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VI. CONCLUSIONS

The magnetic dipole moment of "Bhas been re-
calculated using new measurements of nuclear
spin-lattice relaxation times of "B implanted in
Au, Pd, and Pt. The large number of relaxation
mechanisms and the short half-life of "Bmake it
difficult to measure relaxation times greater than
a few hundred msec. Nevertheless, such measure-
ments can be used to make meaningful calculations
of the magnetic effects of the stopping foils.

Clearly, the stopping foil must be made of some

fce metal in order to make accurate resonant-de-
polarization measurements of the effective moment
of "B. The relaxation-time measurements show
that Pt is probably the most desirable metal to use
because the Knight shift for "B in Pt is relatively
small.

The electric quadrupole moment of "Bhas been
measured directly for the first time using the
asymmetry of the resonance line of "B in Be foil
under magnetic field reversal, and an estimate of
the field gradient at the 'Be lattice position.
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Pion-deuteron elastic scattering is calculated via the impulse. approximation (including dou-
ble scattering) at intermediate energies. Good agreement is found with experiment at 87-, 142-,
and 180-MeV/c incident pion energy. Thus the impulse approximation seems to give reliable
results even in the region of a large resonance.

I. INTRODUCTION

The elastic scattering of pions by deuterons is
for several reasons a good test of our ability to
understand composite systems of strongly inter-
acting particles, using a bound-state model and a
generalized impulse approximation. First, the

deuteron is well described as a, bound state of a,

neutron and a proton with a wave function whose
properties are known. Second, the weak binding of
the deuteron and the large distance between its
components encourages the belief that the scatter-
ing amplitude can be well approximated by a sim-
ple expression involving amplitudes for pions scat-



PION-DEUTE RON E LAST IC SCATTERING. . . l225

tering on free nucleons. Such an expression will
be some version of the impulse approximation, '
and fortunately the requisite accurate information
on the pion-nucleon scattering amplitude is avail-
able. Third, a theoretical calculation can immedi-
ately be compared with nature, as there are a num-
ber of differential cross-section measurements,
including a recent experiment' with an incident
pion lab energy of 180 MeV/c'.

If the comparison shows that pion-deuteron scat-
tering can be calculated well, then our knowledge
of the deuteron wave function is corroborated and
we can be more confident of other calculations of
scattering from deuterons. In particular, we can
be more sanguine in situations where information
about scattering on neutrons is obtained by calcu-
lation from experiments on scattering by deuterons.

The calculation presented here is based on the
impulse approximation. In the simple version of
the impulse approximation, the pion-deuteron
scattering amplitude is expressed as a superposi-
tion of scattering amplitudes for pions on a set of
free neutrons and protons which have the same mo-
mentum distribution that they would have inside
the deuteron. This leads to formulas similar to

A, =J)d'pa~ (p) P~*(p)P,(p) + term for neutron,

where A„, A~, and A„are scattering amplitudes
for pions on deuterons, protons, and neutrons, re-
spectively, and g~ and $1 are deuteron wave func-
tions. The proton and neutron scattering ampli-
tudes are customarily brought out of the integral
on the grounds that they are slowly varying, and
evaluated at some average value of p. However,
in a bound system, in addition to the possibility
that the pion will undergo just one scattering
(which leads to the simple impulse approximation),
there may be significant effects due to multiple
scattering and the binding potential. These correc-
tions are considered here, following a generaliza-
tion of the impulse approximation by Chew and
Goldber ger. '

The preceding considerations are described in
detail in Sec. II, and in Sec. III the calculation is
compared with the experimental data.

II. IMPULSE APPROXIMATION AND FIRST-ORDER
CORRECTIONS

Our starting point is the generalized impulse ap-
proximation of Chew and Goldberger. ' We consid-
er a scatterer which is made up of several constit-
uents bound by a potential U, and an incident par-
ticle which interacts with the kth particle of the
scatterer through a potential Vk. The total Hamil-
tonian is

H=K+U+V,

where A is the kinetic energy operator and

For convenience, we define operators (dk' such
that cok'), operating to the right on an eigenstate
of K with energy E, is given by

&u(~') =1+(E—Z —U~+if) 'V» (Sa)

and &ok is a similar operator acting to the left,

&uI
) =1+V„(F-—K —V~+ if) '. (ab)

The scattering operators for two-body scattering
are given by

(4b)

where this operator is to be evaluated between
eigenstates of the unperturbed Hamiltonian for the
entire composite system, which is

HQ=K+ U. (8)

The first term here is just single scattering and

gives the simple impulse approximation; the sec-
ond term gives the multiple scattering corrections;
and the last term shows the effects of the binding
potential on the individual two-body scatterings.

