$$\begin{split} H_{l}(\boldsymbol{r},\boldsymbol{r}') &= O_{l} T_{l} \frac{r'^{l+1}}{r^{l-2}} + R_{l} S_{l} \frac{r'^{l+3}}{r^{l}}, \quad r' < r , \\ &= O_{l} T_{l} \frac{r^{l+1}}{r'^{l-2}} + R_{l} S_{l} \frac{r^{l+3}}{r'^{l}}, \quad r' > r ; \end{split}$$

 O_1 , R_1 , S_1 , and T_1 being defined by

$$D_l = 1/(2l+1)!!, \quad R_l = \frac{1}{2}O_{l+1},$$

$$S_{l} = (2l-1)!!, T_{l} = \frac{1}{2}S_{l-1}.$$

Using the above expansions, one obtains from Eq. (A1) the expression

$$k^{2l+1}\cot\delta_{l} \approx -\frac{1}{a_{l}} + \frac{1}{2}r_{l}k^{2}$$
, (A2)

which is the very familiar form of the effectiverange formula for local potentials. In Eq. (A2), a_1 and r_1 are defined by

$$a_{l} = \frac{\lambda D_{l}^{2}}{1 + \lambda e_{l}}, \quad r_{l} = \frac{2}{\lambda D_{l}^{2}} \left[\lambda h_{l} - \frac{2(1 + \lambda e_{l})E_{l}}{D_{l}} \right].$$

For l=0, one obtains

$$a_{0} = \frac{\left(\int_{0}^{\infty} rq_{0}(r)dr\right)^{2}}{(1/\lambda) + \int_{0}^{\infty}\int_{0}^{\infty} F_{0}(r,r')q_{0}(r)q_{0}(r')drdr'},$$

where now

$$F_0(\mathbf{r},\mathbf{r}') = \mathbf{r}', \quad \mathbf{r}' < \mathbf{r};$$
$$= \mathbf{r}, \quad \mathbf{r}' > \mathbf{r}.$$

Hence for repulsive potentials ($\lambda > 0$), a_0 is always positive, and for attractive potentials ($\lambda < 0$), a_0 is positive or negative according to whether

$$\int_{0}^{\infty} \int_{0}^{\infty} F_{0}(\mathbf{r},\mathbf{r}')q_{0}(\mathbf{r})q_{0}(\mathbf{r}')d\mathbf{r}d\mathbf{r}' > -1/\lambda$$

or $< -1/\lambda$.

¹H. Fiedeldey, Nucl. Phys. <u>A96</u>, 463 (1967).

²H. Fiedeldey, Nucl. Phys. <u>A115</u>, 97 (1968).

³R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).

⁴D. Husain and S. Ali, Am. J. Phys. <u>38</u>, 597 (1970); see also R. L. Cassola and R. D. Koshel, Proc. Phys. Soc. (London) 1, 224 (1968). ${}^5\mathrm{R}.$ A. Buckingham and H. S. Massey, Proc. Roy. Soc. (London) A179, 123 (1941).

⁶C. W. Gardiner, Low Energy Proton-Proton Scattering with a Separable Potential and Applications to Final State Interactions Involving Two Protons, Syracuse University, 1969 (to be published).

PHYSICAL REVIEW C

VOLUME 2, NUMBER 5

NOVEMBER 1970

Hard-Core Potential Representation by δ' in Variation and Hartree Calculations

R. E. Schenter*

Battelle-Northwest, Richland, Washington 99352

and

W. F. Ford National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio 44135 (Received 16 April 1970)

The δ' interaction has been used to represent the hard-core potential in variation and Hartree calculations. These calculations were compared with exact calculations for a two-body bound-state problem and a soluble three-body problem. The trial wave function in the variational problem with the δ' interaction is shown to approach rapidly its hard-core limit with increas-ing number of trial parameters. The δ' interaction is superior to current soft-core representations of the nucleon-nucleon potential in the Hartree calculations.

INTRODUCTION

It has been shown previously¹ that an interaction proportional to $\delta'(r - r_c)$ (the derivative of a Dirac δ function) yields a wave function vanishing for $r \leq r_c$. It is attractive to think of using this interaction in many-body calculations.² To test the feasibility of this, we have performed variation calculations in a two-body bound-state problem and Hartree calculations for an exactly soluble three-body problem. We have found that the δ' interaction successfully produces "hard-core effects" in these problems. The trial wave function in the variational problem rapidly approaches its hard-core limit with increasing number of trial parameters. The accuracy in the Hartree calculations using δ' is very competitive with current soft-core forms used in the nucleon-nucleon potential.

