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The complex angular momentum technique is applied to the study of nucleon-nucleus elastic
scattering. Begge-type representations are developed for the scattering amplitude, taking the
spin of the incident nucleon into account. The pole parameters are determined using the opti-
cal-potential parameters as input. With these pole parameters, the differential cross sections
for elastic nucleon-nucleus scattering are calculated using an appropriate Begge-type repre-
sentation for the partial-wave amplitudes. These studies give insight into the applicability of
complex angular momentum methods to the optical model of elastic scattering of nucleons
from nuclei.

I. INTRODUCTION

Recently the Regge-pole theory' has found much
application in the analysis of nuclear scattering
and reactions. ' ' The analytical properties of the
S matrix or partial-wave amplitude in the complex
X (=i+-,) plane are utilized for the investigation of
these problems. It has been shown' that it is pos-
sible, in principle, to formulate Regge-type rep-
resentations for the partial-wave amplitudes such
that they not only exhibit the correct physical fea-
tures of the S matrix, namely, correct threshold
behavior in momentum, asymptotic behavior in
angular momentum, and unitarity, but can also
make the effect of the background integral small.
Representations of this type for the S matrix, hav-
ing all the necessary physical features and small
background effects, have been used in the analysis
of elastic scattering of a particles by spinless
charged target nuclei. 4

Most of the earlier works' 4 on the application
of complex angular-momentum methods to nuclear
scattering deal with the analysis of elastic scatter-
ing of spinless charged particles. In a recent
work, ' the effect of spin-orbit interaction has been
investigated. It has been shown, by considering a
complex optical potential with a spin-orbit part,
that the Regge poles corresponding to the physical
states of the interacting system appear not only
along the positive real axis and the upper right
half of the X plane, but also in the fourth quadrant
of the complex A. plane.

In the present paper, we consider the scattering
of protons and neutrons from spinless charged tar-
get nuclei such. as C", 0'6, and Ca '. Here we
take into account the spin of the incident particles
in deriving the Regge-type representations. Usual-
ly the optical potential is quite successful in re-

II. COMPLEX OPTICAL POTENTIAL

It is known that the complex optical potential is
quite capable of explaining the experimental scat-
tering data for medium-weight nuclei. The elastic
scattering depends essentially on both the real and
imaginary parts of the potential. The imaginary
part of the optical potential takes care of the ab-
sorption processes which include all inelastic pro-
cesses. %hen we consider the scattering of nucle-
ons from nuclei, it is observed that the scattered
particles are polarized. This can be explained by
an optical potential only if it contains a spin-de-
pendent part. The generalized optical potential
may be written as

V, , (r) =-V„v(r) —i W„f,(r)

+(V, +zW, )(aim, c)'y, (r)T +,

where

v(r) = [].+e &" - "0 ' 0 ] (2.2)

is the radial variation of the real part, and U„ the

producing the experimental scattering data for
heavy- and medium-weight nuclei. So for most
cases for which experimental phase-shift data are
not available, the optical potential is utilized for
obtaining the pole parameters for a given nucleon-
nucleus scattering. These pole parameters togeth-
er with an appropriate Regge-type representation
for the 8 matrix are used for calculating the differ-
ential cross sections. This analysis helps us to
investigate the validity of the Regge-pole approach
to the optical model of elastic scattering of nucle-
ons from nuclei.
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corresponding strength; f,(r) is the radial varia-
tion of the imaginary part, and 8'„ the correspond-
ing strength of the potential. U, and W, are the
real and imaginary parts of the spin-dependent po-
tential, f,(r) is their radial variation, a is the
Pauli spin operator, x, the radius of the nucleus,
and ao the corresponding diffuseness parameter.

The spin of the incident particle can couple in
two ways to the orbital angular momentum l to
give the total angular momentum j=l'+ z, and the
eigenvalues of l .o corresponding to these two spin
orientations are f and -(l+1).

In this case, the S matrix not only depends upon
the momentum k, and the angular momentum X but
also on the complex strength V, of the optical po-
tential and hence is denoted by S(A, k, Vo). The uni-
tarity relation obeyed by the S matrix S(&,k, V,) is
given by'

A, (k, cos8) = ——csc' —,'8 exp(2io, —2igln sin 28)

+gem"~[(i+1)a+(l, k)-la (l, k)]P, (cos 8)

and

A2(k, cos8) =gem "i[a'(l, k) —a (l, k)]P,'(cos8),

(s.5)

where a'(f, k) = [S,'(k) —1]/2ik, corresponding to
the total angular momentum j=l+ &.

