in the limit g~~E = 0, i.e., when the
triplet potential is purely central and entirely due
to o -meson exchange.

Figure 10 shows the (s-state) well depth D, as a
function of g ' whose value characterizes a given
mixture. The contribution D, (V,) due to only the
central part of the potential is also shown. Be-
cause of the hard core, the triplet contribution be-
comes negative when the triplet attractive tail be-
comes sufficiently weak, i.e., for sufficiently
small g,'. In fact the extreme right of the curves
corresponds to a quite small triplet central contri-
bution to the well depth. Again, we also show the
well depth D,' for the purely central hard-core
potentials of Table III whose triplet parts give the
same scattering length (a, = -2 F) and the same
effective range as a given mixture.

For discussion of the well depths it is convenient
to use D, ~ as a measure of the "unsuppressed"
well depth appropriate to the effect of the tensor
force for scattering. The suppression is then char-
acterized by the difference 5D, =D, —D, . It is
notable that D„D~ci, and D, (V, ) all vary almost
linearly with g„~s ', as well as with the strength of
V, (i.e., with g,'). A convenient measure of this
strength is then D, (V,), which is the well-depth
contribution due to only t/', . The difference D,
—D, (V, ) then measures the net "unsuppressed"
contribution, appropriate to scattering, due to just
the tensor force alone. Thus this difference is the
analog of -(V',sP"T') which was used in Sec. 6 as a,

perturbation-theory measure of the effectiveness
of the tensor force for scattering. The actual (sup-
pressed) contribution for nuclear matter is then
D, D, (V, ), which —is the analog of (V',

&&
')= D~'&, &.

-
A very convenient measure of the effectiveness

of the suppression is then the ratio $ = [D, —D, (V, )]/
[D~c' D, (V,)], which, -in view of the linearity
pointed out above, is essentially independent of the
magnitude of the coupling and which corresponds to
the ratio (V', &P"r') /(VPP~) previously discussed.
Thus for complete suppression one has ( =0,
whereas for no suppression $ = 1. The effective-
ness with which the OBE tensor force is sup-
pressed is then characterized by the corresponding
value $ =0.79. This is not too different from unity,
indicating that the suppression is relatively slight.
It is interesting that this is close to the perturba-
tion-theory ratio for a Yukawa tensor potential
with range p. „=0.4 F. In this connection it is im-
portant to note that the meson-theory tensor shape
is much move singular than the corresponding 1'u-

halloa shape and hence of effectively shorter range
However, the hard core has the opposite effect,
and effectively increases the range, since it forces
the attractive part of the potential out beyond the
hard-core radius.

For the magnitude of the suppression it is then
notable that also for the more "realistic" meson-
theory potentials with a short-range tensor force,
the suppression 5D, is only quite moderate even
for the strongest tensor forces considered. This
is in spite of the fact that the central-force contri-
bution D, (V,) is then only about 10 MeV. However,
the tensor force actually expected due to kaon ex-
change are only moderately strong and correspond
to g„~F'& 15. For such strengths the correspond-
ing suppression is only 5D, & 2 MeV. We also re-
call that all our OBE potentials have low-energy
scattering parameters similar to those obtained
from Ap scattering. It should be noted that if the
tensor force were completely suppressed in nu-
clear matter (i.e., $ =0) then the only contribution
would be D, (U, ), and in that case the reduction in
the well depth corresponding to g»~' & 15 would

be 5D, & 9 MeV.
If one includes the tensor-force contribution due

to g-meson exchange in the way discussed in Sec.
2, then the effect is to modify g»~' by a factor of
at most 1.25 in magnitude. A reasonable upper
limit for the suppression would now be 5D, = 3 MeV.
(It is clear from our considerations that a change
in sign of the tensor force will not alter any of the
conclusions about 6D, .) Suppression associated
with tensor-force contributions due to heavier
mesons, such as the + meson, is expected to be
quite small because of the short ranges involved.

It will be observed —especially clearly in the lim-
it where most of the triplet well depth is due to the
tensor force -that there is rather more suppres-
sion for the OBE potentials than for the Yukawa po-
tentials with pr '=0.4 F. (In fact the range of the
OBE tensor potential is effectively shorter because
this potential is more singular than a pure Yukawa
potential corresponding to the same exchanged
mass. ) This difference arises from the hard core
(in the OBE potentials) which increases the effec-
tive range for a given shape of the attractive part
and for a given scattering length. This is illus-
trated by the results for r, (shown in Table Ill) cor-
responding to Yukawa potentials with and without
a hard core. These results also show that D, ~ as
a function of x, has a maximum which occurs for
moderate values of r, . This dependence of D, on

r, is also illustrated by the curves for D& & shown
in Figs. 9 and 10. In Fig. 9, D, ~ decreases as ~,
decreases, because the relevant values of r, are
rather small in the absence of a hard core. On the
other hand, in Fig. 10 the slight increase of D,
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Potential

Ds
c a ro (MeV)

(F) (F) (F) kg = 1.866 F 1.4 F

as r, decreases arises from the hard core, be-
cause this gives rise to much larger values of x,
for which the slope of D, ' versus x, is reversed.