TWO-BODY PROBLEM

Figure 1 shows the exact and approximate groundstate wave functions $u(r) = r\psi(r)$ for two particles of mass m_0 interacting via a harmonic-oscillator potential and a hard core of radius r_c . The Hamiltonian for relative motion is given as

$$\hat{H} = \frac{\hbar^2}{2m_0} (-\nabla_r^2 + \alpha^4 r^2) + V_{\rm H.C.}(r), \qquad (1)$$

where $V_{\text{H.C.}}$ is the interaction representing the hard core. The exact ground-state wave function was found by numerically integrating the Schrödinger equation $\hat{H}\psi = E\psi$ toward the origin, seeking the lowest value of *E* for which the solution vanishes at $r = r_c$. The variation calculations were performed using trial wave functions of the form

$$\psi_{T_N}(r) = u_{T_N}(r)/r = \sum_{n,m}^{N} a_{nm} r^n e^{-\beta_m r}, \qquad (2)$$

where the parameters a_{nm} and β_m were varied so as to minimize the trial energy

$$E_{T_N} = \int \psi_{T_N}^*(\mathbf{r}) \hat{H} \psi_{T_N}(\mathbf{r}) d\mathbf{\vec{r}} / \int \psi_{T_N}^*(\mathbf{r}) \psi_{T_N}(\mathbf{r}) d\mathbf{\vec{r}} .$$
(3)

In evaluating E_{T_N} , the δ' form of $V_{\text{H.C.}}$ was used, i.e.,

$$V_{\rm H.C.} = -2(\hbar^2/m_0)\delta'(r - r_c).$$
 (4)

The quantities m_0 , α , and r_c were picked to correspond to values used in the three-body problem which will next be described.

THREE-BODY PROBLEM

For the three-body problem, we have considered two identical interacting particles in the harmonicoscillator potential of a third particle. The Hamiltonian for this system is given as

$$\hat{H} = -\frac{\hbar^2}{2m_0} \nabla_{\vec{r}_1}^2 - \frac{\hbar^2}{2m_0} \nabla_{\vec{r}_2}^2 - \frac{\hbar^2}{2M} \nabla_{\vec{r}_3}^2 + K((\vec{r}_1' - \vec{r}_3')^2 + (\vec{r}_2' - \vec{r}_3')^2) + V(|\vec{r}_1' - \vec{r}_2'|).$$
(5)

Written in terms of group-resonating coordinates,³ the problem separates into that of the free threeparticle center-of-mass motion and two particles interacting in a harmonic-oscillator field. The latter case is a well-known exactly soluble problem,⁴

FIG. 1. Exact and trial ground-state wave functions for two particles interacting via a harmonic-oscillator plus hardcore potential. The hard core is simulated by $-2(\hbar^2/m_0)\delta'(r-r_c)$.

2

where the Hamiltonian separates for the center of mass and relative motion of the two interacting particles. The exact solution's wave function has the form

$$\begin{aligned} \psi(\vec{\mathbf{r}}_1', \vec{\mathbf{r}}_2', \vec{\mathbf{r}}_3') &= \Phi(\mathbf{R}_{c.m.}, \mathbf{R}, \vec{\mathbf{r}}) \\ &= \sum a_{1mn} \eta_1(\vec{\mathbf{R}}_{c.m.}) \chi_m(\vec{\mathbf{R}}) \phi_n(\vec{\mathbf{r}}) , \qquad (6) \end{aligned}$$

where $\vec{R}_{c.m.}$, \vec{R} , and \vec{r} represent the three-particle center of mass, two-particle center of mass, and two-particle relative motion, respectively. $\eta_1(\vec{R}_{c,m})$ is a free-particle solution. The wave functions $\chi_m(\vec{\mathbf{R}})$ and $\phi_n(\vec{\mathbf{r}})$ satisfy the following equations

$$\frac{\hbar^2}{2\mu} \left(-\nabla_{\vec{R}}^2 + \alpha_R^4 R^2 \right) \chi_m(\vec{R}) = E_{R_m} \chi_m(\vec{R}) , \qquad (7)$$

$$\left[\frac{\hbar^2}{m_0}\left(-\nabla_{\vec{r}}^2 + \alpha_r^4 r^2\right) + V(r)\right]\phi_n(\vec{r}) = E_{r_n}\phi_n(\vec{r}), \qquad (8)$$

where $\mu = 2m_0 M / (M + 2m_0)$.

