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It has been suggested, in effect, that in a deformed nucleus the number of protons (or the
amount of charge) which are carried along by the rotational motion may, on the average, be ap-
proximated as the product of the atomic number Z and the deformation parameter 6. The the-
oretical justification of this suggestion is discussed, and a more accurate expression is ob-
tained. Assuming that the interaction of the rotational motion with an external magnetic field
is entirely due to the current associated with the amount of charge following the rotational mo-
tion, on the average, and also in accordance with the cranking approximation, a macroscopic
expression for the rotational gyromagnetic ratio gz is derived. This expression, supplemented
by the usual macroscopic formula for the intrinsic quadrupole moment Qo, may constitute a
macroscopic self-consistency relation among the collective parameters in a rotational band,
namely, Qp g~ and the moment of inertia J. The values of gz calculated from the experi-
mental values of J and QD are tabulated for the ground-state rotational bands of both even-even
and odd-mass nuclei. The aforementioned macroscopic self-consistency is then tested by com-
paring these calculated values of gz with both empirical values and previous microscopic cal-
culations. According to the present approach, the well-known lowering of gz from the usual
fluid-model value is mainly due to the limitation on the number of protons which can follow the
rotational motion, on the average. It is not clear, however, whether there is any direct con-
nection between this limitation and the pairing interaction which seems to play a rather essen-
tial role in the current microscopic calculations. This puzzling situation is further illustrated
by considering the moments of inertia of even-even nuclei.

I. INTRODUCTION

Rotational band structure has been experimental-
ly established in the excitation spectra of nuclei
in several regions of the Periodic Table. Accord-
ing to the collective model of Bohr and Mottelson, '
the static and dynamic properties of each rotation-
al band (with band-head angular momentum not
equal to —,') can be characterized by four parame-
ters, namely, the moment of inertia J, the intrin-
sic quadrupole moment Q„ the rotational gyromag-
netic ratio g~, and the intrinsic gyromagnetic ra-
tio g~, which can be related to certain measurable
quantities such as E2 and M1 transition probabili-
ties and the level spacings in the rotational band.

These characteristic parameters may also be
calculated theoretically in terms of the intrinsic

properties of the nucleus. Such a microscopic ap-
proach has had considerable success in recent
years, particularly in the calculation of the mo-
ments of inertia and rotational gyromagnetic ra-
tios of even-even nuclei. "

Although a microscopic approach has the advan-
tage of testing the nuclear model in detail, we at-
tempt to establish, in this paper, certain macro-
scopic relations among these parameters which
may be directly verified with the experimental
values. Such macroscopic relations, if they are
valid, are certainly useful in the analysis of the
experimental results but may also be of interest
in evaluating the microscopic theories.

In Nilsson's formalism of the intrinsic motion, '
the single-particle wave function depends critical-
ly on the deformation parameter 5 which charac-
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terizes the deviation of the average potential from
spherical symmetry. Although 6 may be theoreti-
cally estimated as the eccentricity of the deformed
potential which minimizes the total nuclear ener-
gy,"it is usually obtained from the experimental
value of Q, through the following macroscopic re-
lation" '

Q, = (9/5&)"~'ZRO'P(1+0. 16P + ~ ~ ~ ),

where Z is the atomic number, R, is the mean ra-
dius of the charge distribution, and p is related to
5 by the equation 5 = 2(5/4v)'"P (see below; this 5

is not exactly the same 6 as defined in Refs. 4 and

5, and, strictly speaking, 6 or P should be regard-
ed as the deformation parameter for the charge
distribution). It is thus clear that this macroscop-
ic relation is actually one of the empirical founda-
tions in the current microscopic calculations.

In the following section (Sec. II), one additional
macroscopic relation [Eq. (14)] is derived, which
expresses g~ as a function of Z, Ro, J, 5, and the
mass of the proton M~. Therefore, based on the
experimental values of J and g~, 5 may also be
calculated. However, if self-consistency is en-
sured, this calculated value of 5 should agree with
the value derived from the experimental value of
Qo. In other words, Eq. (1) supplemented by the
macroscopic relation derived in the following sec-
tion may constitute a macroscopic self-consistency
relation among the parameters mentioned above,
except for the intrinsic gyromagnetic ratio g~.

