
1590 D. HUSAIN AND 8. ALI

and

rr 3+1 ri l+3
P, (r, r') =O, T. . . +R,S. . . r' &r,r r

AD, ' 2 2(1+Ae, )E(
1+X ' ' XD'+es s l
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O„R„S„and T, being defined by
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Using the above expansions, one obtains from
Eq. (Al) the expression
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where now

E,(r, r') =r', r' &r,'

r'&r.
Hence for repulsive potentials (A &0), o, is always
positive, and for attractive potentials (A &0), ao is
positive or negative according to whether

which is the very familiar form of the effective-
range formula for local potentials. In Eq. (A2),
a, and r, are defined by

l I", r, r' q, r q, r' dr&''&-1 A.

0 0
or &-I/X.
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The 6' interaction has been used to represent the hard-core potential in variation and Hartree
calculations. These calculations were compared with exact calculations for a two-body bound-
state problem and a soluble three-body problem. The trial wave function in the variational
problem with the 4 interaction is shown to approach rapidly its hard-core limit with increas-
ing number of trial parameters. The 6' interaction is superior to current soft-core represen-
tations of the nucleon-nucleon potential in the Hartree calculations.

INTRODUCTION

It has been shown previously' that an interaction
proportional to 5'(r —r, ) (the derivative of a Dirac
5 function) yields a wave function vanishing for
r ~r, . It is attractive to think of using this inter-

action in many-body calcu1ations. ' To test the fea-
sibility of this, we have performed variation calcu-
lations in a two-body bound-state problem and Har-
tree calculations for an exactly soluble three-body
problem. We have found that the 5' interaction suc-
cessfully produces "hard-core effects" in these
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problems. The trial wave function in the variation-
al problem rapidly approaches its hard-core limit
with increasing number of trial parameters. The
aeeuracy in the Hartree calculations using 5' is
very competitive with current soft-core forms
used in the nucleon-nucleon potential.

TWO-BODY PROBLEM

Figure 1 shows the exact and approximate ground-
state wave functions u(x) =rg(r) for two particles of
mass m, interacting via a harmonic-oscillator po-
tential and a hard core of radius x,. The Harnil-
tonian for relative motion is given as

a=2 ( V';-+n'r')+V„, (~), (l)

where VH c is the interaction representing the
hard core. The exact ground-state wave function
was found by numerically integrating the Schrodin-
ger equation Pg=Eg toward the origin, seeking the
lowest value of E for which the solution vanishes
at r =r, . The variation calculations were performed
using trial wave functions of the form

N

gr (r)=Mr (r)/r = Qa„r"e ~~", (2)I
where the parameters a„and P were varied so as
to minimize the trial energy

E~ =
~ *rIJ ~ rdr 4,„*(~)4,„(~)dr .

THREE-BODY PROBLEM

For the three-body problem, we have considered
two identical interacting particles in the harmonic-
oscillator potential of a third particle. The Hamil-
tonian for this system is given as

5 2 8 2 5 2P= — V'
~
— V ~

— V'-.
2mo '& 2mo '2 2M

+K((r,' —r,')'+ (r," —r,')')+ V(~r,' —rJ) .

%ritten in terms of group-resonating coordinates,
the problem separates into that of the free three-
partiele center-of-mass motion and two particles
interacting in a harmonic-oscillator field. The lat-
ter ease is a well-known exactly soluble problem, '

In evaluating E~, the 6' form of VH c was used,
i.e.

~

Vs c = -2(S'/m, )6'(r r,—) .

The quantities m„e, and r, were picked to corre-
spond to values used in the three-body problem
which will next be described.

l.o—
E xac f Solution —u (r) —E = 24.9 MeV

I Parameter Trial Solution —u (r) —E = 4l.0 MSV

5 Parameter Trial Solution —u ( ) —E = 254 MeV
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FIG. l. Exact and trial ground-state wave functions for two particles interacting via a harmonic-osciQator plus hard-
core potential. The hard core is simulated by -2(h2 jrno)6'(w-r~).
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where the Hamiltonian separates for the center of
mass and relative motion of the two interacting par-
ticles. The exact solution's wave function has the
form

which reduces to

1 5' '"c IU (r,)l'V (r)„c=—— ™2 dr +r
Hm 1 H. . + m ~ + 2 c

1 0 ~c 2

2—(-&';+ ~„'~')+ V(~) A„(F) =E„A„(r),
0 "n

where p = 2moM/(M+ 2mo).
For the Hartree calculations

(8)

