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An approximate K-matrix calculation of elastic nucleon-deuteron scattering is carried out
including the effects of two-nucleon tensor forces. The results of these computations, which
are carried out in the energy range from 11 to 40 MeV, are in reasonable agreement with the
experimental nucleon polarizations and differential cross sections.

I. INTRODUCTION

Despite the enormous progress achieved over
the past decade in calculating three-nucleon ob-
servables, there still remains a large body of un-

explained experimental results. ' ' Outstanding
among these data is the nucleon polarization P(8)
as a function of the c.m. scattering angle 8 in elas-
tic nucleon-deuteron scattering. This particular
observable is of special interest among many other
spin correlation parameters for several reasons,
not the least of which is its relatively simple ex-
perimental determination. Theoretically, of
course, the behavior of P(8) is thought to place
significant constraints on the structure of the scat-
tering matrix. '

It is, perhaps, premature to speculate upon the
usefulness of P(8) in sorting out the details of the
three-nucleon dynamics. Nonetheless, up to the
present time no self-contained computations of
P(8) of any reliability have been carried out, with

the possible exception of those at 150 MeV using
the impulse approximation. ' " On the other hand,
phenomenological' and semiphenomenological' ' '
considerations of P(8) at energies up to 40 MeV

have been surprisingly successful and have hinted
at the possibility of relatively simple mechanisms
being responsible for the observed behavior of P(8).

The main reason for the lack of calculations of
P(8) complementary to those for the differential
cross sections' ' is the very large number of cou-
pled integral equations which appear upon intro-
ducing the necessary noncentral (tensor) N N-
forces even via the usual device of separable po-
tentials. " Actually, this instance is rather symp-
tomatic of the present state of the three-particle
computational art. Namely, the standard, (so
called) exact integration procedures present a,

much too conf ining fram cwork for executing many
of the most interesting three-particle calculations.
Most of the usual alternatives, such as variational
techniques, ~' or methods using a denumerable, nor-
malizable, complete set of three-particle states"
appear to be useful mainly at rather low energies

and in connection with the bound-state problem. '
Recently three approximate methods have been

proposed which exploit the simplicities arising
from the weak deuteron binding, which are practi-
cal for high incident nucleon energies, and whose
viability does not depend upon special models of
the two-particle interaction. '9 ~ All three of these
procedures have the common feature of being uni-
tarization techniques via the optical-potential, "K-
matrix, '0 and N/D ' formalisms, respectively. The
results which have been achieved thus far are very
encouraging and suggest that these methods may
provide the framework for answering more sophis-
ticated questions in three-nucleon physics, in par-
ticular the elucidation of all observed scattering
phenomena up to the pion production threshold. Of
course, the introduction of an approximate three-
particle dynamics is a departure from the pre-
dominant style of the recent history of this subject.
However, in view of the complexities introduced

by "realistic"" two-nucleon interactions and high
incident energies such methods appear to be un-
avoidable.

The present investigation consists of the applica-
tion of the K-matrix method due to Sloan to the
computation of P(8) and the elastic differential
cross section in the energy range 11-23 MeV.
This energy range is interesting in two respects.
First, the rather extensive experimental explora-
tion of this region shows that the characteristic
features of P(8) undergo a rather pronounced vari-
ation between the extremes of this interval. ' Thus,
this should provide an excellent test of any pro-
posed scheme for computing P(8). Second, as we

shall comment in detail upon later, these energies
are sufficiently high compared with the deuteron
binding energy to expect that our approximations
to the three-particle dynamics will be justified.
Finally, these energies are low enough to permit
the incorporation of only the minimum amount of
two-nucleon interaction which is consistent with
the introduction of tensor forces. This model is
also applied for exploratory purposes, without mod-
ification, at 40 MeV where, because of the trunca-
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II. SLOAN APPROXIMATION

We will now outline the Sloan approximation' to
the integral equations for elastic N-d scattering.
A detailed analysis of this scheme using the modi-
fied Faddeev equations of Alt, Grassberger, and
Sandhas" has been given elsewhere. In an effort
to elucidate and generalize the essential features
of the method, we will proceed here in a slightly
different fashion. Coulomb effects will be neglect-
ed throughout this work.