The Regge, Khuri, and modified Regge repre-
sentations of Ref. 6 may be easily obtained for the
partial-wave amplitudes a'(X, k} as shown in the
Appendix. We find that the Regge representation
for the partial-wave amplitudes is given by

S(A, k, V )S*(A*,k*, Vg) = 1 . (2 3)
~ ~ ~" x'-(~')' '

n
(s.6)

III. REGGE-TYPE REPRESENTATIONS FOR
CHARGED-PARTICLE PARTIAL-WA VE

AMPLITUDES WHEN A SPIN-ORBIT

FORCE IS PRESENT

The elastic scattering of nucleons from spin-
zero nuclei is conveniently described' in terms of
the two amplitudes A, (k, cos8) and A, (k, cos8)
where

+ ~ g (j+ ,')e""(e"—"~—U, )P,(cos8)]

(s.l)

alld

A, (k, cos8)= —Q(-1)' ' 'e"'o(e"~i —U)P'(cos8)

in which

(3.2)

&o, =(cr, —oo) = g tan '(tt/m),
nt =1

o, is the Coulomb phase shift for the 1th partial
wave, k is the wave number, and g is the usual
Coulomb parameter, while U, is the collision ma-
trix defined by Lane and Thomas. '

U, is given by

U, =e "'oS,(k) =e"~'& 'o~S, (k), (3 3)

A, (k, cos8) =(1/2k)[-7icsc'-,'8exp(2ioo —2igln sin-', 8)

"" (a')'
n n

n =1

(3.7)

For the modified Regge representation of Ref. 6,
we may write

—,a'(A, k)
1

1 1 exp(ie "~}—1 2).
" (A„') 3 —A„' exp(ie "n ~)-1 A. +3„'

n =1

(3 8)

where m is a suitable positive integer. In our cal-
culations we consider only the values m =0 and 1.

The above representation for a'(A, k) has cor-
rect threshold behavior in k and asymptotic be-
havior in A, and the factor [2&/(A+ X„')] is ex-
pected to reduce the effect of the background inte-
gral. However, when we consider charged-parti-
cle scattering, for instance proton scattering, it
is desirable to incorporate the Coulomb threshold
factor4 9

n =1

where the symbols A„' and P„' denote the pole posi-
tions and residues of a'(X, k) in the right half of
the A plane, and N' denotes the number of poles of
a'(A, k) in this domain. 1 takes half-integral values.

For the Khuri representation we obtain

where S, is the full S matrix, S, is the nuclear S
matrix. From the above equations we obtain

,„r(1+ —,'+ iq) r(z+ -,' —iq)
[r(~+-,') I' (s.9)
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It is easily seen that when we consider neutron
scattering q=0, and hence S~z

~
=1. The repre-

sentations (3.6) to (3.8) are modified by incorpo-
rating the factor

(3.10)

In order to bring out the asymptotic behavior of
the partial-wave amplitude explicitly, we proceed
as follows. The asymptotic behavior of a'(i, k)
for large A along the real axis is determined by
the integral"

I= rV(r) J' (kr)dr.
0

(s.ii}

Using the Woods-Saxon form (2.2) for V(r) and

using the method of Ref. 4, we obtain for large X

I=(e " aap+e '/'p) 20(]A(i&2e-ZC) (3.12)

where

$ =cosh '(1+1/2a'k') (s.is)

p(e ~n t+e r/ao)

z(ae-XK +er/pa)-
n

(s.i4)

as in Ref. 4.
After incorporating the factor given by Eq. (3.10)

in the Regge case, and both the factors given by
E(ls. (3.10) and (3.14) in the case of other repre-
sentations, the final form of the representations
(3.6) to (3.8) are written as follows:

In E(I. (3.12) it must be noted that i/kap = A) in
the range of energies that we have considered.

We further modify the Khuri and modified Regge-
type representations by incorporating the factor

exp(ie "')-1 82„ i e "n'+e-r/+ X

exp(ie-"n') —1 8" I e "'+e-"/'o y''
~n-&

(3.17)

We shall designate the above representation for m
=0 by R3, and for m= 1 by R4.