It should be noted that most of the difference in
the values of 6D, for Figs. 9 and 10 actually comes
from the different variation of D, with r, in the
two cases, rather than from differences in the vari-
ation of D, with V, .

Again, just as for the Yukawa mixtures, the ef-
fect on the well depth of the two different assump-
tions about V„; namely, V„=O and V, —2V~, is
negligible -if the same assumption is made for nu-
clear matter as for scattering.

To relate our OBE results to those for other po-
tentials, we show in Table VII the self-consistent
values of D, for our purely central OBE potential

(g~Az =0) and for Tang and Herndon's potentials E
and H. The latter are consistent with both the AP

scattering data and the binding energies of the A = 3

and 4 hypernuclei. The value k~= 1.366 F ' was
used in Ref. 2 and corresponds more closely than
1.4 F ' to the central density of heavy nuclei. The
results for the different potentials are mutually
consistent and in agreement with the fact that D,
is a strongly decreasing function of the hard-core
radius c and an increasing one of the scattering
length.

If for our OBE potentials we were to use c =0.6
F, which is the value for potential H, instead of
c =0.42 F, then (for a= -2 F) all our OBE results
would be reduced by about 10 MeV. For a given
value of g„A»', which determines the strength of
the tensor force, we then expect the magnitude of
the suppression to be appreciably less for the
larger hard core. This is because the contribution
of the tensor force is then reduced (for a given

gsAz) because a larger hard core cuts out more of
the inner part of the tensor potential which is thus
effectively weakened and must be compensated for
by an increase in the central potential.

Our OBE potential results, together with our
previous discussion, thus lead us to expect only
very moderate s-state suppression, of at most
about 3 MeV, for the meson-theory tensor forces

TABLE VII. Self-consistent s-state well depths for
some central potentials. The hard-core radius is de-
noted by c; a is the scattering length appropriate for the
spin-average (and charge symmetric) potential. The po-
tentials E and H are those of Tang and Herndon (Ref. 3).
Q,~ = 85.4 MeV, M„/M„= 0.688.)

of the expected range arid strengths. The s-state
effect of a short-range "realistic" tensor force is
thus expected to be quite similar for scattering
and for nuclea, r matter. In particular, if for scat-
tering the effect of a, AN interaction with such a
tensor force is reproduced by a phenomenological
central potential with the same low-energy scatter-
ing parameters (and the same hard-core radius),
then the latter potential is expected to a rather
good approximation to also reproduce the effects
of the tensor force in nuclear matter.

The effects of the exclusion principle Q and of
the gap ~ on the OBE potential well depths are
shown in Table VI, and are consistent with expec-
tation. The effect of both Q and 6 is to give more
suppression as the relative strength of the tensor
force is increased (i.e. , as ps~ —„' is increased).
This is simply because the contributions to D,
which depend on Q and 6 then become more impor-
tant. In fact the effect of Q and b, does not increase
very much with g»~'. This is because of the
short range of the potentials and also because the
associated decrease in g,' implies that the corre-
sponding Q- and ~-dependent contributions for the
central part of the potential become less.

9. p-WAVE CONTRIBUTION OF THE TENSOR FORCE

If perturbation theory is applicable (i.e., in par-
ticular, for potentials without a hard core), then
our results for D~r'~~, &/D~r" (shown in Table V) indi-
cate that for short-range tensor potentials the ten-
sor-force contribution to D from partial waves
with I.~ 1 will be quite small —less than about 5%.
Any suppression of this contribution will thus have

only a very small effect on D.
However, with a substantial hard core, the p-

wave contribution D~ may be compa, rable to the s-
wave one (e.g. , about 25 MeV for D~ as compared
with about 40 MeV for D, ) if the p- and s-wave po-
tentials are comparable (Refs. 2 and 4). The con-
tributions from f. ~ 2 will be quite small (&2% of D)
for any reasonable potentials and need not be con-
sidered here. It is therefore of interest to also
consider the question of suppression of the tensor
force in the p state.

