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The low-energy theorem is derived for nucleon-nucleon bremsstrahlung. We assume that
the two nucleons interact through a potential which can be any model, nonlocal as well as
local. For those potentials which depend explicitly upon momentum and/or angular momen-
turn operators, the gauge terms arising from these operators are included in the derivation.
These gauge terms are always important in the study of the off-energy-shell effects of the
two-nucleon interaction, and for the npy process they are essential in the derivation of the
low-energy theorem. It is found that the gauge terms are canceled precisely by parts of the
terms which represent the photons emitted by the internal nucleon lines.

I. INTRODUCTION

Recently, Heller' ' has derived the low-energy
theorem for bremsstrahlung in a potential model.
He has shown that when the bremsstrahlung ampli-
tude M is expanded in powers of the photon momen-
tum K,

M =A/K+8+ CSC+. . . , (&)

the coefficients A and 8 are independent of the off-
energy-shell effects. Without introducing the con-
cept of potential, the theorem was first derived by
Low4 using the formalism of quantum field theory.

In Heller's derivation the potential was assumed
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to be independent of momentum and angular mo-
mentum operators. If the potential depends expli-
citly upon these operators, as is the case for most
realistic potentials, one in general must include
the gauge terms arising from this dependence.
Heller's method has general validity only for mo-
mentum -independent potentials, since it neglects
the gauge terms. We have found, ' however, that
the low-energy theorem can be derived for the par-
ticular case of proton-proton bremsstrahlung (ppy)
without explicit inclusion of the gauge terms. This
cannot be done for neutron-proton bremsstrahlung
(npy), because the gauge terms contribute to both
B and C for npy while only to C for ppy in Eq. (1).

In most of the recent nucleon-nucleon brems-
strahlung calculations, realistic two -nucleon po-
tentials' have been used, but the gauge terms aris-
ing from these potentials have been ignored com-
pletely. The off-ene rgy -shell effects contributed
by the gauge terms are therefore missing. Further-
more, current conservation is obviously violated
in the npy calculations.

The purpose of this paper is to derive the low -en-
ergy theorem in the case of the general potential.
The gauge terms arising from the momentum and/
or angular momentum operators are included in
the derivation.

II. DERIVATION OF THE LOW-ENERGY THEOREM

We consider the interaction of two particles
where particle 1 is charged and particle 2 is un-
charged. The masses for particle 1 and particle
2 are m, and m„respectively. Our method for
deriving the low -energy theorem is quite different
from the one used by Heller. ' We use the following
operator identity':

t(E')Go(E')[Q, GO(E)
' —Go(E') Q, ]GO(E)t(E)

-=t(E')Q. —at(E) —[1+t(E')Go(E')1

x(V~Q2 —Q,V„)[1+Go(E)t(E)]. (2)

Here Q, and Q, are arbitrary operators; t is the
nucleon-nucleon transition operator; Go is the
free-particle Green's function; V„ is the two-nu-
cleon potential, and the quantities E and E' are,
respectively, the energies of the initial and final
nucleons. This method is very general; it is valid
whether the particles have spin or not. Therefore,
for the sake of simplicity, we shall derive the the-
orem by ignoring the spin. The appearance of the
formulas when spin is included will be given at the

end of this section.
The bremsstrahlung matrix T can be written in

a standard way

(3)T- TE+ Tl&

where T~ and Tl are the sum of those terms in
which the photon is emitted from an external
charged-particle line and an internal line, respec-
tively. Denoting the gauge terms by T~ and the
terms which represent the photons emitted from
the internal nucleon lines by T~, we further write

Tl T~+ T~.