For the Hartree calculations

$$\chi_m(\vec{\mathbf{R}})\phi_m(\vec{\mathbf{r}}) = \psi_m(\vec{\mathbf{r}}_1, \vec{\mathbf{r}}_2) \simeq \psi_{H_m}(\vec{\mathbf{r}}_1, \vec{\mathbf{r}}_2) = f_m(\vec{\mathbf{r}}_1)f_m(\vec{\mathbf{r}}_2) ,$$
(9)

where for the analysis reported in this paper we have, for convenience, considered χ_m and ϕ_n to be in the same state of excitation (m=n). The particle coordinates \vec{r}_1 and \vec{r}_2 are defined by $\vec{r}_2 - \vec{r}_1 \equiv \vec{r}$ and $\frac{1}{2}(\vec{\mathbf{r}}_2 + \vec{\mathbf{r}}_1) \equiv [M/(M + 2m_0)]^{1/2} \vec{\mathbf{R}}$. The Hartree single-particle wave function $f_m(\vec{\mathbf{r}}_1)$ satisfies the equation

$$\left[\frac{\hbar^2}{2m_0}\left(-\nabla_{\vec{1}}^2 + \alpha_H^4 \gamma_1^2\right) + V_{H_m}(\vec{r}_1) - \epsilon_{H_m}\right] f_m(\vec{r}_1) = 0,$$
(10)

where

$$V_{H_{m}}(\vec{r}_{1}) = \int f_{m}^{*}(\vec{r}_{2}) V(r) f_{m}(\vec{r}_{2}) d\vec{r}_{2} .$$
(11)

With this, the Hartree energy E_{H_m} of the three-particle system is given as

$$E_{H_m} = 2\epsilon_{H_m} - \int f_m^{*}(\vec{\mathbf{r}}_1) V_{H_m}(\vec{\mathbf{r}}_1) f_m(\vec{\mathbf{r}}_1) d\vec{\mathbf{r}}_1.$$
(12)

The quantity E_{H_m} is the Hartree approximation to the exact internal energy of the three-particle system $E_m = E_{r_m} + E_{R_m}$ (E₀, for example, is the groundstate energy). When the two-particle interaction V(r) is the zero, E_{H_m} and E_m are identical. It should be noted that Eq. (11), when V(r) is the

δ' form of $V_{\rm H,C}$ in Eq. (4), has the form⁵

$$V_{H_{m}}(r_{1})_{\mathrm{H.C.}} = 2 \frac{\hbar^{2}}{m_{0}} \int \left[\frac{2}{r_{c}} |f_{m}(r_{2})|^{2} + \frac{d}{dr_{2}} |f_{m}(r_{2})|^{2} \frac{r_{c}^{2} + r_{2}^{2} - r_{1}^{2}}{2r_{c}r_{2}} \right] \times \delta(|\vec{r}_{1} - \vec{r}_{2}| - r_{c})d\vec{r}_{2}, \qquad (13)$$

which reduces to

$$V_{H_{m}}(r_{1})_{\mathrm{H.C.}} = \frac{1}{r_{1}} \frac{\hbar^{2}}{m_{0}} \Biggl\{ \int_{r_{c}}^{r_{c}^{+}} \frac{|U_{m}(r_{2})|^{2}}{r_{2}} dr_{2} + r_{c} \\ \times \Biggl[\frac{|U_{m}(r_{c}^{+})|^{2}}{r_{c}^{+}} - \frac{(r_{c} - r_{1})|U_{m}(r_{c}^{-})|^{2}}{(r_{c}^{-})^{2}} \Biggr] \Biggr\} ,$$
(14)
ere $r_{c}^{+} = r_{c} + r_{1}, r_{c}^{-} = |r_{c} - r_{1}|, \text{ and } U_{m}(r_{c})$

wh $= 2\sqrt{\pi} \boldsymbol{r}_2 \boldsymbol{f}_m(\boldsymbol{r}_2).$

Exact and approximate results for the threebody problem are presented in Figs. 2 and 3, where energy spectra are shown for several forms of the two-particle interaction V(r). The values of E_m and E_{H_m} were obtained by numerically integrating Eqs. (8) and (10),⁵ respectively. The value of E_{H_0} was also estimated $(E_{H_0}^{(1)})$ by minimizing the expectation value of the Hamiltonian in Eq. (5) using a single-parameter Gaussian form for the Hartree wave functions $f_m(\vec{r}_1)$. The "zero" column represents $V(\mathbf{r}) = 0$, where $E_m^0 \equiv E_m = E_{H_m}$.