It may be added, parenthetically, that macro-
scopic self-consistency relations in the sense in-
dicated above are actually not uncommon in phys-
ics. For instance, the Wiedemann-Franz law' is
obviously an equation of this nature. Although mi-
croscopic theories of thermal and electric conduc-
tivities of metal with various degrees of sophisti-
cation do exist, the virtue of this remarkable
macroscopic equation can hardly be overlooked.

A basic difference between the roles played by
J and g~ should be noted at this point: While the
former is essentially a characteristic of the ro-
tational motion itself, the latter specifies the
strength of the interaction of the rotational mo-
tion with external magnetic field. It has not so
far been possible, however, to write down this
interaction from first principles without relying
on some intuitive model or concept. In the micro-
scopic approach, the interaction of the rotational
motion with external magnetic field is usually tak-
en into account in an indirect way by calculating
the mean value of the vector sum of the magnetic
moments of the nucleons in the cranking approxi-
mation "' In the present paper, we take a mac-
roscopic but more direct point of view by assum-

ing that the interaction of the rotational motion
with an external magnetic field is entirely due to
the current associated with the amount of charge
carried along on the average by the rotational mo-
tion. This point of view is apparently consistent
with the fluid-model approach in which g~ is simp-
ly the effective charge of the rotational flow or, in
other words, the ratio of the number of protons
(Z') to the total number of nucleons (A') following
the rotational motion on the average. [The inter-
pretation of the usual fluid-model value, gs ——Z/A
(here A is the mass number), is not unique. It
seems equally acceptable to regard Z/A as the ro-
tational gyromagnetic ratio of a uniformly charged
rigid rotator in which all nucleons are rigidly car-
ried along by the rotational motion and the charge
distribution coincides with the mass distribution. ]

It will be clear later that for uniform charge dis-
tribution Z' can be directly related to the defor-
mation parameter 5 although the ratio Z'/A' may
not be specified without ambiguity. Based on this
result and also in accordance with the cranking ap-
proximation, an effective magnetic-moment opera-
tor associated with the rotational motion is pro-
posed in Sec. II, from which the aforementioned
macroscopic expression of g~ can easily be ob-
tained.

The values of g~ calculated from the experimen-
al values of J and Q, are tabulated for the ground-
state rotational bands of both even-even and odd-
ma. ss nuclei. The consistency between Eq. (1) and
this macroscopic expression of g~ is then tested
by comparing the calculated values of g~ with the
empirical values.

Following arguments similar to those presented
in Sec. II, the moments of inertia of even-even nu-

clei are briefly discussed in Sec. III.

II. ROTATiONAL GYROMAGNETIC RATIO

It has been shown on the basis of empirical anal-
yses and theoretical calculations that under favor-
able conditions the equilibrium shape of a deformed
nucleus (a,nd the shape of the average potential)
may be approximated as a prolate spheroid, and
the low-lying states may be described as rotational
states of this spheroid which rotates about an axis
perpendicula, r to its symmetry axis (see below). "'

The rotation of the nuclear system as a whole
certainly carries along a certain amount of matter
and charge which in turn depends on the nature of
the nuclear matter. As a first approximation, the
rotating nucleus may be regarded as a uniformly
charged rigid rotator of the shape of a prolate
spheroid (in the microscopic approach this amounts
to neglecting the pair correlation of the nucleonic
motion). ' Then, letting 0 be the angular velocity
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of rotation, the velocity of points inside the spher-
oid due to the rotational motion is Q xr (here r is
the radius vector in a space-fixed coordinate sys-
tem with its origin at the center of the spheroid),
and, if the interaction of the rotational motion
with external magnetic field is entirely due to the
charge current caused by the rotation of the spher-
oid, the magnetic moment associated with the ro-
tational motion is then given by (Ze/2cV) f rx(Q
xr)dv. ; here e is the charge of proton, c is the
speed of light, and the integral is taken over the
volume V of the spheroid. Since the charge distri-
bution is assumed to be uniform, the normalized
integral (Z/V) f r x(Q x r)dr may be replaced by
the summation

Z

g r,. x (Q x r,.),

which is to be regarded as an operator after the
rotational motion is quantized; here r; is the ra-
dius vector of the ith proton.