In all these representations given by Eqs. (3.16}
to (3.17), the left-hand sides are calculated from
known data. In most cases of elastic scattering of
nucleons by nuclei, optical-potential parameters
which give a good fit with experiment are available.
The Schrodinger equation is numerically solved by
using known optical-potential parameters, and
thereby the partial-wave amplitudes a'(X, k) are
calculated. In cases where experimental phase
shifts are known, a'(A, k) may be directly evaluat-
ed. The right-hand sides of these equations rep-
resent sums over poles. It is assumed that only
two poles contribute significantly to the partial
wave amplitude. A two-pole approximation formu-
la for the partial-wave amplitude has four un-
knowns, viz. , two pole parameters and correspond-
ingly two residue parameters. So with the known

input data, a'(A, , k} are computed for X = —,', —,', —,',
and '-„ thus giving four equations. These four equa-
tions are now solved to obtain the poles and resi-
dues. With this set of poles and residues the dif-
ferential cross sections are computed correspond-
ing to the different Regge-type representations for
the partial-wave amplitudes. In these representa-
tions the factor $ is calculated from E(I. (A.4) us-
ing p, o=ao

IV. RESULTS AND DISCUSSIONS

2i ' ~ " X2 —(A')2
a'A k =~g P'

(s.i6)

e(Xn-Z) g

2 a (~1k) ) Pn
(

a)2
n=l

x e ""+e "~+
X g2 gw ~- xC+ e-r/a()

2 n

(3.16}

We shall designate this representation as R2.
Similarly, the final form of (3.8) is

Let us designate this representation as R1. The
second representation, given by (3.7), has the fi-
nal form

It is well known that the optical potential gives
quite a satisfactory fit to experimental data for the
elastic scattering of nucleons from nuclei. These
fits are obtained by arbitrarily varying the optical-
model parameters at each energy for the different
nuclei. There is no consistency in the values of
these parameters. However, these inconsistent
optical-model parameters may be used to derive
consistent and physically meaningful Regge-pole
parameters. The main purpose of the present cal-
culations is to investigate the validity of the com-
plex angular-momentum approach to the optical
model of elastic scattering of nucleons from spin-
zero nuclei. We studied the elastic scattering of
protons from C" at the incident energies E~= 4.613
and 42964 MeV. For these cases experimental
phase shifts" are available. For the elastic scat-
tering of neutrons from C' and Ca, and of pro-
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TABLE I. Poles of a (X, 4) corresponding to the pole representation R4 for different elastic scattering
processes.

E(lab)
(MeV)

14.0

2.06
3.29
5.8
5.88
6.52
7.91

2.351

0.437
0.425
0.539
0.563
0.499
0.492

0.087

-0.0089
0.04
0.062
0.0013

-0.0005
-0.018

Rekg

2.376

0.437
0.437
0.463
0.457
0.470
0.477

-0.025

-0.0089
-0.028
-0.0095
-0.017
-0.0044
-0.0049

Reh.
&

3.5

2.211
1.900
1.449
4.317
3.958
3.69

Reh, 2

-0.168
0.088
1.072
2.332
0.726

-0.928

2.211
2.522
3.842
3.44
3.475
3.466

0,.121 x 10 3.499

ImA2

0.789x 10

-0.168
-0.521
-0.163
-0.146
-0.171
-0.169

Scattering
process

c"(n, n)c"
Ca (n, n) Ca4

4.613
4.964
8.5

11.85
18.06
14.0

8.495
12.597
14.1

0.499
0.500
0.507
1.272
1.806
2.292

0.501
0.503
0.506

-0.0056
-0.0048

0.259
0,702
0.677
0.440

-0.0031
-0.0055
-0.0059

0.497
0.498
0.798
1.432
1.847
2.207

0.504
0.509
0.513

-0.0098
-0.010

0.356
0.488
0.478
0.230

-0.0063
-0.013
-0.015

3.216
2.980
3.449
3.502
3.508
8.508

2.951
8.315
3.818

-0.287
-0.253

0.037
0.039
0.024
0.011

0.171
0.233
0.544

2.169
2.283
3.007
3.512
3.52
3.581

2.595
3.147
3.409

0.172
0.171
0.510
0.134
0.062
0.089

0.294
0.698
1.326

($2(p p)cf2

o"(p,p)o"

tons from C' (at higher energies) and OM, the
complex optical potential' ' of the Woods-Saxon
radial form containing a spin-orbit term is seen
to reproduce the experimental data very well.

Using the experimental phase shifts or the opti-
cal-potential parameters as input, the exact par-
tial-wave amplitudes are calculated. These are
used for determining the Regge-pole parameters
as explained in Sec. III. The Regge-pole and resi-
due parameters corresponding to the representa-
tion R4 for the different elastic scattering process-
es at different energies are tabulated in Tables I

and II. An examination of these parameters shows
that at very low incident energies the spin-orbit
interaction is hardly effective. For instance for
Ca4'(n, n)Ca4' scattering at E„=2.06 MeV, the posi-
tions of the poles X,' and A, y coincide, and likewise
for the case with ),' and A, Similar results follow
for the residue parameters also. As E increases
these quantities become appreciably different.

