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The bootstrap theory is applied to the case of pairing vibrations; an approximation used by
Dang and Klein in their treatment of pairing is shown to be consistent with the bootstrap theory.
A modified Tamm-Dancoff approximation is described. The numerical results for Ni ' '6 are
compared with the exact solutions and with the results of Dang and Klein.

It is well known that the pairing interaction leads
to superconductivity away from the closed shells
and to pairing vibrations near closed shells. In the
former case, it is treated by the BCS method,
which conserves the particle number on the aver-
age, and in the later case by the random-phase ap-
proximation (RPA). Dang and Klein' formulated a
self-consistent method which makes use of the
states of the even nucleus and the neighboring odd-
mass nuclei. In this scheme, the authors attempt
to conserve the particle number more exactly and
determine the odd and even nuclear properties self-
consistently. We have formulated a self-consistent
bootstrap theory of vibrations along similar lines
and applied it to quadrupole oscillations of heavy
spherical nuclei and to the closed shell region. '
The essence of this method lies in the fact that
there exist large field potentials (e.g. , in Ref. 2,
multipole moments) and with the largeness of the
matrix-element argument, we can truncate even-
core complete-set expansions. Thus the energies
and potentials of even nuclei can be generated self-
consistently. The purpose of this present note is
twofold, first to establish the relation between the
bootstrap theory of vibrations for the pairing inter-
action and the method of Ref. 1, secondly to devel-
op an extended Tamm-Dancoff approximation (TDA)
(RPA) method to deal with the pairing vibrations
without self-consistency. The bootstrap theory
yields exactly the same equations as Ref. 1 in the
case of the pairing interaction, except that we de-
rive an additional equation to get the energies of
the even-core states (Followi. ng Ref. 1 we choose
these to be the ground states of even nuclei. ) Be-
fore proceeding any further, let us define the Ham-
iltonian H and the pair creation operators A, ~;

a=pe.c.'C. ,'Iclg~n-, -vn, A, "A, ,
ab

where
1

A, ~=~ ~S C ~C
a m

and

n. =2y. +1, S.=(-) '
In order to derive the energy equation, we take the
commutator of the Hamiltonian with a pair creation
operator A, ~ and take the matrix elements of this
commutator between neighboring even nuclear
ground states.

(K+N+ 2I[ff,A, '] IK+ N&

= [W(K+N+2) —W(K+N)]&K+N+2IX, "IK+N&

= 2e, «+N+ 2Q, "IK+N&

+ Icl~n, Qva, (K+N+2IA, "(N, --.')IK+N&,

where N, =Q C tc is the number operator, and

IK+N& is the ground state of an even (K+N}-parti-
cle nucleus. If we employ a complete-set expan-
sion in terms of I4„,„& states of an even K+N core
in the second term of Eq. (2), we get the following
equation

[W(K+N+ 2}—W(K+N)](K+N+ 2IA, tlK+N)

= 2e. &K+N+21~. 'IK+N& + IC l~~. Z~~.
ga

x&K+N+21&.'I~x'. ~&&+~+~IN. —'IK+N& . -

If we only retain l@~,„& = IK+N& (i.e., the ground
state) in the complete-set expansion, we get

e, —W/2
c 2 (3)

where W= W(K+N+2) —W(K+N) = 2K, X being the
usual chemical potential. This, of course, is the
BCS number equation. Thus we show that in the
limit of extreme truncation (i.e., when the even
spectrum is very anharmonic) we get the BCS lim-
it. Incidentally, the numerical results given in
Ref. 1 are also obtained with the constraint (3).
Thus, the present derivation justifies the use of
this constraint.
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We shall now show in the weak-coupling limit how
a modified version of the TDA (MTDA) ' can be
formulated near closed shells, and we shall also
compare this with the results of Ref. 1 and exact
solutions for ¹iisotopes. In the TDA method, the
commutator [A„A,~] is replaced by its va, cuum
expectation value, where the vacuum ~IC) is the
doubly-closed-shell nucleus. In contrast to the
TDA, we shall evaluate this commutator by taking

[A„A,t] = 26„[1—2(N, )], (4)

where the expectation value (N, ) is evaluated in the
manner described below. We thus correct for the
correlations in the even-core states. The next as-
sumption is very much in the spirit of the TDA.
Here we assume that the ground state of a (K+N)-
particle even nucleus can be obtained from the pre-
vious (K+N —2)-particle nucleus by means of a
phonon creation operator B"(K+N), where

Bt(K+N}=-,' g
a 0

Q, [1 —2N (K+N 2)]
2e, —[W(K+N) —tV(K+N —2)]

~(K+N) =-.'~G~&X. (K+N).