A rotating nucleus does not behave, however,
like a rigid rotator, as manifested by the magni-
tude of the moment of inertia. Therefore, as a
better approximation, we assume that only a lim-
ited number of protons Z' (or a limited amount of
charge Z'e) can follow the rotational motion on the
average. Then, based on this assumption, the
magnetic moment associated with the rotational
motion may be effectively taken as follows:

tern, it is reasonable to assume that r, and R com-
mute (that is, r; commutes with I —j; here I is
the total angular momentum and j the total intrin-
sic angular momentum).

Once the rotational magnetic-moment operator
is given, the corresponding gyromagnetic ratio
can simply be obtained by calculating the expecta-
tion value of the z component of this magnetic mo-
ment operator with suitable wave function. We
may recall that, according to the collective model,
the total magnetic-moment operator can be sepa-
rated into two independent parts, one due to the
intrinsic motion and the other due to the rotational
motion. ' Therefore, we can calculate the expecta-
tion value of one part without affecting the other.

For an average potential with symmetries of a
spheroid, the properly symmetrized wave function
may be written as follows"":

21+y»2

Here 3/I and K are the projections of I along the
space-fixed z axis and the nuclear symmetry axis,
respectively, D„'~ are the rotation matrices, and

P» is the intrinsic wave function.
Thus, by using Eq. (4) and Eq. (5), we obtain

KI- [I + (2 I+1)(-1)"'"b, 5» „,JI+ g J

8 Z
p, „,=—— r, x (Q x r,.) . (2) M

(+Iy»l g» j (r ' ' H) I +u» & & (6)

M Z'
p I o I r X R X r (4)

Since R is related to the rotation of the whole sys-

The physical meaning of Z' will be discussed in
detail later.

In the above discussion, we only attempt to make
Eq. (2) more plausible and we make no pretense of
taking the general argument as a rigorous micro-
scopic justification. Therefore, we shall regard
Eq. (2) a.s a phenomenologica, l model which may
only be judged by its implications at this stage.

Now, in accordance with the cranking approxi-
mation, the quantization of the rotational motion
may be achieved by setting'

JQ =SR, (3)

where R is the angular momentum operator asso-
ciated with the rotational motion.

Thus, from Eq. (2) and Eq. (3), we have the fol-
lowing rotational magnetic moment operator in
units of the nuclear magneton:

where b, is the decoupling factor for K= &. The
expression in the square brackets in the first
term is well known. '" The physical meaning of
the second term will be discussed below.

In the body-fixed coordinate system, the second
term on the right-hand side of Eq. (6) reduces to
the following form:

+ ~ Z &~„»IQQDo.rl, (rl, R +r, R,)l+„»&.
(6a.)

Here r,'o=»,', r,', =+(x,'+iy,')/W2, R, =+(R,.+iR, )/
U2, and (x', y', )»are referred to the body-fixed
coordinate system. According to the fluid model,
the moment of inertia about the nuclear symmetry
axis z' is strictly zero." Although the fluid model
may not be realistic, there is experimental evi-
dence that there is no quasirigid rotation about a
symmetry axis; this evidence is the absence of ro-
tational states in spherical nuclei, at least for low
excitations. " It is thus not unreasonable to as-
sume that the rotational angular momentum R is
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perpendicular to the nuclear symmetry axis z' and
consequently the states R,+»~ have no physical
meaning, or, in other words, they are spurious
states so 1ong as the average potential remains
axial1y symmetric. Therefore, the second term
on the right-hand side of Eq. (6) will be discarded,
although it may not vanish identically if the conven-
tional calculation is strictly followed.

From another point of view, the dropping of the
second term on the right-hand side of Eq. (6)
amounts essentially to neglecting the mixing of
states belonging to competing average potentials
of different symmetries (axially symmetric and
asymmetric). Apparently, such a type of mixing
of states is expected to be negligible in the region
of "permanently" deformed nuclei.

By comparing Eq. (6) (without the second term)
with the usu31 formula for the magnetic moment'"
and assuming uniform charge distribution, we
have

z ' = (a —b) z/a . (8)

It should be pointed out that the use of Z' in Eq.

which is almost as simple as the fluid-model ex-
pression. In obtaining Eq. (7), the usual conven-
tion (r';) = & Ro' has been employed.