If in the Heisenberg picture ' we separate the
scattering operator S into no-scattering and scat-
tering parts in the usual fashion,

8=1 —2wiT,

then the unitarity of S implies that

T —T = -2@iTT = -2@iT ~T. (2.1)

Let us introduce a K operator as the solution of
the equations

Kp ——T +imTPKp,

= T +iwKQT, (2.2)

where P is a projection operator. " Unitarity LEqs.
(2.1)] now implies that

tions in the two- and three-particle angular momen-

ta, the coherent forward scattering is certainly
grossly underestimated.

The remainder of the paper consists of a state-
ment of the principal dynamical approximations
used in the K-matrix approach (Sec. II), a discus-
sion of the important features of the computation
(Sec. III}, and our results and conclusions (Sec. IV).

threshold PK~P is Hermitian, that above this
threshold

a—= (2i) 'P(K~ Kp-t)P

is negative semidefinite, and that QK~Q satisfies
a unitarity relation identical to that satisfied by a
3- 3 transition operator in which production (2- 3)
is forbidden. Also, we infer from Eq. (2.2) that
the two-particle disconnected parts of QK~Q and
QTQ are necessarily identical.

In essence, the procedure suggested by Sloan
consists of choosing a model for K~ which is con-
sistent with the constraints imposed by unitar-
ity. ' ' 3 Namely, above the breakup threshold 4
must be negative definite, and below threshold K~
should be Hermitian.

Given such a model K~, the elastic N-d scatter-
ing amplitude can be determined from the complete-
ly on-shell integral equation

PTP =PK) P —i n'(PKp P)(PTP), (2 4)

The choice of the approximate K~ and ensuing
computation are, of course, most expeditiously
done in the interaction picture. We specify the
connection

which can be solved trivially by a decomposition in-
to partial waves. It is easy to demonstrate from
the preceding comments concerning unitarity that
the resultant scattering amplitude will satisfy uni-
tarity exactly below the breakup threshold and be
consistent with it above threshold. ' ' ~ We note
that the determination of the remaining matrix ele-
ments of T require the solution of no other inte-
gral equations. For example, the breakup a,mpli-
tudes follow directly from

QTP = (QKqP)(l —jnPTP) . '

K& —Kp~ ——-2m&K& QK&~ = -2miK ~QK (2.3) &48"(&a)I
T t t."'(&.))

where

Q=1-P.

In the case of interest to us, namely elastic Ã-d
scattering, we take '

P =g
~ in; N, d) ( in; N, d~

so that

Q =+~in; 3N) ( in; 3+

below the threshold for pion production. Then we
observe from (2.3) that below the deuteron breakup

(2. 5)

between the two forms of scattering operators for
the general situation in which any pair of particles
can form a bound state. In Eq. (2. 5) ~Q~), n =1,2,
3 refers to a noninteracting two-particle state com-
prised of particle n moving freely and a bound
state of the other two; n =0 corresponds to a three-
particle plane wave. The ~g "') refer to the in (+}
and out (-) states corresponding to channel n If.
we let Ua denote the interaction-picture operators
corresponding to K&, then in the three-particle
c.m. frame and for equal-mass (m) particles Eq.
(2.4) becomes (n, Pe 0)
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s (qslq ) =Us (qs[q )

Z ey tdtlg Usy(qslqy)Uyn(qylqn)
)'= 1

(2.6)

where

Us-(qs[q-) = ( C s(Es, qs)[Us-[4. (&., q-)&

with a similar definition for Us (qs[q )." The mo-
mentum of particle n with respect to the c.m. of
the other two particles is denoted by q . Since
everything is on-shell we have

E s E~ = (8/——4m )q y
+ s

y
——W

for all e, P, yt 0, where E& & 0 is the binding ener-
gy of the bound pair in channel p. (We assume
only one bound state per particle. )

Equations (2.6) reduce to a single equation if all
particles are identical, a situation which obtains
in N-d scattering providing we adopt an iso-spin
convention. Specifically, if we assume that the
two-particle bound states are properly symme-
trized and adhere to a cyclic ordering convention
in the particle indices, then the elastic N-d ampli-
tude is given by (n, Pc 0)

scattering of particles, 0, rely with the Dirac-5-
function contribution of the bound-state pole term
removed. 0's The first term in (2.9) gives rise to
the usual pickup or one-nucleon exchange term
while the terms involving ty are simple impulse-
graph terms. . The detailed structure of the matrix
elements of the quantities in Eq. (2.9) and their
computation will be considered in the next section.