The necessary matrix elements of the two-body
scattering operators tk(') are known from available
analyses of pion-nucleon scattering data, and as a
practical matter we note that

&d),
) —1 = (E —E+ if)

which can be evaluated easily. Thus the single-
and double-scattering terms in the expression for
T ' are written in terms of known quantities. We

will argue that the binding corrections are small.
The results of analyses of pion-nucleon scatter-

ing are a set of phase shifts4 which give the scat-
tering amplitude in the c.m. system. The neces-
sary relations between these phase shifts and the
matrix elements of tk are given here for the defi-
nite example of the reaction z'+P- g'+P. Let us

and the scattering amplitudes are given by matrix
elements of the t„') between initial and final states
consisting of free particles. (We might note that
if the initial and final states have the same ener-
gies, then there is no difference between tk(') and
i(-) )

The impulse approximation relates the scatter-
ing operator for scattering on the entire bound sys-
tem to the two-body operators. The total T matrix
is

T(+) =g f(+) ~QQ f(-, ) (~(+) 1)
k k'&k
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FIG. 1. Pion-nucleon scattering kinematics.
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FIG. 3. Pion-deuteron kinematics in lab system.

say we are scattering from an initial pion-proton
state X. to a final state X„with the spin projec-
tion of the initial proton i, and of the final proton j.
The kinematics are show'n in Fig. 1. A matrix ele-
ment of t„contains a 5 function of three-momentum
which will be taken out so that it does not appear
explicitly in subsequent formulas.

(x) = [u(r—)Y«(8, $))( +w(r)

xg Y2 ~-~(8~$)X C~-«] (13)

where X is a combination of Pauli spinors in a
total spin-1 state, with a magnetic quantum num-
ber m; C „„is a Clebsch-Gordan coefficient,

&x&lf&lx.&-(2)() 5 (pl (Il p2 (I2) ji(P2) q2 IP1 ql ). C „„=(2,m —n; l, nl2, 1; 1, m) (14)

with

f=fi+c'hc'M (11a}

f,=g a, (W)PI„(cos8)+Pa, (W)P', ,(cos8),
j=o 2=2

(11b)
Q

f, =g [a, (W) —a, (W)]P,'(cos8),
g= 1

and finally

a„= (I/q)e "sin6, „.

(11c}

(12)

q, and q, are the pion momenta in the c.m. , q their
magnitude, and 9 the angle between them.

We must also establish the notation to be used
for the deuteron wave function. The deuteron has
total angular momentum 1, spin 1, and the orbital
state is a combination of S wave and D wave. Its
wave function in coordinate space is

(8)

In the c.m. system, there is a conventionally de-
fined scattering amplitude matrix, f, related to F
by

(v, v2E, E2)'i F,; = 2mWf, ;, -
where 5' is the total c.m. energy, and the quantity
on the left is a I orentz scalar. If li& and lj& rep-
resent Pauli spinors for the proton spin states, we
have'

(10)

in Edmonds's' notation; the normalization constant
N is determined by the condition

fd) [u'(r)+u)'(r)]=1. (15)

The forms of the S- and D-state radial wave func-
tions u(r) and w(r} are taken from the work' of
Moravcsik, and of Lomon and Feshbach.

A. Single-Scattering Terms

Keeping only the single-scattering terms in the
formula for T'j gives what is often called the
"simple impulse approximation. " We have

T(+) =Qf(+) (16)

Now it can be seen that

and this is to be evaluated between initial and final
pion-deuteron states. The pion may scatter from
either the proton or neutron inside the deuteron,
and these processes are diagrammed in Fig. 2.

The kinematics for scattering from a deuteron in
the lab system are shown in Fig. 3, and the initial
and final deuterons have spin projections m and m',
respectively. The matrix element of T~'& will con-
tain a 5 function of three-momentum, which will
again be written explicitly so that it will not appear
in subsequent formulas,

&0 lT" le.&
= (»)'5'" (P+~'-(I}&..((I,(I'}.

FIG. 2. Pion-deuteron sin-
gle-scattering processes.