Figure 2 shows the exact and approximate spectra obtained when V(r) is simply a repulsive core. Results for the hard-core interaction of Eq. (4) are compared with those for two representative soft-core forms, a repulsive square well and a

FIG. 2. Exact and Hartree spectra with various repulsive (soft-core) potentials for the two-particle interaction V(r).

FIG. 3. Exact and Hartree spectra with various nucleonnucleon potential models for the two-particle interaction $V(\mathbf{r})$. The hard-core part of Reid-HC is simulated by $-2(\hbar^2/m_0) \delta'(\mathbf{r}-\mathbf{r}_c)$.

*Present address: WADCO, Richland, Washington 99352.

¹R. E. Schenter, R. L. Cassola, and H. S. Zwibel, Am. J. Phys. <u>37</u>, 1242 (1969).

²Several papers in the past have discussed the use of the Dirac δ function and its derivatives sometimes combined with derivative operators to be used in many-body calculations. See for example, K. Huang and C. N. Yang, Phys. Rev. <u>105</u>, 767 (1957); H. Fesbach, Ann. Phys. (N.Y.) <u>5</u>, 357 (1958); R. Lipperheide, *ibid*. <u>17</u>, 114 (1962); E. L. Loman and M. McMillan, *ibid*. <u>23</u>, 439 (1963); M. Luban, Phys. Rev. <u>138</u>, A1028, A1033 (1965). ³J. A. Wheeler, Phys. Rev. <u>52</u>, 1083 (1937).

⁴I. Talmi, Helv. Phys. Acta <u>25</u>, 185 (1952); M. Bauer and M. Moshinsky, Nucl. Phys. <u>4</u>, 615 (1957); M. Moshinsky, Rev. Mex. Fis. <u>6</u>, 185 (1957).

⁵For the work reported in this letter only s-wave solu-

repulsive Yukawa potential. (The parameters of the square well and Yukawa potentials were picked to be those which produce the soft-core parts of the nucleon-nucleon potentials discussed below.)

Figure 3 shows the exact and approximate spectra obtained when V(r) is one of three current phenomenological models of the nucleon-nucleon potential. The first is the Reid hard-core potential⁶ (REID-HC), where we have used $V_{\rm H,C.}$ of Eq. (4) to represent the hard core and set the attractive part equal to a constant⁷ for $r \leq r_c$. The other two are the Bressel-Kerman potential⁸ (square-well repulsive core) and the Reid soft-core potential⁶ (REID-SC, Yukawa repulsive core). In these calculations, $\alpha_H (= 0.42 f_m^{-1})$ and $M (= 16m_0)$ were adjusted to correspond to the situation of two nucleons outside a light nucleus core. Other choices of α_H and M gave qualitatively the same findings.

DISCUSSION

The results presented here demonstrate that the δ' interaction, which has been shown to be equivalent to the usual hard core in *exact* calculations,¹ it also successful in *variational* calculations where it is desirable or necessary to extend the trial function into the hard-core region. Applications to Hartree-Fock theory of light nuclei⁹ and low-energy nucleon-nucleus scattering¹⁰ are in progress.

tions were considered.

⁶R. V. Reid, Ann. Phys. (N.Y.) <u>50</u>, 411 (1968).

⁷This is necessary because Hamiltonians using $V_{\text{H.C.}}$ for a hard core possesses some solutions which are nonzero within the hard core. By setting the attractive potential equal to a constant $V_c(m_0/\hbar^2 |V_c| \leq \pi/2r_c)$ within the hard core, we ensure that these solutions belong to large eigenvalues which do not affect the lower-energy hard-core solutions. See Ref. 1 and Luban (Ref. 2) for discussion of this point.

⁸C. N. Bressel, A. K. Kerman, and B. Rouben, Nucl. Phys. A124, 624 (1969).

⁹R. C. Braley, W. F. Ford, and R. E. Schenter, to be published.

¹⁰R. E. Schenter and R. L. Cassola, Bull. Am. Phys. Soc. <u>14</u>, 529 (1969); R. E. Schenter and R. L. Cassola, to be published.