The electromagnetic interaction Hamiltonian V,
consists of two terms:

Ve. m . Ve.~ .+ Ve.m

(4)

(5)

T»= V', Go(E)t(E)+ t(E')Go(E') V',

T~= t(E')Go(E')V', ~ Go(E)t(E),

To = V, + V, Go(E)t(E)+ t(E')Go(E') V,

+ t(E')Go(E') V', ~ Go(E)t(E)

(6a)

(6b)

= [1+t(E')G, (E')]V', [1+G, (E)t(E)]. (6c)

Using the Coulomb gauge, we then define the ma-
trix elements of T and T» (X'= E, I, R, G) by

(T) =—(P,', P2, K ) T
~
P„P2) = N8 M,

(T») = (Pi, Ps, K
I T» I Pu P2}= N& ' M»

where N= -e/2', vE, e is the charge, K is the
photon momentum, & is the polarization vector of
the photon, and P,. and P ',. represent the initial and
final momenta of the ith nucleon. Corresponding
to Eqs. (3) and (4), we have

M = ME+ Ml ~ (Sa)

Ml Mz+ Ma (Sb)

To derive M~, we write the matrix elements of
V', as foil ows:

(K~ V', ~O) =NP, ne (9)

Here, P, is the momentum operator of the particle
1, and we have neglected the magnetic -moment ef-
fects, since they contribute to C of Eq. (1). In-
serting Q, = Q, =

Qo
= e-'" ' '& into Eq. (2), we obtain

(7a)

(7b)

Here V, is the term arising from the kinetic en-
ergy operators, and V,' is the term arising out
of the potential. ' To the lowest order in the elec-
tromagnetic interaction, the matrices, T~, T~,
and T~ can be written, in terms of t, G„V',
and V~, as

(P,', P2 ~t(E')Go(E') [QOGO(E)
' —Go(E') 'Q ]Go(E)t(E)

~ P„P2)= (P,', P2 ~t(E') Q —Qot(E)
~ P~, P2)

-(P,', P,'~[I+ t(E')G, (E')](V„Q,—Q, V )[1+G,(E)t(E)]~P„PJ. (10)
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Let us write

I

Here, q, =m[(P, /m, ) —(p,/m, )], qt=m[(p', /m, )
—(p,'/m )], m = m&m2/(m, + m, ), and the deriva-
tives of the t functions are evaluated at v= (1/4m)
(q '+q, '), gg=(p,' —p, )~, and A, =b,&=0. In the de-
rivation of Eq. (14) we have used 8 K=0. Substi-
tuting Eqs. (13) and (14) into Eq. (12), gives

Bt I Bt Bt
e M = —,e (q. +q ) —-8 P' —e Pf Bv ' Baf i

+m, 8 M, +O(K). (15)or

(P~, P~l t(E')Go(E')[QOGO(E) —Go(E') Qo]GO(E)t(E) lp~, P~) = K M~,

(P,', P '
l t(E')q —q t(E) l P„Pg = K M,

(P,', P,' l [1+t(E') G,(E ')](V„Q, —Q,V„)[1+Go(E)t(E)) l P~, P~) = K ~ Mo .
Here, we have used K = K K, and K= K (K/K) in
defining M~ (i=0, 1, 2). Since we use the Coulomb
gauge, 0 K=O, the terms containing photon mo-
mentum K in expressions of the form 0 M, are
zero. In terms of M„M„and M„ the identity
(10) becomes

K (Mi —Ma+MD) =—0. (11)

If we assume that M,. (i =0, 1, 2) are analytic at K
=0, we obtain

M, = M2 —Mo+ 0 (K)

e M, = e M, —e M, + O(K) .
It can be shown that

(12)

(13)

If we parameterize the t matrix elements, as
He11er did, in terms of the following scalar varia-
bles: the average of the initial and final kinetic en-
ergies in the c.m. system v, the square of the
momentum transfer u, and the amount that the ini-
tial (final) state is off the energy shell n, , (b,&), and
then expand them in powers of K, we obtain

1 ) „ Bt , Bt
e M, =-——,e ~ (q +q )——P. ~ P,'

m, ' f Bv

Except for an additional term m, e M, appearing
in Eq. (15), this result agrees with Heller's. If
the potential used does not depend upon either mo-
mentum or angular momentum, then M, =O. In
this case Heller's result is reproduced. On the
other hand, if it.does, then M, contributes to both
8 and C of Eq. (1). Therefore M, cannot be ne-
glected in the derivation of the low-energy theo-
rem.