(R)g (r)=t/r (r„r,) =$» (r„r,)=f (r,)f (r,),
(9)

where for the analysis reported in this paper we
have, for convenience, considered y and Q„ to be
in the same state of excitation (m=n). The parti-
cle coordinates r, and r, are defined by r, —r, = r
and —,'(r, +r, ) IM/(M=-+ 2m, )]"'R. The Hartree sin-
gle-particle wave function f (r, ) satisfies the equa-
tion

g (r,', r,', r,') = C (R, , R, r)

=Z,.„n,(R...)x.(R)e„(~), (8)

where R, , R, and r represent the three-particle
center of mass, two-particle center of mass, and
two-particle relative motion, respectively.
r},(R, ) is a free-particle solution. The wave
functions X (R) and Q„(r) satisfy the following equa-
tions

„ IU.(~:)I' (~.—,)IU (~.)l'
(~, )'

(14)

Ep

where 4", =r, +r„r, = ir, -r, l, and U (r, )
=2&mr»f (r,).

Exact and approximate results for the three-
body problem are presented in Figs. 2 and 3,
where energy spectra are shown for several forms
of the two-particle interaction V(r). The values of
E and E& were obtained by numerically integrat-
ing Eqs. (8) and (10),' respectively. The value of
E„was also estimated (E„'")by minimizing the

0 0
expectation value of the Hamiltonian in Eq. (5) us-
ing a single-parameter Gaussian form for the Har-
tree wave functions f (r,). The "zero" column
represents V(r) =0, where Eo = E=E»—.

Figure 2 shows the exact and approximate spec-
tra obtained when V(r) is simply a repulsive core.
Results for the hard core in-teraction of Eq. (4)
are compared with those for two representative
soft-core forms, a repulsive square well and a

I'
(—V; + a»4r, ') + V„(r,) —e» f (r,) = 0,

(10)
where

V» (r,) =
Jtf *(r,) V(4 )f (r~)dr 3 .

With this, the Hartree energy E„ofthe three-par-
ticle system is given as

E„=2m„—f "(r,)V» (r,)f (r,)dr, . (12)
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The quantity E~ is the Hartree approximation to
m

the exact internal energy of the three-particle sys-
tem E =E„+E» (Eo, for example, is the ground-
state energy). When the two-particle interaction
V(r) is the zero, E» and E are identical.

It should be noted that Eq. (11), when V(r) is the
ti' form of VH c in Eq. (4), has the form'
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xf(lr, -r, l-r, )dr. ,

FIG. 2. Exact and Hartree spectra with various re-
pu1sive (soft-core) potentials for the two-particle inter-
action V(~).



HARD-CORE POTENTIAL RE PRESENTATION BY. . . 1593

82—

E2

79—

52—
Ei

E(MeV)

Ep

20

Ep

E
H

I

E(

Hp
E

EI

E
p

——E
2

EH
I

EI

E
Hp

repulsive Yukawa potential. (The parameters of
the square well and Yukawa potentials were picked
to be those which produce the soft-core parts of
the nucleon-nucleon potentials discussed below. )

Figure 3 shows the exact and approximate spec-
tra obtained when V(r) is one of three current phe-
nomenological models of the nucleon-nucleon po-
tential. The first is the Reid hard-core potential'
(REID-HC), where we have used V„c of Eq. (4)
to represent the hard core and set the attractive
part equal to a constant' for r ~r, . The other two

are the Bressel-Kerman potential' (square-well
repulsive core) and the Reid soft-core potential'
(REID-SC, Yukawa repulsive core). In these cal-
culations, as(=0.42f ') and M(=16m, ) were ad-
justed to correspond to the situation of two nucle-
ons outside a light nucleus core. Other choices of
eH and I gave qualitatively the same findings.

E
Hp

Ep
Ep

Ep
DISCUSSION

l5

Zero Reid —HC Bressel-Kerman Reid-SC V {r)

FIG. 3. Exact and Hartree spectra with various nucleon-
nucleon potential models for the two-particle interaction
V{r). The hard-core part of Reid-HC is simulated by
-2(S /mp) 6 (r-r&).

The results presented here demonstrate that the
5' interaction, which has been shown to be equiva-
lent to the usual hard core in exact calculations, '
it also successful in variational calculations where
it is desirable or necessary to extend the trial func-
tion into the hard-core region. Applications to
Hartree-Pock theory of light nuclei and low-ener-
gy nucleon-nucleus scattering' are in progress.
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