We consider only the S = 1 p-wave contribution
and assume a local (central-plus-tensor) potential
V, (r)+S»Vr(x). (For S =0 only the central force
contributes. ) For f. = 1, in contrast to the coupled
sd case, there are diagonal tensor-force contribu-
tions. Thus the diagonal p-wave potentials appro-
priate to a total angular momentum 8 (= 0, 1, 2)
are

OBE (g~g„p =0) 0.43 -2.0 3.60
E 0.45 -1.7 3.50
H 0.60 -2.1 8.42

44.5
41.0
34.5

47.8
44.1
37.1

V~ I.=, —'V~& —V~ +sr.=, ~ Li=,V~, (9.1)

where the s~, „~, , are the relevant tensor-force
matrix elements [appearing also in Eq. (5.1)]
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~L= i, J,L =1
aJp
(F )

f JP
(F-i)

DJp
(MeV)

+2
—0.4

0.051
-0.739
-0.290

ap = -0.401

88.28
0.42
5.78

xp = 2.46

-5.36
29.73
12.69

Dp = 16.36
3D(pc) =17.93

Dp(Vg) = 15,1

whose values are shown in Table VIII. We have ig-
nored possible spin-orbit contributions in this
paper.

There is also tensor-force coupling of the p to
the f wave. However, the contribution of this can
be neglected in comparison with the diagonal ten-
sor-force contributions (Ref. 11). This neglect is
made plausible later in this section.

For each J we then use the effectively central po-
tential 'VJp to calculate the corresponding well
depth DJp in the g-matrix approximation, using
the rea, ction-matrix procedures appropriate to a
central p-state potential. These procedures are
completely analogous to those for the s wave and
were described in Sec. 5 and in Ref. 2, where p-
wave results were obtained. It should be noted that
for not too large hard cores the p-wave contribu-
tion Dp is much less sensitive to the gap ~ than is
D„so that the requirement of self-consistency is
unimportant for Dp unless c is quite large.

The total triplet p-wave well depth 'Dp is then
given by

2

'Dp =
~ Q (2J'+ 1) D~q. (9.2)

J=O

To first order in the potentials 'VJp, there is no
net P-wave contribution from Vr [because of the
values of sI ] j L J and the weights 2J+1 in Eq.
(9.2)]. Thus, as one would expect, the tensor force
contributes only in second and higher order also
for L = 1. In this sense the situation is quite simi-
lar to the coupled sd case, and the same general
considerations about the effect of the range on the
suppression also apply here. The neglect of the Pf
coupling is then plausible because this is expected
to be much less effective than the pp coupling (i.e. ,
the second- and higher-order diagonal contribu-
tions of Vr), since the former involves a large ad-
ditional angular momentum barrier.

Our p-wave results, shown in Table VIII, are
based on our s-wave OBE potential (V '~+ V~~&

+hard core of radius c=0.43 F) with g~AE'=23. 91
(g,' = 1.79). This potential, described in Sec. 2

TABLE VIII. The p-state results for the OBE potential
with g&Ap2 = 23.9. The quantities are defined in the text.
The well depths are calculated for kz ——1.4 F, Az ——85.4
MeV, QA=40 MeV, and Mz/M~=0. 688.

(in particular in Table III), gives a, = -2 F and has
a very strong tensor force. More specifically, our
p-wave potential is obtained by treating this s-
wave potential as if it were local. Thus both the
central and tensor p-wave potentials V, (x) and

Vr(r), respectively, are the same as the corre-
sponding s-wave potentials; in particular, Vr(r)
has the same shape, strength, and sign as the K-
exchange s-wave tensor potential.

According to Eq. (2.4) there is an over-all
change of sign of V~ ~ between the odd states and
the even states. Since, however, the effect of a
tensor potential is almost independent of its sign
(and is attractive), our p-wave tensor force has
effectively a meson-theoretical basis.

In fact the main effect of the over-all sign change
is to make the central K-exchange contribution
V,E repulsive with respect to V, which does not
change sign. However, since we are specifically
interested in the suppression of the tensor force,
we have kept the central potential the same as the
s-state one, so as to preserve the connection with
an s-state potential normalized to give a, = -2 F.
(In fact UI~~ is not too large compared with V '~,

and changing its sign does not have too large an ef-
fect on the net central potential V, .)

The well depths 'D Jp and 'Op obtained with our
OBE potential are shown in Table VIII. The large
splitting between the different J values is a reflec-
tion of the strong tensor force. However, since
the contribution to 'D~ (= 16.35 MeV) from the cen-
tral part V, (which includes the hard core) is
'D~ (V, ) = 15.1 MeV, the net (suppressed) contribu-
tion from the tensor force to 'Dp is only 1.25 MeV.
This is relatively much less than for the corre-
sponding s-state well depth D, (=44.3 MeV), for
which the net tensor-force contribution is about
16.5 MeV (as seen in Fig. 10). The tensor force is
thus much less effective for Dp than for D, . This
is confirmed by the results for the "unsuppressed"
tensor-force contribution discussed below.