Equation (2.9) constitutes the principal dynamical
approximation in this paper. Since it does repre-
sent a kind of impulse approximation, we would
not expect it to be very good at energies on the or-
der of the deuteron binding energy. An outstanding
problem is to construct a more sophisticated ap-
proximation for U which satisfies the constraints
imposed above and yet still does not involve the
complication of solving a true three-body integral
equation.

III. SOLUTION OF THE K-MATRIX EQUATIONS

We will next discuss some of the particular fea-
tures of our utilization of Eqs. (2.8) and (2.9).
There are two essential aspects to this procedure,
namely the calculation of the source term (2.9) and
the solution of (2.8) via a partial-wave decomposi-
tion using this input.

A. Source Terms

U(q'Iq) =U. (q'Iq)+2Us (q'Iq), tt«, (2.7)

with [q'[= [q[, independently of n and P." Similar
remarks apply to U. Then Eqs. (2.6) reduce to

tO

U(q'[q) = U(q'[q) qdtlg —U—(q—'[q")U(q" [q),

(2 8)

3
Us~ = 6s„(W -Ho)+ Q 5s ty5, (all n, P),

j'= 1

(2 9)

where U (q'[q) is defined in a manner analogous to
definition (2.7).

The simplest choice for V which satisfies all the
unitarity constraints imposed previously and, in
addition, the condition that the two-particle dis-
connected parts of QTQ and QK~Q be identical is

The spin, isospin, and kinematical structure of
the matrix elements of (2.9) with respect to deuter-
on-plus-free-nucleon states has been studied ex-
tensively. """ Nonetheless, the present notation
as well as our eventual computation of the impulse
terms differs sufficiently from Ref. 10 to warrant
writing out the contribution to U(q'[q) explicitly.

The contribution of the nucleon exchange terms
in (2.9) to U(q'[q) is"

2

[&I+—(q'+ sq)' 0'(-2q'+q)& 4(q'+ 2q),

where I is a spin exchange operator involving the
projectile and one of the target particles. The por-
tion of U arising from the impulse terms is

dqiiyt(qadi ~
~ qi)

ak

X q'+ &q" t W- —q" q+ &q" q" + 2q .

with Here t denotes

58 ——1 —58„, t =s(1 —(P)t"'+-,'(1+(P)t t",
where II, is the three-particle kinetic energy, and

t& is that part of the two-particle transition oper-
ator in the three-particle Hilbert space for the

where 6' is a spin and space exchange operator
upon the same two particles as I; t ' and t ' rep-
resent the isoscalar and isotriplet components of
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the two-nucleon transition operator, respectively.
It is evident that the essential practicability of

the method of Sec. II does not depend upon the
structure of the two-nucleon interaction which is
employed to compute the impulse terms. " None-
theless, we assumed, primarily as a matter of
mathematical convenience, the simplest separable
Yamaguchi forms" for the 8-wave singlet and S-
and D-wave triplet N-N partial-wave states. This
is the minimal two-nucleon input consistent with
the introduction of a tensor force; it is by no
means evident that it is consistent to omit the I'-
wave states at the energies we are considering.
The justification for including only the ones we do
is the familiar concept of the pole dominance of
off -shell amplitudes. "

Considerable controversy still exists concerning
the properties of the low-energy N-N system such
as the percentage of deuteron D state. ' ' ' In
view of the exploratory nature of the present in-
vestigation, we do not propose to enter into this
discussion at the present time, but it is clear that
a most interesting question is the variation of the
three-particle spin-correlation parameters, such
as the polarization, as a function of the percentage
of D state. For the calculations reported in this
paper we chose Phillip's" potential parameters in

the S-wave singlet case corresponding to a scatter-
ing length of -20.34 fm and an effective range of
2. 50 fm, and in the triplet case the parameters of
Brady et al. corresponding to a D-state probabil-
ity of 7%. This last value is in the tradition of the
work of Ref. 10 which was carried out with the
Yale-potential-generated ' two-nucleon information.
Given this last assignment, the choice of r, =2. 50
fm in the first instance, which is almost certainly
too small, ' ' can be marginally justified by Phil-
lip's plot ' of the calculations of the triton bind-
ing energy and of the N-d doublet scattering length
for various combinations of N-N parameters.