We see from Eq. (7) that g„depends critically on
the number of protons Z' (or the amount of cha.rge
Z'e) which follow the rotational motion on the av-
erage. The role of J in the denominator should
also be noted. It turns out that the odd-even dif-
ference of ga (see Tabel I and Table II) is mainly
due to the odd-even difference of J.

Now, we come to the problem of determining Z'.
Let us first assume that the neutron group and the
proton group in a nucleus are incapable of exchang-
ing angular momentum" and consequently we may
talk of an effective number of protons following
the rotational motion on the average without con-
sidering the exact distribution of the neutrons.
From the experimental evidence that spherical nu-
clei do not possess a rotational spectrum (at least
for low-lying states), it seems rea, sonable to as-
sume that Z' should be related to the deformed
part of the charge distribution. Then, by assuming
uniform charge distribution, Z' may simply be tak-
en a,s the product of Z and v/V; here V is the total
volume of the deformed nucleus of the shape of a
prolate spheroid and v the volume which is outside
the sphere of radius equal to the semiminor axis
of the spheroid and centered at the center of the
spheroid. Thus, letting a and b be the semimajor
and semiminor axes of the prolate spheroid, we ob-
tain"

(2) is equivalent to saying that the protons which
do not follow the rotational motion on the average
are assumed to contribute to the current density
only a term which is curl free. This, in turn, will
contribute to the magnetic moment only through a
surface term which would vanish for spherical nu-
clei. Since the protons which on the average are
inside the sphere of radius equal to the semiminor
axis of the deformed nucleus are taken to be the
protons which do not follow the rotational motion
on the average, it is implicitly assumed that the
"internal" protons (or nucleons) are ignorant of
the deformed surface, and this means that some
interactions with the "outer" nucleons are being
ignored. This assumption is apparently consistent
with the fluid model in which the fluid flow is as-
sumed totally irrotational. On the other hand,
this assumption may also not be unrealistic from
an intuitive point of view, because we are talking
about the average effect and not about the motion
of the individual nucleon.

In order to express Eq. (8) in terms of 5, we
may solve the following two equations":

a —b=RO5,

ab'=R '
O 7

(9)

(10)

where the first equation is simply a definition and
the second equation is the condition of constant
volume.

The two cubic equations for a and b derived from
Eq. (9) and Eq. (10) can easily be solved, and the
results are

a=R, (1+-,'5+ g' 5' —,6'+ ~ ~ ~ ),
b =f1 (1-—'6+-'62- -2 63+ ~ ~ ~ )

(11)

(12)

These are the only real roots in the range of val-
ues of 5 that we are interested in.

It is apparent that Eq. (9) is exactly satisfied by
a and b given in Eq. (11) and Eq. (12), respectively,
but Eq. (10) is satisfied only to the first order of
6. This indicates that Ro should be a function of 6.
However, it cari easily be shown that Ro can be
treated as a constant to the first order of 5, in-
clusive. [A simila. r situation is noted in Nilsson's
oscillator potential, the mean angular frequency
of which is also. 6 dependent. Equation (11) and
Eq. (12) are appa. rently consistent with ¹Isson's
original parametrization of the oscillator poten-
tial. ]~

Thus, substituting Eq. (11) and Eq. (12) into Eq.
(8), we have

Z'=Z 5(1 —35+ ~5'+ ~ ~ ~ ),2 1 2

which may be accurate up to any order of 5 that
we may wish to evaluate because Eq. (8) is inde-
pendent of Ro. On the other hand, after inserting
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Eq. (13) into Eq. (7), we obtain

g =—ZM R 5(1 —rb+ ~ ~ )
3 2 2

R 5J P P (14)

in which only second-order-of-5 accuracy can be
expected if Rp is to be treated as a constant.

The remarkable feature of Eq. (1) [or Eq. (15),
see below] and Eq. (14) is that they contain all the
relevant collective parameters of the collective
model (that is, Q„J; and gs) and are interrelated
by the deformation parameter 5. Therefore, if
these two equations are valid, they apparently con-
stitute a self-consistency relation among the pa-
rameters involved.

The remaining problem is now to determine the
relation between 5 defined above and the deforma-
tion parameters used previously. These parame-
ters often cause confusion if we are not aware of
their different definitions.