Just as for the s-wave case, one must be quite
careful if one is to obtain a meaningful estimate of
the suppression of the tensor force for the p wave.
Thus one should compare our OBE potential with a
purely central potential which has the same low-
energy p-snare scattering characteristics and the
same hard core. Because for L = I there are three
phase shifts '5», one must use an average phase
shift.

Thus for the basic P-wave scattering data, which
we suppose in principle to be available, we use the
average (low-energy) p-wave phase shift:

2

'5~ = —,
' Q (2Z+ 1) '5~~, (9.3)

J=O

where 'g» are the phase shifts for the individual
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8 values obtained from the potentials 'V~p appro-
priate to our QBE potential. The results for '5p
(and also for '5z») are conveniently parametrized
by use of the p-wave form of the effective-range
expansion, namely,

3 1 3

p
(9.4)

The values of 3ap and 'xp, as well as the values
3a» and 3x~p appropriate to the individual 35~p,
are shown in Table VIII.

We may then proceed in exact analogy with the
coupled sd-wave case, and obtain an "equivalent"'
purely central potential Vp[ which reproduces 3ap

and 3xp and also has a hard core of radius v=0.43
F. For the attractive part of Vp, we have used a
Yukawa potential which then has a strength 'V»
=1606.2 MeV and a range parameter 3p, p

=2.36 F '.
Finally, from Vp one obtains the corresponding
well depth 3D~~~].

This well depth is to be regarded as the "unsup-
pressed" p-wave well depth, appropriate to the ef-
fect of the tensor force for scattering. The sup-
pression is then given by 5Dp = 3Dp[c~ —'Dp = 1.57
MeV, which is indeed positive appropriate to sup-
pression. Although fairly small, 6Dp is, neverthe-
less, quite large compared with the net "unsup-
pressed" contribution of the tensor force, namely,
'D»~c~ —'D» (V,) = 3.83 MeV. In fact, the relative
suppression is quite strong if this is, most natural-
ly, defined by $» = ['D» —'D» (V,)]/['D~~c~ -'D» (V,)],
which is the ratio of the suppressed to the unsup-
pressed contribution of the tensor force. Thus one
has $» =0.45. ($» = 1 means no suppression. )

That the absolute suppression ODp = 1.57 MeV is
nevertheless quite small, in spite of this large
relative suppression and of the large value of
g~A~', is due to the relative ineffectiveness of the
tensor force in the p state. Thus the "unsup-
pressed" tensor-force contribution is only 2.83
MeV, whereas the comparable s-wave value is
21.2 MeV.

The above discussion of the suppression is based
on the single average phase shift '5p defined by Eq.
(9.3) and is consistent with our s-wave approach,
as well as with the very limited available scatter-
ing data. If the individual phase shifts 35» were
considered as the basic scattering data, then this
would imply noncentral forces (in view of the split-
ting between the '5»); in particular, one could at-
tempt to obtain a tensor force which fits these
data and then use this tensor force directly to ob-
tain the well depth. If, nevertheless, one attempts
to reproduce the 35~p by use of equivalent central
potentials 3V[~~p, then these potentials would give
well depths 'D~p which would be very nearly the
same as the OBE values 'D» (Thus for J'= 1 .and

2, one has 'D~~p~ = 29.63 and 12.79 MeV, re-
spectively. ) This is because both 'V~» and 'V'~»~

are central potentials with the same hard core and
the same low-energy scattering parameters, and
such equivalent potentials give effectively the same
well depths. Such a procedure of fitting the indi-
vidual '5zp therefore has little point to it.

It is instructive, however, to consider another
procedure for obtaining the suppression, especial-
ly as the relevant results are also of significance
for further dlscusslon of the above r'esults. Thus
we may use the purely central s-wave potential
V~c~, which is equivalent to our (local) OBE poten-
tial for low-energy s-nave scattering, to calculate
a p-wave well depth. We obtain 'D» (V~ ~) = 17.11
MeV. Using 5D» = 'D» (V~c~} —'D» to measure the
suppression, we find 5Dp =0.75 MeV, which is
quite small. The corresponding value of $p, the
relative suppression, is now only 0.63.