Table I shows that for the scattering of the spin
&-spin zero system, the Regge poles can occur in
both quadrants of the right half of the A. plane in
conformity with the proof given in Ref. 5. The pole

TABLE II. Residues of a (A, , k) corresponding to the pole representation R4 for different elastic
scattering processes.

14.0 -0.088

E(lab)
(MeV) ReP~+ ImP&+

0.176

ReP&

-0.109

Rep2+ Imp2+ ReP&
Scattering

process

0.141 0.32x10 3 -0.43 x10 2.9 x10 p.46 x1p 3 C~2(n, n)C~2

2.06
3.29
5.3
5.88
6.52
7.91

4.613
4.964
8.5

11.85
13.06
14.0

-0.031
-0.020

0.161
0.016

-0.0009
-0.0205

—.0.012
-0.011

0.311
12.31
4.737
0.535

0.055
0.071

-0.0017
-0.1217

0.0013
0.0144

0.002
-0.0006

0.457
39.82
2.461
0.069

-0.031
-0.039
-0.019
-0.023
-0.0087
-0.0026

-0.021
-0.021
4.324
0.0052
0.0021
0.0046

0.055
0.050
0.042

-0.047
0.082
0.0255

0.008
0.0094

-0.459
-0.0086
-0.0062

0.278

2.211
0.482

-15.74
-0.0021
-0.0529

0.0813

0.038
0.077
0.015

-7.945
2.353

-0.502 x10 4

-0.168
0.788

-5.704
-0.046

0.005
-0.014

-0.0046
-0.023
-0.0081
10.5
2.821

-0.0032

2.211
-0.453
-0.054
-0.026
-0.015
-0.017

0.302
0.268

-0.137
-0.0026
-0.0007
-0.0012

-0.168
-0.185
-0.052
-0.043
-0.049
-0.051

-0.249
-0.252
-0.111
-0.011
-0.0063
-0.0022

Ca40(n, n)Ca 0

c$2(p p)ci2

8.495
12.597
14.1

-0.0040 0.0009 -0.00S8
-0.0057 0.0040 -0.011
-0.0051 -0.868 x10 -0.012

0.0014
0.0054
0.0022

0.196
0.164
0.010

-0.074
-0.106
-0.416

0.328
-0.0041
-2.796

-0.184
-0.636
-1.029

oie(p p)oi6
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FIG. I. (a) The real parts of A,
&

and (b) the real parts of A,
&

versus the incident energy in lab units for C (p,p)C~~.

(c) The real parts of A.
&

and (d) the real parts of A2 versus the incident energy in lab units for 0~6(p, p)O~ . (e) The real
parts of A,

&
and A2 versus the incident energy in lab units for Ca (n, n)Ca . Solid circles indicate resonances,
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TABLE IG. Levels in M~3 obtained from the Regge
trajectory for C (p,p)C compared with experimental
data.

TABLE V. Levels in Ca4~ obtained from the Hegge
trajectory for Ca 0(n, n)Ca40.

Z(lab) Z„(Cale) ~„(E~t)
Trajectory (MeV) L& J (MeV) (MeV)

E(Me V)
Trajectory (lab)

Z„{Cale) Z„{Z~t)
(Mev) (Mev)

Hek~+ vs E 5.0 0 ~+ 6.556

12 87 1 y 18 86

Reh, ~+ vs E

Re%2 vs E

0 f+
2

2 3'
2

12.85

11.48

Heh, ~ vs E 12.05

Heh, 2 vs E
HeA. & vs E

1 -', 18.06

3 ~~ 10.71

2 ~ 72
8

2
12.78

10.36

6.908

12.08'

~Spin and parity not assigned.

TABLE IV. Levels in F~~ obtained from the Begge
trajectory for 0 (p,p)0 compared with experimental
data.