B(K+N) ~K) =0, (8)

i.e., we assume shell-model occupation probabili-
ties for the doubly closed shell. In order to deter-
mine the energy of the ground state, we sum Eq.
(6) over j, on both sides; this gives us the follow-
ing MTDA secular equation,

n, [1—2N, (K+N —2)]
~G~, 2f, —[w(K+N) —w(K+N-2)]

We see that in order to calculate the relative ener-
gy W(K+N) —W(K+N-2), we need to know the num-
ber distribution N, (K+N —2) from the previous
nucleus. This is given as follows,

N, (K+N 2) = (K+—N —2~N, ~K+N- 2& . (10)

Here K is the number of nucleons in the doubly
closed shell, and N is an even integer denoting the
number of particles outside the doubly closed shell.
Thus a N/2 phonon state is defined as

~K+ N) = P(K+ N)B t(K+ Ã). . . Bt(K+ 2) ~K), (7)

where p(K+N) is a normalization constant for the
state ~K+N) . The vacuum for the phonons is de-
fined by

and
(6) When we substitute the state ~K+ N —2) from Eq.

(7), we obtain the following equation

N, (K+ N —2) = P (K+ N —2) (KiB(K+ 2) ' ' B(K+N —2) N, B~(K+ N —2) ' ' ' 8 "(K + 2) iK) .

The normalization constant p'(K+N —2) is then
fixed by demanding the total number Nr(K+N —2)
is given correctly by Eq. (10), i.e.,

Nr(K+N —2) = QQ, N, (K+N —2).

Another quantity that needs to be determined is 6,
the gap parameter. In order to determine this we
make use of the approximate boson character of
the operators I3~.

1=[B(K+N),Bt(K+N)]
= (K+N —2i[B(K+N), B (K+N)]iK+N 2) . -

I

numerical results and the conclusion will be pre-
sented in the next section.

The numerical results will be presented for Ni
isotopes, and compared with the results of Dang
and IQein' and Kerman, Lawson, , and MacFarlane.
We use the single-particle energies that were used
in Ref. 4 and a coupling constant of G = 0.331. We
shall give the solutions up to three-phonon states,
i.e., for ¹i'~I 62. First we solve Eq. (9) by substi-

This yields the following equation

(12) TABLE I. Values of the ground-state energy in the
model of Bef. 4 (exact solutions), and approximations of
Bef. 1 and the present MTDA method.

X, (K+Ã)
2 =Q [1 —2N, (K+ N —2)],

a a
(13)

which determines A(K+ N).
With the help of Eqs. (9), (11), and (13), we are

in a position to calculate the ground-state energies
and the number distribution for even nuclei. The

58
60
62

~See Bef. 1.

MTDA

-1.48
-2.06
-1.94

-1.48
-2.06
-1.69

See Ref. 4.

—1.49
-2.11
-1.75
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TABLE II. Comparison of single-particle level occu-
pation probabilities for the model of Ref. 4 obtained by
the MTDA and Ref. 1.

TABLE III. Comparison of the values of gap parameter
6 obtained for the model of Ref. 4 by the MTDA and Ref.
l.

58

60

62

See Ref. ]..

5
2

2

3
2

5

2

1
2

9
2

3
Y
5
2

1
2

9
2

MTDA

O.M3

0.081

0.035

0.006

0.588

0.241

0.108

0.020

0.686

0.402

0.214

0.041

0.819

0.094

0.041

0.007

0.566

0.2BB

0.096

0.014

0.788

0.417

0.177

0.020

MTDA

58
60
62

0.87
1.21
1.98

0.89
1.17
1.81

~See Ref. 1.

tuting N, (K) = 0.0 and evaluating W(K+ 2) —W(K).
As it is seen from Table I, for up to two phonons
this simple method gives excellent results for the

energy. Table II gives the number distribution,
and the agreement with Ref. 1 is very impressive.
Lastly, Table III compares the gap parameters. It
is obvious that this MTDA method gives very good
results for one- and two-phonon states. It is to be
hoped that the two-phonon states in other cases
(e.g. , octupole vibrations in a closed shell and

quadrupole vibrations in heavy spherical nuclei)
can be treated by the present method, or else by
its RPA generalization (MRPA).
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