Since this latter procedure does not use p-wave
phase shifts as the basic data, we do not consider
it to be as significant as the earlier procedure
which does. However, the value of 'D»(V,'c&) is sig-
nificant in that it indicates, in view of its closeness
to 'Dp ~, that the s- and p-wave equivalent poten-
tials V[ ~ and Vp[~ are quite similar. This is con-
firmed by comparison of the values 3ap = -0.374 F',
3rp =2.334 F ' obtained using V[ ~ with the corre-
sponding values, shown in Table VIII, obtained
using Vp ~. The closeness of the two sets of values
shows that the two potentials are indeed quite simi-
lar, not only for nuclear matter but also for scat-
tering. This implies that the QBE potential has ef-
fectively very nearly the same strength for the s
and p wave, since a measure of these strengths is
just the appropriate phase-shift-equivalent central
potentials.

Our results thus correspond to a ratio P/s= 1 be-
tween the effective p- and s-wave strengths. It
should also be noted that our value Dp = 'Dp + 'Dp
=22 MeV agrees very well with the results obtained
for reasonable central potentials with equal P- and
s -state strengths.

We may obtain the suppression 5Dp correspond-
ing to other values of g„h~ ~ by noting that 5Dp, and
also the unsuppressed tensor-force contribution
'D'»c~ —'D» (V, ), are to a good approximation propor-
tional to g„A»'. (One also has the relation 5D»
= (I-$»)['D»~c~ —'D»(V, )], where (» is independent
of g»A». } Thus, uslllg our results for g»»» = 23.9,
we obtain for g„»»'=11-15 (which are the larger
of the two possible sets of phenomenological values)
the values 'D»'c~ —'D»(V, ) =1.3-1.8 MeY, and for
the suppression, the values 5Dp =0.7-1 MeV.

These values of 5Dp are expected to be about the
same, even for much weaker net p-state interac-
tions, so long as we use the same values of g„A~.
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Thus most of the net p-wave interaction is due to
V'~ and relatively little due to V' ', even for very
large values of g»~. Since all of the tensor force
is due to V'E~, the above results for 6D~ (and for
the unsuppressed tensor-force contribution) are
therefore quite consistent also with a much small-
er net p-state interaction, which is obtained by re-
ducing just V~'~ (but not V~ ).

Thus a reasonable upper limit for the p-wave
tensor-force suppression is about 1 MeV, even if
the net p-wave interaction should be much weaker
than the s-state interaction, which is quite possible.

10. CONCLUSION AND DISCUSSION

For local tensor forces of short range (compared
with ks ') the dominant momentum components are
very high, and consequently the effects of such ten-
sor forces are only slightly modified by the nuclear
medium. The effect of such short-range tensor
forces (for the s and p state) is then very similar
for scattering and for nuclear matter. Thus, if
central and tensor forces are chosen to compen-
sate each other for low-energy scattering, they al-
so compensate each other very closely for nuclear
matter if the range is short. This is brought out
particularly clearly by comparing the effective non-
local and energy-dependent central potentials that
represent the effect of tensor forces for scattering
on the one hand and for nuclear matter on the other
(Sec. 6).

Thus short-range local tensor forces are only
slightly suppressed in nuclear matter. However,
the effect of long-range tensor forces (as, for ex-
ample, tensor potentials with a Yukawa shape and
with a range corresponding to one-pion mass,
which were considered in Secs. 6 and 7) is strongly
modified, and such potentials are strongly sup-
pressed in nuclear matter.

In general, a good measure of the expected (s-
wave) suppression for interactions without a hard
core is the perturbation-theory ratio (V',NffM~)/

(V', fsP"T~). This is the ratio of the (nuclear-matter)
expectation values of the effective nonlocal poten-
tials appropriate for nuclear matter and for scat-
tering, respectively. These expectation values in-
clude the effects of the tensor force to second or-
der; thus (V',N&P~) is just the second-order pertur-
bation result for the energy. Effects of higher-
order than Vr' (in the reaction-matrix approxima-
tion) become more important as the range de-
creases; in particular, for ranges corresponding
to the kaon mass such higher-order effects may
become quite large. In that case the use to first
order of a local effective potential (and the corre-
sponding average closure energy), which is equiva-
lent to use of the second-order perturbation energy,

becomes a poor approximation for relatively small
tensor-force strengths. Furthermore, for such
short-range potentials the local effective potentials
give much too large contributions of higher order.
A corresponding measure of the suppression $