ZO.ab) E„(Cale) E„(Expt)
Trajectory (MeV) l& J {MeV) (MeV)

Bek+~ vs E 6.85

He%, 2+ vs E 18.8

ReA2 vs E 7.75

0 p+ 6.564

8
2

18 11

2 2+ 7 29

8 — 14.887

18.08

'Spin and parity not assigned.

parameters are more or less consistent in accor-
dance with the general behavior of Regge trajec-
tories connecting the physical state of the interact-
ing system. The leading or resonating trajectories
corresponding to j =I+-,' in the case of Ca~'(n, n)Ca~',
C"(P, p)C", and 0"(p,p)OI6 connect different reso-
nances and possess the other essential features of
Regge trajectories. Some of these trajectories,
which indicate excited states in N", F", and Ca '
compound nuclei, are illustrated in Figs. 1(a)-l(e),
and their level parameters are tabulated in Tables
III, IV, and V, respectively. In order to draw a
fairly smooth trajectory, the graphical method pre-
scribed in Ref. 4 of assuming a polynomial depen-
dence with respect to energy is followed.

In Fig. 1(a), Reh,' (real parts of the poles X,') are
plotted versus the incident laboratory energy E(lab)
for the C"(p,p)C'~ system. The trajectory Rek,'
indicates a —,"resonance at E(lab) = 5.0 MeV, which
is an excited level in N" at 6.556 MeV. This cor-
responds to the —,' level at E = 5.05 MeV (excitation
energy E, = 6.6 MeV) observed in C "(p,p)C" elas-
tic scattering studies. " The ReA. ,' trajectory indi-

cates another resonance at E =12.37 MeV, which
is the —,

' level of Nx' at E„=1336 MeV This may
correspond to the level' of N" at E„=13.5 MeV
whose spin and parity are not known. The ReA. ,
trajectory passes through a resonance of C"(p,p)-
C" at E=12.05 MeV, giving indication of a 2 lev-
el of N" at 13.06 MeV. Figure 1(b) shows the tra-
jectories Rek~plotted versus E(lab). The ReA.,' tra-
jectory passes through a ~2 level (see Table 111) of
excitation energy 10.71 MeV. Experimental ener-
gy-level data"'" show that there is a & level of
N" at 10.36 MeV. The Rea, trajectory is seen to
pass through & and & 1evels of excitation ener-
gies 7.2 and 12.7S MeV, respectively. Energy-
level data" show that there is a &'1eve1 of N'3 at
7.42 MeV and an excited state at 12.08 MeV whose
spin and parity a.re not specified.

Figure 1(c) shows a plot of Rek,' versus E(lab)
for the 0"(p, p)O'6 system. This trajectory, on
extrapolation to lower energies, passes through a
resonance at E = 6.35 MeV, giving a —,

' level of F"
at 6.564 MeV. This obviously corresponds to the
experimentally observed" —,

' level in F'7 at 6.56
MeV (see Table IV). The Rex,' trajectories are
shown in Fig. 1(d). The Rek2+ trajectory indicates
a —,' level in F" at 13.11-MeV excitation energy.
Energy-level data" show that there is an excited
state of F'7 at 13.03 MeV with unassigned spin and
parity. The Heh. , trajectory passes through two
levels at excitation energies 7.29 and 14.337 MeV
of spin and parity —,

' and —,', respectively. Experi-
mentally" a 2 level is observed at 7.44 MeV in
F" and another level at 14.3 MeV whose quantum
numbers are not specified.

Figure 1(e) illustrates the ReX~+ and ReA, trajec-
tories of the Ca4'(n, n)Ca~' system. They indicate
the presence of two levels in Ca~' at excitation en-
ergies 11.48 and 12.85 MeV of spin and parity —,

'
and —,', respectively. These do not correspond to
any of the experimentally observed levels'9 in Ca~',
all of which have excitation energies less than 9
MeV.

The differential cross section for the elastic scat-
tering of nucelons by spin-zero nuclei is given by

Ch/dQ= iA, (k, cose) )'+ iA, (k, cose) [

The Regge-pole and residue parameters corres-
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10

210-

lh

0 30
I I

60 90

e(c.m.)

I I

120 150 180

FIG. 2. C (n, n)C angular distribution at E„=14.0
MeV. The solid line corresponds to the angular distri-
bution obtained from the optical model and the dashed
line indicates the same from A, -plane pole representa-
tion. The symbols designating the various representa-
tions are described in Sec. III.

ponding to the different Regge-type representations
are used for calculating the partial-wave ampli-
tudes a'(A. , k) and hence the differential cross sec-
tions. In all the cases considered, the representa-
tions R2, R3, and R4 for the partial-wave ampli-
tudes yield equally good results.