PION-DEUTERON E LAST IC SCATTERING. . . 1227

3

&..(q, q')=
(2 ). 0; *(-'P+p)4;, (P)

&[~ F;; (P+p, q', p, q)

+ ~;;G,', (P+p, q'; p, q)] . (18)

single scattering is included.

—=R &&
—g

1' Qm

=R(iF„+G„i'S,'+-', iF,+G, P S,'),
G is defined in the same way as I' but for the pro-
cess g +n- m'+ n.

If F and G are slowly varying as functions of en-
ergy, we can remove them from the integral, eval-
uating them at some average value of p=p, . We
can find some optimal value of p, (following Pen-
delton') by expanding E and G in a Taylor series,

&(P+p, q'; p, q) = &(P+p.,q'; p.,q)

+Vp F(P + po, q '; po, q )(p —po) +. . .
(19)

where
2 I /2

(E+C)'+4 D — ~8

and

R= (2w) 'vv' ——1 —,ose), E' q' v'q
W q Wq'

(22)

(24a)

(24b)

(25)

and

po= -gP, (20)

(q, q) —[5, , ;.;(,P,q; -4P, q)

+ 5;.;G,'., (gP, q', -gP, q)]

dx, &;;*(-'P+p)4;;(p). (21)

If we are not right at a resonance energy, we can
assume the term linear in p will not have a zero
coefficient, so that we can choose p, by requiring
that the linear term not contribute to the integral.
Thus,

B. Double-Scattering Terms

The double-scattering contributions to the T ma-
trix are given by

P P t,'-, ~ (Z -If+ fr) 't„" .
k'&k

(26)

Three processes may contribute, and these are di-
agrammed in Fig. 4. For simplicity in this paper,
formulas will be written down only for the reaction
in Fig. 4(a), which consists of a v' scattering

The integral that remains is a "form factor" that
measures the probability that the deuteron will
stay together when given a momentum transfer P.
Writing the wave function as a combination of S
and D waves leads to four integrals. The first in-
tegral is what the form factor would be if there
were no D-state part (and can be integrated ana-
lytically for a Hulthen-type wave function),

R =—,u "(-,'P+p)u(p),
4v (2v)'1, ; p. -„u(r) '

+
7('

d~j, —,p~ u' r . (22a) (b)

The other integrals are
f

D = ' dr j, —pr x so x,
C = de, (,Pr)w'(r), —

B= Chj, —,pr m' x .

(22b)

(22c)

(22d)

+
7r

(c)
Finally, let us write down the differential cross
section in the lab for a calculation where only FIG. 4. Pion-deuteron double-scattering processes.
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elastically first off the proton and then off the
neutron.

Some approximations will be made. Terms in
the double scattering of order m„/m„will be ne-
glected, and only the 5-function part of the propa-
gator will be kept, so that

(E —K+ is) '- -iv5(E -K). (27)

The deuteron will be taken to be in an S state
only, and again the energy dependence of the pion-
nucleon scattering amplitude will be neglected.
This time, however, we must integrate over an
angular variable for the intermediate pion, so that
it is necessary to make the expansion

E„;(2P—p', q"; -p, q) =gf '; '1', (0,), (28a)

~8, ( P+p q;p q )=Zk'8, 1, (fl ) (28b)

where 0, and 0, a,re the angles between (q",q) and

(q', q"), respectively.
With these approximations, the contribution to

pd elastic scattering can be calculated straightfor-
wardly. Let the energy and momentum of the inter-
mediate pion be v" and q". We have

6( — ")G,(-'P+p', q', p, q");,4 ( ')0(P);

this is reduced to a longer but actually more man-
ageable form in the Appendix.

Some comment on binding corrections is also in
order. Using the techniques of Bander, ' one can
show that the binding corrections are of order m, /
m„compared with double scattering corrections,
so they may be consistently neglected.

III. RESULTS AND COMMENTS

Experimental data on the differential cross sec-
tion for pion-deuteron elastic scattering are avail-
able for five values within the range that could be
called the "intermediate"-energy region. The
kinetic energies of the incident pions in these five
experiments are 61,"87," 142,"180,' and 300"
MeV/c'. At low energies it is difficult to deter-
mine if the deuteron has remained intact after
scattering the pion, so that data on purely elastic
scattering are not available below 61 MeV/c'. At
high energies, one cannot treat the nucleus non-
relativistically, so that the calculation presented
here is not applicable above 300 MeV/c'. This is
why we have restricted our attention to the experi-
mental energies listed above.