which is suitable for hard-core interactions is de-
fined in Sec. 8 ~

For the AN interaction the tensor forces are in
fact expected to be of quite short range, since they
are due to the exchange of K, q, and heavier me-
sons. Our detailed reaction-matrix calculations
show that for short-range tensor forces there is in-
deed rather little suppression, even for very
strong tensor forces which account for all the trip-
let scattering. The suppression is measured by
the reduction in the well depth relative to the depth
for a purely central potential which has both the
same scattering length and effective range as the
particular mixture of central and tensor forces be-
ing considered. Different assumptions about the d-
state interaction have an almost negligible effect
on the (s-state) depth if the same assumption is
made for both scattering and nuclear matter. We
conclude that if central and short-range tensor
forces are chosen to compensate each other for
low-energy scattering, then they will also compen-
sate each other quite closely for nuclear matter.
In particular, the results for "realistic" OBE po-
tentials that have a hard core and include tensor
forces due to kaon exchange (and also to q exchange
in an approximate way) show that there is only rath-
er slight s-state suppression, corresponding to $
=0.8 and to a reduction of the well depth of at most
about 3 MeV for a reasonable hard-core radius and
current phenomenological values of the NAK cou-
pling constant. Heavier mesons, which could con-
tribute to the AN tensor force, are not expected to
change this conclusion.

Our p-wave results show that the p-wave suppres-
sion is expected to be quite small (~1 MeV) for
reasonable OBE potentials, even though the total p-
wave contribution to D can be quite large if there
is a substantial hard core. Also one must be very
careful here to use suitably defined equivalent cen-
tral potentials if one is to obtain a meaningful mea-
sure of the suppression. (The perturbation-theory
results indicate that for short-range tensor poten-
tials and zvitkout a hard coze, the total tensor-
force contribution to D from higher partial waves
with L ~ 1 will be quite small and less than about
6%.)

Thus the total suppression, including that of the
p wave, is rather small and probably at most
about 4 MeV.

The reasons for the slight suppression of short-
range tensor forces in nuclear matter are expected
to hold also for finite hypernuclei. In fact, it may
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be expected that suppression effects will be rela-
tively smaller for the latter because the average
density is less —and since suppression becomes
less as the density decreases. Of course, to test
the validity of these conjectures for finite hyper-
nuclei, one must perform appropriately realistic
calculations.

Limitations of the Results

The Brueckner-Bethe reaction-matrix approach
gives an expansion of the energy in powers of the
density p (more precisely the ratio of the correla-
tion volume to the volume per particle), with the
leading term given by the g-matrix approximation.
Higher-order terms, in particular those proportion-
al to p', have not been adequately calculated for the
A case. One may perhaps conjecture that the con-
tribution to these terms from the short-range AN
tensor force are small if also the associated cor-
relation volumes are small. The latter is expected
to be the case if the tensor forces are also not too
strong.

A related question is the choice of the single-par-
ticle energies (i.e., of the effective masses) for
the unoccupied states. For a given choice, the p'
terms should be calculated; in particular, if the
choice is fortunate then these terms will be small.
The choice of the free kinetic energies is believed
to be appropriate for central potentials with a siz-
able hard core. ' The presence of strong tensor
forces will, of course, affect the choice of the
"best" single-particle energies but, as discussed
below, is expected to favor the free kinetic ener-
gies. In any case, the choice of these is the most
neutral one in the absence of estimates of the
higher-order terms.

It is important to note that our (numerical) re-
sults about the suppression of tensor forces depend
on the use of the free kinetic energies for the unoc-
cupied states. If one uses effective masses (Ms, M~)
that are not equal to the free masses, then, as dis-
cussed in connection with both the perturbation the-
ory and reaction-matrix calculations (Secs. 3 and

5), the tensor force contri-bution is expected to be
modified approximately in the ratio p, /p, of the ap-
propriate reduced masses. This is not true, how-
ever, for the central-force contribution, much of
which (especially for purely attractive potentials)
comes from the first-order perturbation result
which is independent of p.

We can use the value MA =0.9 M~ to obtain an esti-
mate of this effect. This value of M~ is that appro-
priate to just a particular third-order p' (g-matrix)
term considered by Dabrowski and Kohler. One
then has p. =0.95', . Thus for the QBE results of
Fig. 10, the tensor-force contribution which cor-
responds to the strongest tensor force considered

is now reduced from about 30 to 28.5 MeV; i.e. ,
the suppression is enhanced and corresponds to a
further decrease of about 1.5 MeV in the total well
depth D, . For more moderate and realistic
strengths, the corresponding reduction would be
less than about 0.7 MeV. Thus, if the ratio of the
effective masses for the unoccupied states to the
free masses is close to unity, then the qualitative
conclusion that the suppression is small for real-
istic AN tensor forces is unchanged.