In Fig. 2 the angular distributions for C' (n, n)C'
corresponding to the optical model (OM), and the
representations R2, R3, and R4 at the incident lab
energy E„=14.0 MeV are plotted. It is seen that
R2, R3, and R4 are almost identical and give quan-
titative agreement with OM. The angular distribu-
tions for Ca~(n, n)Ca~ at the incident lab energies
E„=2.06, 3.29, 5.3, 5.88, 6.52, and 7.91 MeV are
illustrated in Figs. 3(a)-3(f). At E„=2.06 MeV the
angular distributions corresponding to the repre-
sentations R2, R3, and R4 exactly fit with that of
OM. At E„=3.29 MeV, there is almost quantita-
tive agreement between OM, R2, R3, and R4. As
we proceed to higher energies, such as E„=5.3
and 5.88 MeV, we find that there is fair agreement
between R2, R3, and R4 and OM. At still higher
energies, for instance, E„=6.52 and 7.91 MeV, the
fit is only qualitative for large angles, but there
is almost quantitative agreement for small angles.

Figures 4(a) to 4(f) illustrate the angular distri-
butions for C"(p, p)C" at the incident energies E~
=4.613, 4.964, 8.5, 11.85, 13.06, and 14.0 MeV.
At E~= 4.613 and 4.964 MeV the angular distribu-
tions corresponding to R2, R3, and R4 are com-
pared with the exact curves obtained from experi-
mental phase shifts. " At these two energies, it is
seen that there is good agreement between R2, R3,
R4, and the exact curve for backward angles, but
only qualitative agreement exists for forward an-
gles. Again at the higher incident energies E~=8.5
and 11.85 MeV there is only an over-all qualitative
agreement between R2, R3, R4, and OM at all an-
gles, and at E~= 13.06 and 14.0 MeV there is al-
most quantitative agreement between the two
curves at backward angles.

The angular distributions for 0"(p,p)O" at E~
= 8.495, 12.597, and 14.1 MeV are illustrated in
Figs. 5(a)-5(c). In all these three cases it is seen
that the fit between R2, R3, R4, and OM is only
qualitative.

R3 represents the modified Regge-type represen-
tation without the damping factor, and R4 repre-
sents the same including the damping factor [2A./
(y+y„')] in order to damp out the effects of the back-
ground integral. The equivalence of the results
for R3 and R4 only shows that the damping factor
is practically ineffective in these cases.

In the present work we have used a two-pole ap-
proximation for the partial-wave amplitudes. The
fits to the experimental cross sections could per-
haps be improved by using three or more poles.
But then the simplicity of this approach would be
lost. Since the damping factor of the background
integral in the representation R4 is proved to be
ineffective, it is necessary that we improve the
representations for the partial-wave amplitudes
such that the contribution from the background inte-
gral becomes negligible.

What we have achieved in the present investiga-
tions may be briefly stated as follows. Starting
from a complex optical potential with an l ~ S force
which has arbitrary parameters varying from en-
ergy to energy for the same nuclear scattering,
we have obtained Regge trajectories which smooth-
ly increase with energy connecting resonances of
different l values. Some of these resonances cor-
respond to actually observed ones, while others
indicate the presence of new levels in N", F",
and Ca ' compound nuclei. It may also be possible
to predict the quantum numbers of existing nuclear
levels of unassigned spin and parity. In addition,
if the correct functional dependence of the residues
with respect to energy were also known, then it
would become possible to obtain the pole as well
as the residue parameters at any intermediate en-
ergy in the range of the trajectories. These param-
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eters could be used for calculating the differential
cross sections through appropriate Regge-type rep-
resentation for the partial-wave amplitude. A

knowledge of the optical-potential data at that en-

ergy is not necessary.
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APPENDIX. REGGE-TYPE REPRESENTATIONS

FOR PARTIAL-VfAVE AMPLITUDES WHEN A

SPIN-ORBIT FORCE IS PRESENT

The elastic scattering of nucleons by a spin-zero
target may be described in terms of the two ampli-
tudes A, (k, z} and A, (k, z) which have the partial-
wave expansions

A, (k, z}

=Ac (k, z)+ Q e"'i[(1+1)a'(l,k)+la (l, k)]P, (z)

(A. 1)
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and

A, (k, s)=pe"' k-e I a'l k-e
' [,k) —a (l, k)] P'(s)

(A. 2)

the anal icat ically continued S'
]is i b" +2

t
s'(~, k) —i

t

= o(tx-'/' e-~'I

where

(A.3)

where A~(k, z) is amplitude a'(l

r o he total anresponding t t

'
g he nuclear S matrix

—, and z = cos6t
angular momentun m j=l

et us assume a Yukawa-t e

c zons. It
an

p otic behavior of S'(X, k) t'i. e.,

$ = cosh '(1+ p, oI/2k'), (A.4)

P~ gz (2~) -I/2 l -I/I I/2(gI i)-I/4 sX

Rex~ 0

e, (A. 5)

andy, '
p ls the highest value g ppearzng

,....t;..has th. ..e asymptotic behavior"
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Regge representation in terms of the poles in the
right half of the A plane.