Perhaps the most interesting data are those
taken at 180 MeV/c'. This is only 10 or 15 MeV/c'

1.4

1.2

I.O

0,8
E

by
06

0.4

90
PION LAB ANGLE (degrees)

180

FIG. 5. 7r-d elastic scattering at 61 MeV/f." . The solid
line shows our calculation; the experimental data are
from Ref. 10.

lower than the energy required to excite the 33
resonance at its peak. Since the individual scatter-
ing amplitudes are large near a resonance, one ex-
pects that the contribution of the double-scattering
terms will be largest here. Also, it has been sug-
gested that the approximations that are made in
the impulse approximation are, for various rea-
sons, not valid near a resonance region.

The results of this calculation and the experi-
mental data are shown graphically in Figs. 5-9.
To within distances that can be judged in a graph,
there is no difference between using the Moravcsik
or Lomon-Feshbach wave function. The agreement
with the experimental data is not good at 61 and
300 MeV/c'; on the other hand, the curves for 87
and 142 MeV/c' are quite acceptable. The fit at
180 MeV/c' is too high in the backward direction.

The agreement at 180 MeV/c' is, however, good
in the forward direction, indicating that the im-
pulse approximation is valid in this energy region.
Tables I, II, and III show the effect of the various
corrections at some angles at the energies 87, 142,
and 180 MeV/c', with the calculations done using

"~i
0 I

0 90 I 80
PION LAB ANGLE (degrees)

FIG. 6. 7r-d elastic scattering at 87 MeV/c . The solid
line shows our calculations; the experimental data are
from Hef. 11.
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TABLE I. Pion-deuteron elastic scattering cross sections at 87 MeV/c~ (mb/sr).

750 105 135' 175'

Pure S state,
single scattering

Including D state,
single scattering

Pure S state
with double scattering

Including D state
with double scattering

Experiment (Ref. 11)

1.63

1.56

1.58

1.51

1.1 +0.5

0.52

0.47

0.53

0.47

0.85+0.30

0.50

0.50

0.53

0.53

1.15 + 0.25

0.58

0.62

0.61

0.64

1.1 +0.6

0.61

0.66

0.63

0.69

1.1 + 0.85

to deflect the pion by scattering it twice through
smaller angles.

The fact that there is not a large difference be-
tween the results with the Moravcsik wave function

and the Lomon-Feshbach wave function should not

be surprising, in spite of the fact that the former
has 7.0% D state and the latter has 5.2% D state.
The D state gives significant contributions in the
backward directions, but it also happens that the

. S-wave form factor from the Moravcsik wave func-
tions falls more quickly with momentum transfer,
and the decreased S-wave contribution compen-
sates for the increased D-wave contribution. The
reason for this is that both wave functions were
calculated from potentials, which mere in turn
fitted to the nucleon-nucleon scattering data. If
the scattering data are the same, it could be ex-
pected that the two wave functions predict the same
observable consequences, even if their internal
details differ.

The results here suggest that triple scattering,
temporary binding of pion and nucleon to produce
an N*, removing the pion-nucleon amplitude from
the integral, and various other things which have
been suggested as reasons for the invalidity of the
impulse approximation at certain energies do not
in fact radically affect the result. '4 This is rea-
sonable. The width of the 33 resonance is about
120 MeV, while the width of the pion wave func-
tion, which determines the "width" of the integrals,

is about 60 MeV. Thus it seems all right to re-
move the amplitude from the integrals. The im-
pulse approximation assumes that the interaction
takes place in a short time compared with other
time scales within the deuteron, so that if the pion
and nucleon bind together in an N* for an appreci-
able period the approximation is wrong. However,
with the average size of the deuteron being 4.3 F
and with the pions at our energies, any N* that is
produced can trave1 only a small fraction of the
distance between the nucleus before it decays.
Finally, the triple scattering is probably small. "

Earlier calculations" of pion-deuteron elastic
scattering near 140 MeV/c' gave a result that was
much too large in the backward direction. The
main difference between the present calculation
and earlier calculations is not in the formal input,
but in the wave function used. We have used here
Moravcsik's' best analytic approximation to the
Gartenhaus" wave function and also the Lomon-
Feshbach wave function with 5.2/q D state. These
wave functions were calculated by solving the
deuteron bound-state problem with a potential
which was inferred from an analysis of nucleon-
nucleon scattering data. The Moravcsik, Lomon-
Feshbach, and other wave functions obtained by the
same methods" fall off more quickly in momentum

space than commonly available Hulthbn or Hulthen
with hard-core mave functions. Thus the form fac-
tors or "overlap functions" decrease more quickly

TABLE II. Pion-deuteron elastic scattering cross sections at 142 MeV/c (mb/sr).