Since the approximate equivalence of short-range
tensor forces for scattering and nuclear matter
seems physically reasonable, one may perhaps use
this as a justification for the choice p. = p, , since
the equivalence depends on this choice. However,
this argument —if correct —depends on the tensor-
force component in the interaction being strong
enough to dominate second- and higher-order ef-
fects. The argument would have to be qualified if
the interaction contains a sizable hard core —which
brings us back to the question of the "best" choice
of single-particle energies for a general interac-
tion which contains both central and tensor compo-
nents, and to the associated question of the corre-
sponding value of the p' terms.

A different limitation of our results is due to the
assumption of locality for our tensor potentials.
For nonlocal tensor forces, "the off-energy-shell
matrix elements are in general no longer deter-
mined by the range —as is effectively the case for
local tensor forces. These matrix elements may
then be damped relative to those expected for a
local force of the same range. This implies that-
in principle —even for short-range forces, one
could get quite strong suppression of a nonlocal
tensor force in nuclear matter. However, since
such tensor forces must be fitted together with
central forces to the low-energy scattering, the
net result on the binding energy is not obvious. Al-
though OBE potentials in general have momentum-
dependent nonlocal components, one expects that
the local components —which are given by the static
approximation —dominate at longer distances, es-
pecially for the pseudoscalar kaon and g-meson
exchanges. However, the limitation of our results
due to the assumption of locality should be kept in
mind.

Comparison of the Hypernuclear and the Nuclear Cases

For the NN interaction the tensor force is strong
and of long range and is expected to be strongly
suppressed. Such strong suppression is obtained
for the A case with the long-range, one-pion Yuka-
wa potential. This range is, of course, quite un-
realistically long for the AN interaction and was
considered for illustrative purposes only. (How-
ever, it should be remembered that the meson-
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theory tensor shape is much more singular than
the corresponding Yukawa shape and hence is effec-
tively of shorter range than the latter. )

Furthermore, for the purely nuclear case the ex-
clusion principle operates for both particles, and
this would increase the suppression relative to that
for the hypernuclear case —especially if the range
is long. Probably a more significant effect of the
exclusion principle is the resulting large average
kinetic energy per nucleon. This implies that the
total energy per particle —which is the difference
between this kinetic energy and a comparable poten-
tial energy —is relatively much more sensitive to
suppression effects than is the potential energy
alone, which is effectively the only energy relevant
for the A well depth. (This is clear from Fig. 10—
if the binding energy were not the well depth but
were this minus a comparable average kinetic en-
ergy )In. fact, suppression of the NN tensor force
is known to be quite important for the saturation
properties of nuclear matter.

AN Interaction and the Phenomenological Well Depth

If we accept a value of about 3 MeV as a reason-
able upper limit for the reduction of the well depth
as a result of suppression of a possible AlV tensor
force, then the presence of this will not significant-
ly change any of the conclusions obtained for the
AN interaction by a comparison of the calculated
with phenomenological well depth. It seems appro-
priate to summarize these conclusions for a phe-
nomenological well depth of about 30 MeV.

With purely central potentials and for given low-

energy AN s-wave scattering parameters, the well
depth (calculated in the g-matrix approximation) is
sensitive predominantly to two properties of the
potential, namely, the short-range repulsion and
the p-state interaction. Thus, firstly, the s-state
contribution D, to the well depth decreases strong-
ly as the hard-core radius increases. Here, the
significant quantity is most probably the correla-
tion volume (or "wound integral" ) associated with

the hard core, and one expects 0, to decrease with
this volume in a manner which is roughly indepen-
dent of the details of the (short-range) repulsion. "
(Thus this could be due to a hard or a soft core or
a nonlocal potential, so long as it gives the re-
quired correlations. ") Thus for a=-2 F, r, =3-4
F, an increase in the hard-core radius c from 0.0
to 0.6 F gives a decrease in D, from about 55 MeV
to about 35 MeV (for k~= 1.366 F ') —a drop of
about 20 MeV. Secondly, the p-state contribution

Dp can be quite large and equal to about 20 MeV
for a p-state interaction equal to the s-state one.
(Thus a state-independent potential without any
hard core would give a very large well depth D= 75
MeV for a= -2 F, r, =3-4 F.) One may thus re-

duce D by weakening the P-state interaction. For
example, Tang and Herndon's potential H, for
which c =0.6 F and the ratio of p- to s-state
strengths is p/s=0. 6, gives D=46 MeV; but for
p/s = 0, the result is only D= 36 MeV.