We next discuss the derivation of M~ and M, .
The gauge terms MG and the amplitude M, are far
too complicated to be calculated. However, they
are not completely independent. As we have proved
in the Appendix, they satisfy, independent of the
potential model, the following relation:

e Mg+ my~ ™0 (16)

nP, , -+O(K) . (14) Combining Eqs. (8b), (15), and (16), we obtain the

internal scattering amplitude

Bt
M =

2 8 (q. +q ) ——e ~ P' —e P +O(K).f B V

The external scattering amplitude is given by

e Me=m, ,
' (p(+K, P,'lt(E)lp„p2) -p K &Pl, Pnlt(E')I pi

» p » v

Here we have used

(17)

(18)

P~pKp = mxK —K P~ —&K

P»K„=m,K-K ~ P, + &E .
If we perform a similar expansion to Me, then Eq. (18) reduces to

P,' 0 P, I 0 P,' 0 P, Bt „ , Bt „ Bt

Adding Eq. (19) to Eq. (17), we finally obtain



M. K. LIOU

e M=e M +e M I&

a p ~ p 0 q.;+e.qf e p' K qf e'p K'q. ; Bt OE
~ ~ ~ ~

We see that the total bremsstrahlung amplitude M
does not contain the terms of the off-energy-shell
derivatives of the t matrices. The coefficients A
and B of Eq. (1) are completely determined by the
elastic scattering t matrix and its derivatives with
respect to energy. This is the low-energy theorem
for bremsstrahlung produced in potential scatter-
ing, where the potential is allowed to contain mo-
mentum and/or angular momentum operators.

As we have already mentioned, Eq. (16) is valid
whether the interacting particles have spin or not.
Therefore, the derivation given above can be easi-
ly extended for two spin-& particles. Many of the
formulas when spin is included have already been
published in Ref. 1. We refer to this paper for the

I

details. However, since the method used in Ref. 1

is valid only for those potentials which are indepen-
dent of the momentum operators, some important
differences appear when potentials used in the de-
rivation contain momentum operators. So, with-
out going into the detailed derivation of the theo-
rem for two spin- —,

' particles, we shall just dis-
cuss these differences.

When spin is included, the initial and final states
can be written as

~
P„P„Sm,) and

~
P,', P,'; S' m,'),

respectively. Here 8 is the total spin, and m, is
the sum of the spin components of the two parti-
cles along the z axis. The spin generalization of
Eg. (15) ls given by

.M g (Si i~~ ~S )
e'iQa+cisi f 3pi n .p n

A 2 Bv 86 BA
5

4

+m(S'm '
~e [Q&%~A„+Q'V A„-Q(Q V A„)]~Sm,)f„+m,3 M, +0(E). '

In the derivation of Eq. (21) we have used e K=O.
The operators A„belong to the set of operators,
(I, rr, ~ L„(c,~ L,.)(o, ~ L,.)}; and A„and their deriva-
tives are evaluated at

L, =Q=gz —g, ,

L~=N=q,. &q&,

L, = P=QxN.

m, e M„which contributes to both 8 and C of Eq.
(1) for those potentials depending upon momentum
and/or angular momentum operators. Therefore,
using e M~ alone, the low-energy theorem cannot
be derived. The internal scattering amplitude is
given by

O' 'Mq= 0 M~+0 M~, (22)

The functions t„and their derivatives are evaluat-
ed at v=(1/4m)(q, .'+qz'), u=Q', &,. =0, and &&=0.
Again, the result given by Eq. (21) is different
from Heller's by an additional term, namely

From E|I. (A13) of the Appendix, we have

e .M~+ rn, e Mo= 0.
Then, Eq. (22) becomes

(23)

n M =Z (S'm'~X ~sm ) ' (~' ~" "-e P "-e PI g fl g 2 Bp 1 Bp8 5 A

+m(S'rn'~R [QxV A +Q'v 4 -Q(Q V A )][Sm )f +0(Z)

III. DISCUSSION AND CONCLUSION

If w'e perform the similar expansion to e ~ M~, and
add it to Eci. (24), then we obtain Eg. (33) of Ref. 1.
In that equation the terms of the off-energy-shell
derivatives of the t matrices have disappeared
completely. The coefficients A and B of Eq. (1)
are determined by the amplitude of the correspond-
ing nonradiative process.