It is easy to show that the intrinsic quadrupole
moment of a uniformly charged prolate spheroid
is given by

Q, =-,'Z(a' —b') =-,' ZR, '5(1+-,' 5+ ~ ~ ~ ),
which is identical to Eq. (1) if we set

(15)

(16)

This is the relation between 6 and P mentioned pre-
viously. The equality sign in Eq. (16) should be
emphasized. The relation between 5 and other de-
formation parameters can be obtained in a similar
way, and, in particular, we have 5 =e[1+3e+O(e')];
here c is defined in Appendix A of Ref. 4. It shouLd

be noted that the empirical data compiled in Ref. 5

are actually for e, although the same symbol 5

was employed.
The consistency between Eq. (1) [or Eq. (15)]

and Eq. (14) can obviously be tested in several
ways. However, in view of the fact that the experi-
mental accuracy of g„ is not yet comparable with
those of Qp and J, the most convenient way is prob-
ably to calculate gR from the experimental values
of Qp and J and co ~pare it with the expe ri mental

value. The calculated values of gR for the ground-
state rotational bands are listed in Table I for ev-
en-even nuclei and in Table II for odd-mass nuclei.

There are still considerable inconsistencies in
the experimental data of gR reported from various
laboratories, which in some cases render the com-
parison between the theoretical values and the ex-
perimental data almost meaningless. Therefore,
for the sake of clarity, the experimental values
listed in Table I for even-even nuclei are arbitrar-
ily selected in favor of present calculations. The
empirical values" "listed in Table II for odd-
mass nuclei are also not up to date, but they serve
the purpose of comparison with present calcula-

tions rather well. (For more complete compila-
tion of the experimental data of gR, see Prior,
Boehm, and Nilsson" and Grodzins. ")

It seems apparent that the calculated values of

gR for even-even nuclei agree with the experimen-
tal values reasonably well, and their general com-
patibility with the microscopic calculations of Nils-
son and Prior' may not be considered as acciden-
tal.

Except for a few cases of odd-proton nuclei, the
calculated values of gR for odd-mass nuc.lei are al-
so compatible with the microscopic calculations
of Grin' and Pavlichenkov' and are in fairly good
agreement with the empirical values (also see the
following paper). '~ It is of particular interest to
note that the remarkably low values of gR for Dy'"
and Er'" seem to be well confirmed experimental-
ly."" The odd-even difference of gR can easily
be seen by comparing Table I and Table II, and,
according to the present calculation, this odd-even
difference is mainly due to the odd-even difference
of J. The even-Z-odd-Z difference is, however,
not so pronounced as previously claimed. """

A phenomenological model investigated by Grein-
er" is also in rough accord with present results.
This model leads to a nearly constant value gR
= 0.33 for even-even nuclei in the region of rare
earths.

In Ref. 18, Prior and his coworkers have recal-
culated gR following procedures similar to those
employed by Nilsson and Prior' and Grin' and
Pavlichenkov. ' These new microscopic results
are on the average higher than the old microscopic
values as listed in Table I and Table II and are
therefore less compatible with present calcula-
tions. It is to be noted, however, that the micro-
scopic results for even-even nuclei based on the
pairing-plus-quadrupole model" are consistently
lower than the present calculations.

The reasonable success of the present approach
is, of course, tempered by the large discrepancies
which appear in several cases of odd-proton nu-
clei. The explanation of these large discrepancies
is probably beyond the scope of the present macro-
scopic approach.

Nevertheless, there exists no exact theory at
this time which can make accurate predictions in
all cases, and the experimental uncertainty of gR
is still considerable. More significant, perhaps,
is the fact that a single macroscopic expression
such as Eq. (14) can accomplish at least as much
as the microscopic calculations for both even-even
and odd-mass nuclei. Therefore, in view of these
facts, the basic idea of the present approach may
still deserve careful inspection despite the afore-
mentioned shortcoming. The discussion of the mo-
ments of inertia of even-even nuclei presented in
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the following section (Sec. III) may give further
illustration of this point.

The reliability of Eq. (14) may be further tested
by analyzing the magnetic dipole transition prob-
abilities of odd-mass nuclei. The results of this
analysis will be presented in the following paper. '
This analysis shows that the accuracy of the pre-
dictions of Eq. (14) appears to be much better than

the accuracy of the microscopic calculations in the
region of rare earths except for the aforemen-

tioned few cases of odd-proton nuclei.