45' 750 135 175'

Pure S state,
single scattering

Including D state,
single scattering

Pure S state
with double scattering

Including D state
with double scattering

Experiment (Ref. 12)

5.43

5.34

5.35

5.26

5.7 + 0.6

0.95

0.90

1.09

1.04

1.4 +0.2

0.80

0.86

1.00

1.0 +0.1

0.86

0.99

0.96

1.10

0.7 +0.1

0.85

1.02

0.94

1.10

0.9+0.15
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TABLE III. Pion-deuteron elastic scattering cross sections at 180 MeV/c2 (mb/sr).

45 75' 105' 135' 175'

Pure S state,
single scattering

Including D state,
single scattering

Pure S state
with double scattering

Including D state
with double scattering

Experiment (Ref. 2)

6.31

6.33

6.28

6.28

6.07+ 0.48

0.76

0.75

0.99

0.98

0.87+ 0.14

0.58

0.66

0.76

0.84

0.65 + 0.13

0.59

0.73

0.70

0.85

0.41 + 0.12

0.56

0.73

0.64

0.82

0.25+ 0.36

with increasing momentum transfer than if they
were calculated with a Hulth6n wave function, and

thus the calculated cross section is more strongly
suppressed in the backward direction.

Our knowledge of the deuteron wave function,
though improved, is still a hindrance to calculating
scattering at high momentum transfers. The mo-
mentum transfer involved in backward scattering
at 140 or 180 MeV/c' are already high enough to
put us in an area of marginal certainty for the
wave function. Unfortunately, the pion-deuteron
scattering experiment probably cannot be used as
a probe of the wave function, because at higher
momentum transfers multiple scattering becomes
increasingly important, for reasons already men-
tioned, and the calculation becomes muddled.

APPENDIX

Double-Scattering Terms

Making the approximations stated in the text, the
amplitude is

d q= -iw d'xy'(x) e'""
m'm (27i)'

~~(i' i' )Xnii &niG8~xsg.

This leaves integrals of the form

I= dna, nV, nV„n, , A4

which cannot be integrated immediately, because
the arguments of the spherical harmonics measure
the direction of q" in three different reference sys-
tems. One may, however, rotate each of these
reference systems to some standard coordinate
system. If the Euler angles for rotating the stan-
dard system to a system with its z axis along q are
cu„ then

Y', (Q, ) = Q & ', ((u,) 1', (0,), etc. (A6)

Now with the help of some formulas from Edmonds, '
the integral can be done:

I= D'
~~ , Dm. m (O1 Dm'm

1 2

(2l + 1)(2l,+ 1)(2l, + 1) 'i l l, l2 l l, l2

(A6)

Edmonds's convention is used for the 3-j symbols.
Choosing the z axis of the standard system paral-

lel to Q allows the angular part of the x integral to
be done easily. One finds

x d'xy x e '~' dg"e'q'

where

x 1', (ll, ) y, (n, ),

i~(») '~q g -X.B'f.'; 'z,', x;,
11m1l m2

(A1)

A'„', = -i(2w) 'vq g (2l+1)(2l, +1)"'
t1m l m

2
~m'm ~

1 2

-" " ("")("..')
Q = k(c(+ ii'), (A2)

0, represents the angle between q and q", and 02
represents the angles between q" and q. 0, repre-
sents the angle between x and q"; then the expo-
nential factor in the last integral may be expanded,

e'~ '" =pi'[4v(21+1)]"'j,(qx)Yio(Q, ). (A3)
l

(A7)

where 8, and 0, are the angles between (q, Q) and

(ii', Q), respectively, and 4, is the radial integral,

e, = dx+y, qx j, @x y'x .
0

If the wave function is of Hulthbn type,
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Q(x) = NQC; (Ag)

(Alo)

then these radial integrals can be done analytical-
ly. One uses

pl
j,(qx) = '( —i)-'~l dye, (g)e""'

-1

to show that

e, = —.'(-s)'A" gg cc,f,.dgdq p, (t)

x P (q).
1

n; + a,. -iqf —iQg

The last integrals are quite manageable.