The internal scattering amplitude derived in the
last section is quite general; it can be applied to
any bremsstrahlung process in the potential scat-
tering. For example, the amplitude given by Eq.
(24) can be used to calculate the nPy cross section.
For the ppy case, the internal scattering ampli-
tude is given by
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e M, = ' ' [(P,', P,'; S'm,')t{E')(P,-K, P„.Sm, & (P,', P,', S'm.'(t(E'))P„P, -K; Sm, )P, +P, „K„

—(P,'+K, P', S'm,'( t(E) [ P„P;Sm, ) —(P,', P'+K; S'm, '~ t(E)~ P„P;Sm, )]+& R(Z), (25)

where R(Ã) contributes to C of Eq. (1). Since we
use the gauge in whi. ch e, =0 and 0 K=O, the inter-
nal scattering amplitude given by Eg. (17) or Ecl.
(25) can be extended to a four-vector form e„M,„.
It can be shown that this extended amplitude, I»,
does satisfy the gauge condition or an approximate
gauge condition

{Mal+Ms)„X„=O or Q(E').

If we neglect the mass difference of the nucleons,
m, =m, =m, then Eg. (17) can be rearranged in the
form
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This equation can be used to derive Heller's con-
dltlons for 8-wave scatterlIlg. As we know for a
a, pure $ wave MI would contribute nothing in the
c.m. system in which the total momentum vanishes,
P, + P, = 0. Since q, and qf are linearly independent,
Eq. {27) gives us Heller's conditions for S-wave
scattering

Bt 1 Bt———=0
BA,. 2 Bp

APPENDIX. CANCELLATION OF THE GAUGE TERMS
BY PARTS OF TR

We consider the scattering of two particles
where particle 1 is charged with charge e and par-
ticle 2 is uncharged. These two particles are as-
sumed to interact through a potential V~. The elec-
tromagnetic interaction a,rising out of the poten-
tial V„will be denoted by V,' . Let (m, , P, , S, ,
m„.) and (m, , P,', S,.', m,', ) .be the mass, momentum,
spin, and the z component of the ith particle in the
initial and final states, respectively. We denote
the momentum of the emitted photon by K, and its
polarization vector by 8.

I. We first prove that if we define

We have derived the low-energy theorem for
bremsstrahlung with particular attention given to
the nucleon-nucleon bremsstrahlung process. In
our derivation, the potential is allowed to have
possible momentum dependence or to have explicit
nonlocabty, and the gauge terms are taken into ac-
count. The theorem shows that all of the interest-
ing information about the off-energy-shell effects
is contained in the coefficients C, D, . . . of Eq. (1).
The gauge terms are found to be essential in the
derivation of the low-energy theorem for npy,
but they are not essential for ppy. However, since
they are important in the study of the off-energy-
shell effects of the two-nucleon interaction, they
must be calculated exactly in either the ppy or the

npy calculation. Both the gauge terms, and T„
(which represent the photons emitted by the inter-
nal nucleon lines) are very difficult to calculate. '
Fortunately, they are not independent; the gauge
terms are canceled precisely by parts of T~.

then, we have

6+ Fo= 0

fol any potential model.
Proof: This result is true for a potential with an

arbitrary number of factors of the momentum op-
erator. Let us consider a potential of the form
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V„(P, r, c»„o,) = [F„,(r, o„o,) ~ Pq„,(r, o„o,)][F„,(r, (r„cT,) Pq„,(r, o„o,)].~ .
n

x [F„„(r,o„cr,) Pq (r, cT„ o,)]= 11 [F„,.(r, cT„ o,) ~ Pq„,.(r, o„o,)] . (A2)

Here r is the relative position vector, P = —,'(P, —P2) is the relative momentum operator, and F„, and q„,.
axe functions of r and the Pauli spin operators o,. of the nucleons. V,' is obtained by changing P, every-
where in the potential given by Ecl. (A2)to P, —eA(r„ f) and keeping only terms to first order in e. We ob-
tain

(K~v,' ~o)=m,xe c,
where

1
G=-.'](F„,q,q„,) II (F„, Pq„,) Z II'(F„, Pq. „,)(F„.,e,q„.) II (F„, ~ Pq„„) "II(F„,~ Pq„,)(F„„~.q„„)&.2-2 S=2 —i =1 g=S+1

(A4)

Now, using the method of mathematical induction, we can show that if [A, , C] =—A,. C —CA, , then

II ~,, c =[~„c] II ~,. + Z , II ~,.[~„c] 11 ~. ..II ~,.[~„,c].
1 $=2 (t =1 ~=S+1

(A5)

Choosing A, to be (F, Pq„,.) and C to be Q„Ecl.(A5) gives

Ir(F„,. Pq„,), q, =[(F„, Pq„,), e.] II(F„,~ Pq„,)
g=1 =2

n-1

+ Z, n g„,. '»». ,)p»„. »»„,), q, ] ir
$=2 ) i=1 y=$+1

n-&

+ Z(F„, Pq„,.)[(F„„Pq„„),Q,].