III. GENERAL DISCUSSION

The extensive microscopic calculation of the mo-
ment of inertia has been based on the cranking-
model formula applied in the quasiparticle formal-
ism, including pair correlation of the nucleonic
motion. """The effect of pairing interaction is
essentially to reduce the moment of inertia from
the rigid-body value [Eq. (18)]. On the other hand,

TABLE I. Rotational gyromagnetic ratios of deformed even-even nuclei. The first column lists the nuclei for which
rotational gyromagnetic ratios in the ground-state rotational bands have been calculated according to Eq. (14). Column
two gives the deformation parameter 6 [see the discussion immediately following Eq. (16)J and column three the energy
of the lowest (2+) rotational excitation; these values are taken from Ref. 2 and Ref. 7. Theoretical values of g& accord-
ing to Eq. (14) are listed in column four and the theoretical values of Nilsson and Prior (Bef. 3) are listed in column five.
The last column gives the references for the experimental data of gz which are listed in column six. R 0

= 1.2A. F.

Nucleus
35 2/J
(keV)

g~ (theor. )

Eq. (14) (Ref. 3) g~ (exp. ) Bef.

60
Nd'"
Sm'"

62Smi54

,4Gd"4
Gd156

Gd158

Gd160
160

162

164

Er164
6s r

Er166
Er168
Er170

?0
Yb'"
Yb174

Yb176

Hf176
72

Hf178

Hf180

W182

W184

W186

76
Os186

os
ao

92
U23s

0.24
0.27
0.31
0.28
0.39
0.44
0.45
0.33
0.84
0.39
0.31
0.31
0.31
0.31
0.28
0.29
0.29
0.29
0,28
0.29
0.26
0.25
0.23
0.23
0.19
0.17
0.24
0.27

130
122
83

123
89
79
76
86
82
73
90
80
80
79
84
78
76
82
89
91
93

100
112
124
137
155
52
44

0.30
0.33
0.25
0.36
0.33
0.32
0.31
0.30
0.30
0.28
0.31
0.28
0.29
0.28
0.28
0.27
0.27
0.29
0.31
0.34
0.32
0.34
0.37
0.41
0.39
0.36
0.24
0.24

0.841
0.295
0.367
0.338
0.319
0.307
0.318
0.311
0.304
0.306
0.808
0.309
0.296
0.318
0.308
0.305
0.324
0.245
0.245
0.280
0.231
0.284
0.352

0.26
0.25

0,810+0.021
0.35 + 0.03
0.288 + 0.029
0.367 + 0.03
0.82 + 0.03
0.315+0.025
0.808 + 0.026

~ ~ ~

0.305+ 0.015
~ ~ ~

0.279 + 0.014
0.247 + 0.013
0.299+ 0.015

0.356+ 0.035
0.318+0.035
0.336 + 0.044
0.38 + 0.05
0.34 +0.03
0.32 + 0.015
0.310+ 0.027

c
b, d
b

g
h

i
3

k
k
k
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the limitation on the number of protons which can
follow the rotational motion on the average has
also the effect of reducing the contribution of the
protons to the rotational gyromagnetic ratio. It is
not clear, however, whether there is any direct
connection between this limitation and the pairing
interaction. This puzzling situation may be further
demonstrated by considering the moments of iner-
tia of even-even nuclei in which the spins of the
nucleons are essentially paired off, and the mo-
ment of inertia may simply be described in terms
of the mass flow associated with the amount of
matter following the rotational motion on the aver-
age.

To be more accurate, we may have to introduce
another deformation parameter 5, which character-
izes the deviation of the mass distribution from

J„g=
5 AM'R, '(1+ 3 5+ ~ ~ ~ ),

we have

(18)

J
Jrig

2
3 & —36,= —5

+ 3

spherical symmetry. " By setting the angular mo-
mentum associated with the rotational motion
equal to (M'A '/A) Q,. r,. x (0 x r, ) and following a
derivation similar to that presented in See. II, we
obtain

Z= -, AM'R ' 50(1 —
~ 5O + ~ ~ ~ ),

where M' is the average nucleonic mass and R' the
mean radius of the mass distribution.