The most difficult part of the calculation consist-
ed in the evaluation of the matrix elements of the
impulse terms in the three-particle spin space
which involve three-dimensional integrals over an
intermediate target momentum (j")as coefficients
of products of C lebs ch-Gordan coefficients in sums
over spins. "'""The portion of this computation,
as well as all others in this paper which involved
spin sums, were done directly using a subroutine
to generate the values of the Clebsch-Gordan co-
efficients for arbitrary arguments. No attempt
was made to simplify these matrix elements by us-
ing more sophisticated recoupling techniques. In
view of recent developments" this procedure was
undoubtedly inefficient in its use of computer time.

The three-dimensional integrals were evaluated
in the following fashion. The range of integration
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FIG. 1. N-d cross section at 11.0 MeV. The experi-
mental points are taken from Ref. 46 (10.04 MeV).

FIG. 2. N-d cross section at 14.4 MeV. The experi-
mental points are taken from Ref. 47 (13.94 MeV,
circles) and Ref. 48 (14.1 MeV, crosses).
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FIG, 3. N-d cross section at 17.5 MeV. FIG. 5. N-d cross section at 22.7 MeV. The experi-
mental points are taken from Ref. 50 {22.0 MeV).

in tq" I = q'" was subdivided into a region of positive
and negative values of the parametric energy E of
of the t matrix in the integrand, where

E = W- (3/4m)q"'.

For the isosinglet components the principal-value
singularity in q" arising from the deuteron pole
when E & 0 was treated by the device of subtracting
off the singular part and evaluating it exactly.
Schematically, we have for the E & 0 part

F(E) —e ' F (E) —F(e)

C C

where the cutoff E, corresponds to q" =2 fm '.
This cutoff in g" was employed in all cases.

A five-point Gaussian quadrature was used in
each of the angular variables. Each of the inte-
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FIG. 4. N-d cross section at 20.15 MeV. The experi-
mental points are taken from Ref. 49 {20.6 MeV).

FIG. 6. N-d cross section at 40.0 MeV. The experi-
mental points are taken from Ref. 51.
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grals in q ", namely for E & 0 and E & 0, was done
as a five-point Gaussian quadrature, so this was
equivalent to a 10-point mesh in the magnitude. It
was found in specific test cases that the values of

the matrix elements were stable to within 5% when
the mesh was increased.

The calculation of the nucleon exchange terms
was straightforward.

B. Partial-Wave Decomposition

Let ~s, m, ) denote a three-nucleon spin state appropriate to some definite combination of a deuteron and

a free nucleon. We then introduce partial-wave amplitudes U (l', s'~l, s) via the usual expansion (~q') = ~q[)

(s ', m,'( U(q'
( q) ( s, m, ) =Q C, ...(J,M; m z. , m, ) I', i' (q ', R)U (I', s '( I, s )C, ,(&,M; m „m,) Y", '(q, K), (3.1)

where the sum is over 4,M, /', ng. .. l, and m„and k defines an axis of quantization. ~

With a similar definition for U (l', s'~l, s) Eq. (2.8) can be rewritten in partial-wave form as

U (I', s' il, s) =V (l', s'if, s) ———qg U (l', s' il", s")U (E",s"il, s),
)IP tl

t

(3.2)

where the intermediate sum over the three-particle total spin includes only one of the doublet possibilities.
Because of the coupling rules Eqs. (3.2) constitute for a fixed value of J' a matrix equation of finite order.
As a consequence of parity conservation this order can be reduced further so that for J= & we have 2 by 2

matrix equations for each parity sign and for J- & we have 3 by 3 matrix equations for each parity sign.
The symmetry relations which follow from time-reversal invariance do not, of course, reduce the order
any further.

The partial-wave amplitudes, U (I', s'~l, s) of the source terms were computed by inverting the expansion

(s', m, ~U(q'(q)~s, m, ) =+I', p "(8,0) U'(I', s'~l, s)C...i(&, m, ;m, —m, , m, )C, ,(J, m, ;O, m, ),2l+ 1

(3.3)

which follows from (3.1) by choosing R=q as well
as fixing the scattering plane to correspond to
zero azimuthal angle. It is evident from (3.3) that
only one angular integration with respect to cos0
= (q' q)/q' will be involved. This integration was
carried out using a five-point Gaussian quadrature
with the impulse terms of part A comprising the
right-hand side of (3.3).