Higher-order effects, in particular the p' terms,
are rather uncertain and could be significant, es-
pecially for large hard cores. If the rearrange-
ment energy dominates the p' terms, then these
could reduce D by about another 10/0. 4 "

Thus central forces (or mixtures of central and

tensor forces) consistent with the Ap scattering
data could give agreement with the phenomenologi-
cal well depth if there is a strong short-range re-
pulsion corresponding to a large hard core of radi-
us c =0.6 F and if also the p-state interaction is
very weak and close to zero. However, such for-
ces will still overbind ~He', since only the s-state
interaction is effective for this. (As is well known,

triplet s-state interactions that fit the scattering
give too much binding for ~He'. ) Two mechanisms
that have been proposed to deal with this difficulty
are repulsive three-body ANN forces" and sup-
pression of the coupling of the AN to the ZN chan-
nel. " The two are closely related and to some ex-
tent equivalent. " Here we consider only the latter.

The coupling of the AN to the ZN channel is quite
possibly very important, both through the strong
and long-range OPE coupling potential, which has
predominantly a tensor character, and perhaps al-
so through the shorter-range but strong central
component of the p-meson exchange potential. The
qualitative considerations concerning the effect of
the nuclear medium on these couplings are quite
similar to those discussed for tensor forces, ex-
cept that now one has an additional gap of 77 MeV
due to the ZA mass difference. Reaction-matrix
calculations indicate that one could readily obtain
an appreciable suppression of the AN-ZN coupling
in nuclear matter, corresponding to a reduction in
the well depth by as much as 10-15 MeV. "

If one accepts suppression of this order of mag-
nitude, then one can tolerate a smaller hard-core
radius and a weakened but still appreciable p-state
interaction. Thus Tang and Herndon's potential E
(c=0.45 F, p/s=0. 6) gives D=52 MeV. The well
depth could then be reduced to D = 37-42 Me V by
suppression of the AN-ZN coupling. Suppression
of the AN tensor force and the contribution from
the p' terms could perhaps give a further reduction
of about 5 MeV, which would bring the calculated
well depth into agreement with the phenomenologi-
cal one.
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APPENDIX. THE SECOND-ORDER PERTURBATION-

THEORY EXPRESSION FOR THE WELL DEPTH

Using the methods of Euler" allows one to re-
duce Eq. (3.5) to Eq. (3.10). The latter involves
only a one-dimensional integral with an algebraic
expression for the factor I, in the integrand. This
reduction is in fact strictly possible only if M„
= M„*, i.e., if the term involving n' in the denomi-
nator of Eq. (3.5) vanishes. However, this term if
nonzero has usually only a rather small effect,
and it is usually a quite good approximation to re-
place n' by its average n& over the Fermi sea, and

then combine this term with the gap A. This ap-
proximation then corresponds to the replacement

M M*S ™8
N

where T~= 3k~'/5M~. (In fact, the numerical re-
sults of Sec. 3 are for M~=M„* and the correction
then vanishes. ) For reasonable values of A the cor-
rection is small.

Since M~ eM~, it is convenient to introduce the
new variable s = t/p, where p = 2tL/M~, and also the

quantity e = 1 —p. (Thus for equal masses, one has
s=t, P=1, and a=0.) It is also convenient to use
the dimensionless gap 5 = P '(2p. /5'k~')Z. More
explicitly, the function I,(t) in Eq. (3.10) then also
depends on P and 5. Consequently, we define

The function I~ is given by the following expres-
sions:

For 0 «t «2,

I, = -', s(1 —e)[1+—,'s(1+ e}]+-,'5(1 —e)

——,'[(s'+ 25)J, —(e's'+ 2&5}J,+ (1 —5's ')Js],
where:

1+s+5s '
J,=ln

—,(1+a)s+5s ' '

J,=ln 1+ES +Os
-', (1+&)+5s '

1+as+Os '
J,=ln

1+s+gs '

For 2 &t (,
I, =(s+5)+-,[I —(s+5s ')']ln1 S+ 1+6S

s —I+os '
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We derive expressions for the K matrix for the general case where the Hamiltonian is sepa-
rated as H=Hp+ V, and Hp can have discrete as well as continuum states. It is shown that the
correct handling of the bound states in the continuum eliminates one of the correction terms
proposed by Tobocman and Nagarajan. In addition, some of the properties of the K matrix
evaluated at complex energies are discussed.

I. INTRODUCTION

During the past few years there has been an in-
creased use of the K matrix for both the theoret-
ical and experimental study of nuclear reactions. ' '
One reason for this increased use is that the K ma-

trix treatment of nuclear reactions involves opera-
tors whose matrix representations are real, and
this property simplifies numerical calculations.
Furthermore, simple approximations and param-
etrizations for the & matrix do not destroy the