The background integral I, of the Regge repre-
sentation for R,(k, z) is given by

310—

XS'„. , (-z) . {A.18)

The Legendre function may be written as

wP), i(-z) 1 " e ~'" dw
~Re&'~ & —,

' .
coswA ' v 2 „(coshx —z)'i'

Integrating (A. 19) partially twice, we obtain

(A. 19) (a)
1Q

0 30

3
10 .

60 90 120 150 180
e(c.m.)

e *g(x, z)dh, jReh'j &-,,

where

d sinhx
g(z, z) =-—

dw (cosh' -z)"'

(A. 20)

ChE10-

Substituting for P„ I(- )zfrom (A.20) in the back-
ground integral I„we have

V-'[(X'+ —,')a'(~', k)+ (X' ——.')a (X', 0)]
2 4mi

e "g x, z dxdA. '.

-R2,

(b)
1Q

0 30 60 90
8(c.m)

10

120 150 180

(A.22)

If the nucleon-nuclear potential has a Woods-
Saxon radial dependence, the asymptotic behavior
of a'(A, k) is given by

DE1Q-
bjc,

-R2,

Ther efore the function

X 'f(A+ -', )a'(X, k)+(X ——,')a-(X, k)]

has the asymptotic behavior given by

O( j~-i/ae-) [; j) (A.24)

(c)
10

0 30 60 90 120 150 180
e(c.m.)

FIG. 5. 0~6(p, p)0~6 angular distributions. The con-
ventions of Figs. 2 and 3 are followed.

in the right half of the & plane. Followirig-Khuri's procedure we write

i K

.{ i'-'[(X'+-,')a'(~', k)+(X'-, —,')a (~', n)] e' "g(z, z)dwd~'
vY4wi

+ A,
' 2

A. '+~ g+ A. ', Q + A,
' —

& g X', 0 g" «g x, z dxdA. '

(A. 25)
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which gives, after interchanging the x and A.
' integrations in the first term and then integrating over A. ',

I
K-1 f ~. +2, ~+

2~2 JI ding( iz) ) (j+)2 P» 8 "* ) ~~-)2 P» 8
n=l n~2

1 i~ r"
+4~2 . ~' 'f(&'+-,')~'(&', &)+(&'--.')a-(&', &)] I e'"g(x, z)dude'.

» iOO

(A. 26)

The Khuri representation for A, (k, z) is obtained by including the first term of I, in the contribution of
the pole terms of the Regge representation, while the second term represents the background integral I,'.
%e therefore obtain

sr+

A, (k, z) =z )
n~1

2 EX„+2 A.„—2(- )+ " ' P„~; .(-z)
cosn ~+ ~ cosa'„

n s-1

K1 ~ ~A.„+q + ~+ ~ A.„—q
ding(x, ) g (~,), p„+

(~ ), p„

The Legendre function given by (A.20) has the inverse representation
i OO ~-X'x

g{x,z) =fv2 dZ'Z"f „, (-z)
cosmic'

(A. 27)

(A.29)

Neglecting f,' in (A. 27) and substituting (A.28) for g(x, z), we obtain

N+

X(n, z)=v )
n

n=1

E
P„'f,„;(-).) „",„;

n=1

P„&x„)( z)-
J

i OO - X'xe
dh A'P g.- ~ (-z), dA. '

cosK~

2 + - 2

(y+)2 &»
/» (y-)2 &n

n=1

(A. 29)

Vfe first carry out the x integration which yields

(~- 1)' e( X„-k) E

n
(A -) (A —A.)

n=l

(A. 30)

The first integrand has poles at A. =A.„' and poles at the zeros of eosnA. with
ing out the A, integration and substituting in (A.29), we have

&,(&, z) = ),&,(-z),~„.(&'. + ')P.'-
n n n/

(z„-z) g')P„—-
n

(A.3 l)

residues (-1)"'jw. After carry-

As before, splitting the amplitude A, into two terms Al' and A, , we have

g2
N+

A', (k, z) =),, (X„'+-,')P„'
e(An - X) g

n
(A.32)

Taking the partial-wave projection of both sides of (A.32) gives

(A.33)
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(A.34)

Following a similar procedure, we can deduce the Khuri representation for A2(k, z) and the correspond-
ing partial-wave amplitude.