*Work supported by the U. S. Atomic Energy Commis-
s ion.

G. F. Chew, Phys. Rev. 80, 196 (1950); G. F. Chew

and G. C. Wick, Phys. Rev. 85, 636 (1952).
J. H. Norem, Princeton-Pennsylvania Accelerator

Report No. PPAR-7, 1968 (unpublished).
3G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778

(1952).
L. D. Roper, R. M. Wright, and B. T. Feld, Phys.

Rev. 138, B190 (1965).
5G. F. Chew, M. L. Goldberger, F. E. Low, and

Y. Nambu, Phys. Rev. 106, 1337 (1957).
~A. R. Edmonds, Angnlax Momentum in Quantum Me-

chanics (Princeton University Press, Princeton, New

Jersey, 1960).
7M. J. Moravcsik, Nucl. Phys. ~7 113 (1958); E. L.

Lomon and H. Feshbach, Ann. Phys. (N.Y.) 48, 94 (1968).
I am grateful to Mrs. N. Spencer for her knowledge
and assistance in programming with the Lomon-Feshbach
wave function.

H. ¹ Pendleton, Phys. Rev. 131, 1833 (1963).
~M. Bander, Phys. Rev. 134, B1052 (1964).

~OA. M. Sachs, H. Winick, and B. A. Wooten, Phys. Rev.
109, 1733 (1958).

~K. C. Rogers and L. M. Lederman, Phys. Rev. 105,
247 (1957).

E. G. Pewitt etal. , Phys. Rev. 131, 1826 (1963).
L. S. Dul'kova etal. , Zh. Eksperim. i Teor. Fiz 35,

313 (1958) I.transl. : Soviet Phys. —JETP 8, 217 (1959)l.
~ Cf. Ref. 8; V. Devanathan, Nucl. Phys. 43, 684 (1963).
~5An interesting model is one in which the nucleon rnass-

es are infinite and there is only S-wave scattering, and
the scattering is the same for neutrons as for protons.
At resonance energy in the backward direction the vari-
ous orders of multiple scattering cancel in pairs: i.e.,
single scattering and double scattering cancel, triple
scattering and quadrupole scattering cancel, etc. The
ratio of triple scattering to single scattering depends on
the details of the situation; if other details of our model
are made like our pion-deuteron scattering near the 3-3
resonances, triple scattering is about half single scatter-
ing. I was told of this model by Dr. Hugh Pendleton.

Ref. 8 and A. Ramakrishnan, V. Devanathan, and
K. Venkatesan, Nucl. Phys. 29, 680 (1962).

~~S. Gartenhaus, Phys. Rev. 100, 900 (1956).
~ For example, R. V. Reid, Jr., Ann. Phys. (N. Y.) 50,

411 (1968).

PH YSICAL REVIEW C VOLUME 2, NUMBER 4 OCTOBER 1970

Extended Shell-Model Description of Nucleon-Transfer Form Factors*
R. J. Philpott

Department of Physics, Florida State University, Tallahassee, Florida 32306
(Received 6 July 1970)

A flexible microscopic model is introduced in. an attempt to illuminate problems associated
with the calculation of single-nucleon-transfer form factors. The model employs a truncated
shell-model basis augmented by a set of single-nucleon channels. It can be used even when

the residual nucleus is unbound, but ignores contributions from many-particle breakup chan-
nels. The model wave function is fully antisymmetric, and it is shown that all quantities which

appear in the model. are calculable. An approximate single-channel calculation of form fac-
tors for the reactions OCa(d, P) Ca(2.01 MeV) and OCa( He, d) Sc(2.10 MeV) is used to illus-
trate some of the features of the model.

I. INTRODUCTION

It is well known that the nucleon-transfer form
factor appears as an essential ingredient in dis-
torted-wave analyses of single-nucleon transfer
reactions. Because of the current reliance upon

the distorted-wave method for the extraction of
spectroscopic information from reaction data and
because the extracted results are found to depend
on the details of the form factor, ' ' the form fac-
tor itself has become the subject of considerable
interest. ' "