The remainder of the calculation is trivial and
consists of solving Eqs. (3.2) for U . We confined
ourselves to only J = & and J = &, which corresponds
to considering four total angular momentum and
parity combinations of Eqs. (3.2). '

IV. RESULTS AND CONCLUSiONS

The differential cross sections and (nucleon) po-
larizations predicted by the model described in the
preceding sections are displayed in Figs. 1-6 and
7-12, respectively, along with the relevant da-
ta. ' ' All of the calculated cross sections which
are compared with the data have (to varying de-
grees) too small forward and backward peaks but
with the large-angle minimum overestimated. "
The quality of the fit appears to improve some-
what for cos6) ~ 0 with increasing energy. Let us

now comment on these features in turn with the in-
tent of pointing out the deficiencies of the present
as well as previous calculations. We will dwell
longest upon the cross sections, since they con-
stitute the only points of comparison with other
works.

The depressed forward peak is a persistent fea-
ture of virtually all extant three-particle calcula-
tions. ' In a model which possesses an exact three-
particle dynamics, and in particular satisfies uni-
tarity exactly, this circumstance can be ascribed
to two sources. Namely, there are too few two-
nucleon partial waves and/or N dpartial waves i-n-

cluded in the computation. The present calculation
almost certainly suffers from both of these inade-
quacies, although the removal of these deficiencies
is possible without destroying the essential simplic-
ity of the model. In addition, however, our model
lacks exact unitarity and the calculations of Sloan"
imply that this may be the source of some of the
trouble with our results.

The subdued backward peak is probably due to
the same combination of effects as in the forward
case, with the omission of higher two-nucleon par-
tial-wave states playing a diminished role. " This
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behavior differs markedly from the most recent
calculations of Sloan, although he has, presumably,
a better accounting of the higher partial waves than
we do.

We have no additional comments concerning the
region of the minimum. since any deviations here
arise from the same sources as those just dis-
cussed. Here, however, the dynamical approxima-
tions made, rather than the angular momentum
truncations, are most influential. Finally, we note
that the computed cross section at 40 MeV con-
nects onto the curve calculated in the impulse ap-
proximation in Ref. 10 at about 90' to yield, in
combination, a rather good fit over the entire an-
gular range in support of the conjecture of Aaron
et al. '4

The collection of predicted polarizations from 11
to 22. 7 MeV (Figs. 7-11) exhibit a consistent re-
production of all the qualitative features of the
rather detailed data of Faivre et al."In particular,
the evolution of the negative dip is predicted as a
function of energy, although its magnitude is even-
tually underestimated. The failure to match the
height of the positive backward peak in P(B) is cer-
tainly correlated with the overestimate of the large-
angle minimum in do/dQ. The results at 40 MeV
(Fig. 12) for cosB ~ 0 indicate that even a fairly ac-
curate cross section is not enough to guarantee a
quantitatively accurate P(B)

Up to this point we have stressed all the nega-
tive aspects of our calculation. Nonetheless, we
are forced to extend the remark of Ref. 9 to the
set of calculations presented here. Namely. in
view of the approximations inherent in our ap-
proach and the rather crude representation of the
N-N interaction, the agreement of the predictions
of the K-matrix model with experiment is perhaps
r em arkable.

The principal conclusion of this work is the es-
tablishment of the K-matrix technique of Sloan as
a viable tool for N-d calculations even with the
complications of tensor forces. Nevertheless, we
do not foresee successive applications of this tech-
nique as leading inexorably towards fully accurate
quantitative predictions. However, in addition to
the obvious refinements which can be made to the
calculations described here' and the computation
of other elastic spin-correlation parameters, "the
following nontrivial points remain to be explored.
First, an eigenphase analysis should be performed
on the computed partial-wave amplitudes. Second,
the breakup-reaction cross sections and spin-cor-
relation parameters should be calculated. A full
and detailed analysis along these lines should pro-
vide a fair quantitative outline of all the primary
features of moderately high-energy nonrelativistic
elastic and inelastic N-d scattering.
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