Starting from the integral representation (A. 19) for the Legendre function Pz i(-z), we can easily find
the integral representation for P~ i(-z) as given by

P„' i(-z)= -- ck.3 (1 -z')"' cosvA " e "*sinhx
4v 2 v A (coshx —z)'I'

Substituting (A.34) in the background integral of the Regge representation. (A. 13) gives

f 00 00

83 n' cosh% z
(A.35)

The function A. '[a'(A, k)-a (X, k)] has the asymptotic behavior O(~X "'e ~~~);

Now, proceeding as before, we obtain for the partial-wave amplitude

~ e(~&-x)g

n n

(A.36.)

Equations (A.33) and (A.36) are Khuri representations for a'(X, k) obtained from the amplitudes A, (k, z)
and A, (k, z), respectively. These two forms can be readily combined to yield the following Khuri represen-
tation for a ' (X, k):

N~
e(x~-x)g

(A.3V)

The general Khuri-type representation for the partial-wave amplitudes a'(A, k) may be written as

1, ~ ~
~ 1 E(A.„,A.) (A.38)

where P(X, A) = 1.
In the above equation, F(A.'„, X) may be appropriately chosen to satisfy all the necessary physical features

such as correct threshold behavior in 0, asymptotic behavior in A., correct Coulomb threshold behavior,

and to have provision for damping the background-integral effects.
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Effects of Transfer Reactions on Particle Spectra*
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Measurements of neutron spectra from the reaction 0 (Ni, xn} and 0 (Ag, xn} with 160-MeV
O~~ ions and natural targets were made. Neutrons were detected at 15' intervals from 15 to
165 . Detection was accomplished with nuclear emulsions, using the internal-radiator method.
The most striking feature of the spectra is the pronounced backward peaking in the c.m. sys-
tem with ratios of a(180'}/0(0') as high as 2.0. %'e interpret this peaking to be caused by trans-
fer reactions. Following the transfer reaction, a part of the incoming ion travels forward with
its initial velocity, while the remaining partially fused system is traveling backward in the
c.m. system. Evaporated particles from the partially fused system are thus backward peaked
in the c.m. system. The charged-particle spectra for these same reactions, as measured by
other investigators, are also analyzed in terms of transfer reactions. Qualitative agreement
with some unusual aspects of the measured spectra is obtained.

I. INTRODUCTION

The use of heavy ions allows one to study com-
pound-nuclear reactions at high excitations and
high values of angular momentum. It is well known
that protons or other light particles with energies
as high as 100 MeV produce spectra that are inter-
pretable in part by "cascade mechanisms, " in
which high-energy particles described as result-
ing from one or a few nucleon-nucleon collisions
are observed. Eventually, the energy is shared by
sufficient numbers of nucleons for the remainder
of the deexcitation process to be described by the
statistical model. If heavy ions are used, the ini-
tial energy is already shared by many nucleons,
and it can be expected that cascade effects are
small and that the entire deexcitation process is
adequately described by the statistical model. It is
therefore expected that heavy ions will allow a
more simple and unambiguous test of the com-
pound-statistical model at high excitation energies.
Charged-particle emission is sensitive to the pene-
tration of the Coulomb barrier, and uncertainties
in the calculation of these effects make comparison
with experiment difficult. A further effect of the
Coulomb barrier is that only neutrons occur at low

energies, where competition from nonstatistical
processes is expected to be minimal. It appears,
however, that it is a great advantage to have avail-
able data on all particles emitted copiously; this
includes neutrons, protons, n particles and, to a
lesser extent, deuterons.

Several measurements of the spectra of charged
particles emitted in heavy-ion interactions have
been reported, ' 4 Measurements of the total neu-
tron yield from heavy-ion reactions have been
given by Hubbard, Main, and Pyle, ' and some re-
coil-technique experiments give neutron yields for
1'eaCtlollS Of the tpp8 (bBR~-i011,$8). Mec|8111"8-

ments of the spectra of neutrons have been made

by Broek, 7 but detailed information on the angular
dlstl lbutions was not obtained.

In Sec. II, we give the results of the measure-
ments of neutron spectra at 11 laboratory angles
from the bombardment of natural nickel by 157-
MeV 0" ions, and the bombardment of natural
silver by 160-MeV 0" ions. The results show a
backward peaking in the c.m. system, which we
interpret in Sec. III to be a result of the transfer
of part of the incoming ion to the target nucleus
and subsequent evaporation from the resulting ex-
cited nucleus, wh1ch moves backv/ard 1n the c.m.
system.