In terms of the moment of inertia of a rigid body
conventionally defined by

TABLE II. Rotational gyromagnetic ratios of deformed odd-mass nuclei. The first column lists the nuclei for which
rotational gyromagnetic ratios in the ground-state rotational bands have been calculated according to Eq. (14). Column
two and column three give the deformation parameter 6 and the moment of inertia J, respectively; these values are
taken from Ref. 5 [see the discussion immediately following Eq. (16)]. Theoretical values of gz according to Eq. (14)
are listed in column four, and the theoretical values of Grin' and Pavlichenkov are listed in column five. Column six
and column seven list two sets of empirical values of gz taken from Ref. 16 and Bef. 17, respectively. R0=1.2A F.

Nucleus
35 2/J
(keV)

g~ (theor. )
Eq. (14) (Bef. 9) (Ref. 16)

g~ (exp. )
(Bef. 17)

13A125
Eui53

64
Gd155

Gd'"
Tb159

Dyi 1

Dy163

67
Ho165

68Er16?

69Tm
Tm171

70
„bi?1
Vb'73

71I u175

Lu177

72
Hf177

Hf179

Ta"'
Wi83

74

eRe18

Re
Bei87

90
Th231

91
pa233

92
U233

U235

93Np
Np239

pu239

pu241

Am'4'
95 m

Am243

96
Cm245

0.39
0.33
0.34
0.34
0.34
0.33
0.33
0.33
0.32
0.32
0.31
0.31
0.81
0.81
0.28
0.29
0.28
0.25
0.22
0.22
0.20
0.20
0.25
0.26
0.26
0.26
0.27
0.28
0.28
0.29
0.29
0.29
0.28

1380
71
72
66
70
38
63
63
52
74
72
78
73
76
79
75
66
91
95.1
98

107
115
36
36
34
31
28
27
37
38
36
36
37

0.33
0.24
0.26
0.24
0.26
0.14
0.23
0.24
0.19
0.28
0.27
0.27
0.28
0.29
0.29
0.28
0.25
0.31
0.30
0.32
0.32
0.35
0.18
0.19
0.18
0.16
0.15
0.15
0.22
0.24
0.23
0.28
0.23

0.44
0.27
0.28
0.37
0.09

0.53
0.11

0.28

0.25
0.10
0.22

0.29
0.37

0.452 + 0.012
0.34 +0.07
0.22 + 0.06
0.24 +0.09
0.25 + 0.10
0.243 + 0.021
0.80 + 0.07
0.124+ 0.047
0.88 + 0.12

0.20 + 0.09

0.215+ 0.04
0.203+ 0.034
0.827+ 0.009

~ ~ ~

0.413+ 0.042
0.413+ 0.043

0.475 +0.008
0.31 + 0.04
0.27 + 0.03
0.35 +0.14
0.26 +0.11
0.27 + 0.25
0.44 + 0.15
0.158+ 0.020

0.28 + 0.04

0.17 + 0.01
0.258 + 0.016
0.319+ 0.008

0.420 + 0.043
0.377 + 0.044
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in which the difference between R' and R, has been
ignored (it seems more appropriate to use R' in-
stead of R, in the definition of J„g). Equation (18)
can easily be derived from Eq. (18) of Ref. 6 by
using Eq. (16), or directly from the formula J„g
=AM'(g'+5')/5 and Eqs. (11) and (12).

It has been suggested that the distributions of
protons and neutrons do not exactly coincide,
and their corresponding deformation parameters
5~ (essentially 6 in this paper) and 6„are related
by the following expression":

J/J„= 2 6(1 —g 6), (21)

which is indeed in fair agreement with the experi-
mental data, in the region of rare earths (for easy
check, see Fig. 10-22, p. 280, Ref. 12).

It seems clear from the above discussion that
according to the present point of view the reduc-
tion of the moment of inertia (of an even-even nu-

cleus) from the rigid-body value is mainly due to
the limitation on the number of nucleons which can
follow the rotational motion on the average. We
may argue that the pairing interaction opposes the
deformation caused by the lower-multipole inter-
actions and therefore acts in the same direction

(20)

where G& and G„are the pairing parameters for
protons and neutrons, respectively.