Since

[(F„Pq„),Q, ] = (F„P)[q„,Q,]+[(F„„P),Q,]q,„,
=[X„. P, q,]„„,
= —p(F KQ )q

we obtain

[V„,O.]= II(F„, Pq„,), e. =K F., (A7)

where
n-1 r $-1 -n ~ ~ ~ n 1

», =-lp"„,e,»„,) ir (»., »»„,)+ z rr (»„; »»„;)(»„.o.»„.) i» (»„; »»„;) ~ rr (»„; »»„;)C»„„e,»„„)I.
d

—2 S=2 j =1 j =S+1 g=1

(AS)

Combining Ecl. (A4) and Ecl. (AS) gives Ecl. (Al).
If we define F„ to be F„' &r, then F„P=F„'„Lsince L=rxP. The potential given by Ecl. (A2) becomes

V„'(L, r, o„o,) = II [F„',(r, o„o,) Lq.„,.(r, „c»)].o

There are many other forms which can be constructed. For example, we can have a potential of the form
n

V„"(P, r, &Y„o,) = II (d„,P f„,.Ph„,.),
4 —1

(A10)
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ol

V„"'(L,r, o„o)= g (d„',. L f„',Ltt„,}.
~=1

(All)

Here the scalar functions d„„ f„„h„,, d„'„ f„',, and h„',. are functions of r, o„and o,. Following a similar
procedure, Eq. (Al) can also be proved for the potentials given by Eqs. (A10) or (All). Therefore, Eq.
(Al) is true for a general potential of the form

n=&
V„=V,(, „,)+ Z V„(P, , „,)+ Z V„'(L, , o„,)+ Z V„'( r, o, o)

n=& ' ft=&

+ Z V„'"(L, r, o'„o,)+ similar combinations.
n=&

(A12)

As special examples, me give the explicit expressions of 6 and F, for the following particular potentials:
(i) The momentum-independent potential:

6= FO=O.

(ii) The local potentials: We consider the potential of the form

V, = V, (r)+ V,(r)S„+V„(r)S L+ V„(r)I.„.
Here V, , V~, V», and V~~ are central, tensor, spin-orbit and quadratic spin-orbit potentials, respective-
ly, and I.„is defined by

I„,=[a„+(o, o,}]r,'-(L S)'.

The expressions are

G= -F,=-,v ~(r)(Sxr)Q, +-,V~(r)((5~+o, a,)[(Lxr)q, —q, (r xL)]+(L ~ S)(r xS)Q, + (r xS)Q, (L S)}.

(iii} The velocity-dependent potentials: We consider the potential of the form

V„=V, (r)+P'V, (r)+ V,(r)P'.

The expressions are

C = -F,=-,'(Pe..eP)V.(r)+-'V. (r)(P@.+ QP).
(iv) The nonlocal potentials: We consider the potential of the form

V„= Z V„(r)(r.P)".
n=o

The expressions are

0= F = —Q Q V (r)(r .P)n-s(1 q )(r .P)s-
n=& s=&

II. Secondly ere prove the following relation:

M, +m, M, =O,

Mo = m~(P[, P2; S'm,'
~
[1+t(Z')Go(Z')]6[1+ Go(Z)t(Z)] ~ P„p~; Sm, ) ~

M, =(P,', P, ; S'm.'~[1+ t(Z')G, (Z')]F,[1+G,(Z)t(Z)]~ P„P,; Sm, ).

Here S (S') is the total spin of the initial (final) state, m, =m„+m„, and m,'=m'„+m'„. Proof: Combining

Eq. (Al) and Eq. (A14), we obtain Eq. (A13).
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