Empirical analysis of the odd-even mass differ-
ence indicates that G~ is in general larger than
G„.' Therefore, 6„(and consequently 6o) should
be larger than 5. Although the exact relation be-
tween 50 and 5 is not yet known, we may phenom-
enologically set 6,= 6(1+@6) and see whether one
value of k can be found so that Eq. (19) fits the ex-
perimental data over a wide range. It is found
that, for 0 = 3, we have

as limiting the number of nucleons which can fol-
low the rotational motion on the average. This ar-
gument may not be consistent, however, with cur-
rent microscopic calculations in which the defor-
mation parameter is specified before the pairing
interaction is taken into account.

In view of the above puzzling situation, a few re-
marks about the quasiparticle formalism are in
order. The quasiparticle formalism in the nuclear
case is mathematically patterned after the theories
of superconductivity and superfluids. In spite of
the usefulness of this mathematical scheme and
its literal interpretation advanced by many inves-
tigators, the question of whether nuclear matter
is indeed in a superconducting or superfluid state
in the physical sense may not be considered as
settled. However, in view of the mathematical
similarity, the quasiparticle formalism in the nu-
clear case certainly inherits some of the macro-
scopic implications; notably, the decrease of the
moment of inertia of a superfluid confined in a ro-
tating container. " Statistically speaking, the de-
crease of moment of inertia of a superfluid is due
to the fact that the superfluid component cannot
follow the rotation of the container. Thus, again
in the sense of similarity, the decrease of moment
of inertia in the nuclear case may be equivalently
described as the limitation on the number of nu-
cleons which can follow the rotational motion on
the average. From this macroscopic point of view,
the present approach may not be entirely incom-
patible with the quasiparticle formalism, although
the apparent conflict between their basic assump-
tions still remains to be resolved.

The present approach is essentially phenomeno-
logical in character. Nevertheless, the regulari-
ties revealed in this paper should probably not be
overlooked even from the microscopic point of
view.

*Research supported in part by the National Research
Council of Canada.
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Based on the ground-state magnetic moments, the magnetic dipole transition probabilities
in the ground-state rotational bands of deformed odd-mass nuclei are analyzed assuming that
the rotational gyromagnetic ratios are given by a theoretical expression derived previously.

Pp =~ ) gz+~ )gz

M, =I,(g»-g„),

4mB(Ml I -I )

, 3(I, iI, oi I, iI, 0)' (3)

According to the collective model of Bohr and

Mottelson, "the magnetic properties of the ground-
state rotational band (with ground-state angular
momentum Io'2) of a deformed odd-mass nucleus
are characterized by the intrinsic gyromagnetic
ratio gE and the rotational gyromagnetic ratio g&.
These two parameters are derived primarily from
the ground-state magnetic moment p. p and the mag-
netic dipole transition probability B(M1; I, -I~)
between any two states in the rotational band and

with angular momenta I; and I&, respectively,
through the following model-dependent relations'

serve two practical purposes. Firstly, they may
be used in predicting the magnetic moments of the
excited states and the probabilities for other mag-
netic dipole transitions in the ground-state rota-
tional band. These predictions are, so far, in
fairly good agreement with measurements and con-
sequently lend strong support to the collective mod-
el." Secondly, they may be taken as empirical
values for testing any theoretical calculations of

g» and g". (Here we reserve the term empirical
value for any quantity not directly measured but
semiempirically calculated. ) These theoretical
calculations are more or less independent of Eqs.
(1)-(4) and therefore may add insight in understand-
ing the nuclear structure.

Theoretical calculations of g& for odd-mass nu-
clei have been considered by several investiga-
tors. ' ' However, in this paper, we are particular-
ly interested in the following macroscopic expres-
sion:

where (I;1I,O~ I;iI&0) is a vector-addition coef-
ficient. The signof M, in Eq. (3) is determinedby

sgne = sgn
Qp

(4)

where Qp is the intrinsic quadrupole moment and e
the ratio between the electric quadrupole and mag-
netic dipole matrix elements for the transition.

The values of g» and g„derived from Eqs. (1)-(4)
based on the experimental values of pp and Mp

g„=—ZMPRO 5(l —ps+ ~ ~ ~ ),

where Z is the atomic number, M~ the mass of
the proton, Rp the mean radius of the charge dis-
tribution, J the moment of inertia, and 5 the de-
formation parameter. The remarkable feature of
this expression is thatg&, J, and Qp are interre-
lated in a self-consistent way. ' Furthermore, this
expression is supposed to be valid for both even-
even and odd-mass nuclei. '


